Polymer Coated Iron Nanoparticles: Radiolabeling & In vitro Studies

Author(s): Selin Yilmaz, Cigdem Ichedef, Kadriye Buşra Karatay, Serap Teksöz*

Journal Name: Current Radiopharmaceuticals

Volume 14 , Issue 1 , 2021

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used for targeted drug delivery systems due to their unique magnetic properties. Objective: In this study, it has been aimed to develop a novel targeted 99mTc radiolabeled polymeric drug delivery system for Gemcitabine (GEM).

Methods: Gemcitabine, an anticancer agent, was encapsulated into polymer nanoparticles (PLGA) together with iron oxide nanoparticles via double emulsion technique and then labeled with 99mTc. SPIONs were synthesized by reduction–coprecipitation method and encapsulated with oleic acid for surface modification. Size distribution and the morphology of the synthesized nanoparticles were characterized by dynamic light scattering (DLS) and scanning electron microscopy (SEM), respectively. The radiolabeling yield of SPION-PLGAGEM nanoparticles was determined via Thin Layer Radio Chromatography (TLRC). Cytotoxicity of GEM loaded SPION-PLGA was investigated on MDA-MB-231 and MCF7 breast cancer cells in vitro.

Results: SEM images displayed that the average size of the drug-free nanoparticles was 40 nm and the size of the drug-loaded nanoparticles was 50 nm. The diameter of nanoparticles was determined as 366.6 nm by DLS, while zeta potential was found as 29 mV. SPION was successfully coated with PLGA, which was confirmed by FTIR. GEM encapsulation efficiency of SPION-PLGA was calculated as 4±0.16% by means of HPLC. Radiolabeling yield of SPION-PLGA-GEM nanoparticles was determined as 97.8±1.75% via TLRC. Cytotoxicity of GEM loaded SPION-PLGA was investigated on MDA-MB-231 and MCF7 breast cancer cells. SPION-PLGA-GEM showed high uptake on MCF-7, while the incorporation rate was increased for both cell lines with external magnetic field application.

Conclusion: 99mTc labeled SPION-PLGA nanoparticles loaded with GEM may overcome some of the obstacles in anti-cancer drug delivery because of their appropriate size, non-toxic, and superparamagnetic characteristics.

Keywords: Magnetic drug delivery, polymeric nanoparticles, gemcitabine, radiolabeling, 99mTc, in vitro.

Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
Gu, F.; Zhang, L.; Teply, B.A.; Mann, N.; Wang, A.; Radovic-Moreno, A.F.; Langer, R.; Farokhzad, O.C. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2586-2591.
[http://dx.doi.org/10.1073/pnas.0711714105] [PMID: 18272481]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2002, 54(5), 631-651.
[http://dx.doi.org/10.1016/S0169-409X(02)00044-3] [PMID: 12204596]
Yusoff, A.H.M.; Salimi, M.N. Superparamagnetic Nanoparticles for Drug Delivery. Applications of Nanocomposite Materials in Drug Delivery, 2018, 843-859.
Olivier, J-C. Drug transport to brain with targeted nanoparticles. NeuroRx, 2005, 2(1), 108-119.
[http://dx.doi.org/10.1602/neurorx.2.1.108] [PMID: 15717062]
Laurent, S.; Mahmoudi, M. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cancer. Int. J. Mol. Epidemiol. Genet., 2011, 2(4), 367-390.
[PMID: 22199999]
Lawaczeck, R.; Menzel, M.; Pietsch, H. Superparamagnetic iron oxide particles: contrast media for magnetic resonance imaging. Appl. Organomet. Chem., 2004, 18(10), 506-513.
Berry, C.C.; Curtis, A.S.G. Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys., 2003, 36(13), R198-R206.
Sun, S.; Zeng, H.; Robinson, D.B.; Raoux, S.; Rice, P.M.; Wang, S.X.; Li, G. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc., 2004, 126(1), 273-279.
[http://dx.doi.org/10.1021/ja0380852] [PMID: 14709092]
Arruebo, M.; Fernández-Pacheco, R.; Ibarra, M.R.; Santamaría, J. Magnetic nanoparticles for drug delivery. Nano Today, 2007, 2(3), 22-32.
Morales, M.A.; Jain, T.K.; Labhasetwar, V.; Leslie-Pelecky, D.L. Magnetic studies of iron oxide nanoparticles coated with oleic acid and Pluronic® block copolymer. J. Appl. Phys., 2005, 97(10)
Singh, N.; Jenkins, G.J.S.; Asadi, R.; Doak, S.H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev., 2010, 1(1), 5358.
[http://dx.doi.org/10.3402/nano.v1i0.5358] [PMID: 22110864]
Kayal, S.; Ramanujan, R.V. Anti-cancer drug loaded iron-gold core-shell nanoparticles (Fe@Au) for magnetic drug targeting. J. Nanosci. Nanotechnol., 2010, 10(9), 5527-5539.
[http://dx.doi.org/10.1166/jnn.2010.2461] [PMID: 21133071]
Sun, S-N.; Wei, C.; Zhu, Z-Z.; Hou, Y-L.; Venkatraman, S.S.; Xu, Z-C. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chin. Phys. B, 2014, 23(3)037503
Shive, M.S.; Anderson, J.M. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev., 1997, 28(1), 5-24.
[http://dx.doi.org/10.1016/S0169-409X(97)00048-3] [PMID: 10837562]
Kopke, R.D.; Wassel, R.A.; Mondalek, F.; Grady, B.; Chen, K.; Liu, J.; Gibson, D.; Dormer, K.J. Magnetic nanoparticles: inner ear targeted molecule delivery and middle ear implant. Audiol. Neurotol., 2006, 11(2), 123-133.
[http://dx.doi.org/10.1159/000090685] [PMID: 16439835]
Abbruzzese, J.L.; Grunewald, R.; Weeks, E.A.; Gravel, D.; Adams, T.; Nowak, B.; Mineishi, S.; Tarassoff, P.; Satterlee, W.; Raber, M.N. A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J. Clin. Oncol., 1991, 9(3), 491-498.
[http://dx.doi.org/10.1200/JCO.1991.9.3.491] [PMID: 1999720]
Allen, T.M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer, 2002, 2(10), 750-763.
[http://dx.doi.org/10.1038/nrc903] [PMID: 12360278]
Tietze, R.; Zaloga, J.; Unterweger, H.; Lyer, S.; Friedrich, R.P.; Janko, C.; Pöttler, M.; Dürr, S.; Alexiou, C. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun., 2015, 468(3), 463-470.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.022] [PMID: 26271592]
İçhedef, C.; Teksöz, S.; Ünak, P.; Medine, E.İ. Ertay, T.; Bekiş, R. Preparation and characterization of radiolabeled magnetic nanoparticles as an imaging agent. J. Nanopart. Res., 2012, 14, 1077-1086.
Jürgens, S.; Herrmann, W.A.; Kühn, F.E. Rhenium and technetium based radiopharmaceuticals: Development and recent advances. J. Organomet. Chem., 2014, 751, 83-89.
Monteiro, L.O.F.; Fernandes, R.S.; Castro, L.C.; Cardoso, V.N.; Oliveira, M.C.; Townsend, D.M.; Ferretti, A.; Rubello, D.; Leite, E.A.; de Barros, A.L.B. Technetium-99m radiolabeled paclitaxel as an imaging probe for breast cancer in vivo. Biomed. Pharmacother., 2017, 89, 146-151.
[http://dx.doi.org/10.1016/j.biopha.2017.02.003] [PMID: 28222395]
Yilmaz, B.; Teksoz, S.; Kilcar, A.Y.; Ucar, E.; Ichedef, C.; Medine, E.I.; Ari, K. In Vitro/In Vivo Evaluation of Radiolabeled [(99m)Tc(CO)3](+)-Hydroxyurea and Fluorescein Isothiocyanate-Hydroxyurea. Cancer Biother. Radiopharm., 2016, 31(1), 14-19.
[http://dx.doi.org/10.1089/cbr.2015.1886] [PMID: 26844848]
Qu, S.; Yang, H.; Ren, D.; Kan, S.; Zou, G.; Li, D.; Li, M. Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J. Colloid Interface Sci., 1999, 215(1), 190-192.
[http://dx.doi.org/10.1006/jcis.1999.6185] [PMID: 10362489]
Sivakumar, B.; Aswathy, R.G.; Romero-Aburto, R.; Mitcham, T.; Mitchel, K.A.; Nagaoka, Y.; Bouchard, R.R.; Ajayan, P.M.; Maekawa, T.; Sakthikumar, D.N. Highly versatile SPION encapsulated PLGA nanoparticles as photothermal ablators of cancer cells and as multimodal imaging agents. Biomater. Sci., 2017, 5(3), 432-443.
[http://dx.doi.org/10.1039/C6BM00621C] [PMID: 28059418]
Mosafer, J.; Abnous, K.; Tafaghodi, M.; Mokhtarzadeh, A.; Ramezani, M. In vitro and in vivo evaluation of anti-nucleolin-targeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy. Eur. J. Pharm. Biopharm., 2017, 113, 60-74.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.009] [PMID: 28012991]
Ling, Y.; Wei, K.; Luo, Y.; Gao, X.; Zhong, S. Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials, 2011, 32(29), 7139-7150.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.089] [PMID: 21726899]
Prabha, S.; Zhou, W.Z.; Panyam, J.; Labhasetwar, V. Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int. J. Pharm., 2002, 244(1-2), 105-115.
[http://dx.doi.org/10.1016/S0378-5173(02)00315-0] [PMID: 12204570]
Xu, R. Progress in nanoparticles characterization: Sizing and zeta potential measurement. Particuology, 2008, 6(2), 112-115.
Müller, R.H.; Jacobs, C. Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. Int. J. Pharm., 2002, 237(1-2), 151-161.
[http://dx.doi.org/10.1016/S0378-5173(02)00040-6] [PMID: 11955813]
Ibarra, J.; Melendres, J.; Almada, M.; Burboa, G.M.; Taboada, P.; Juárez, J.; Valdez, A.M. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles. Mater. Res. Express, 2015, 2(9), 1-17.
Okassa, L.N.; Marchais, H.; Douziech-Eyrolles, L.; Hervé, K.; Cohen-Jonathan, S.; Munnier, E.; Soucé, M.; Linassier, C.; Dubois, P.; Chourpa, I. Optimization of iron oxide nanoparticles encapsulation within poly(d,l-lactide-co-glycolide) sub-micron particles. Eur. J. Pharm. Biopharm., 2007, 67(1), 31-38.
[http://dx.doi.org/10.1016/j.ejpb.2006.12.020] [PMID: 17289360]
Liu, X.; Kaminski, M.; Guan, Y.; Chen, H.; Liu, H.; Rosengart, A. Preparation and characterization of hydrophobic superparamagnetic magnetite gel. J. Magn. Magn. Mater., 2006, 306(2), 248-253.
Yang, K.; Peng, H.; Wen, Y.; Li, N. Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Appl. Surf. Sci., 2010, 256(10), 3093-3097.
Patel, D.; Moon, J.Y.; Chang, Y.; Kim, T.J.; Lee, G.H. Poly(d,l-lactide-co-glycolide) coated superparamagnetic iron oxide nanoparticles: Synthesis, characterization and in vivo study as MRI contrast agent. Colloids Surf. A Physicochem. Eng. Asp., 2008, 313-314, 91-94.
Hamzian, N.; Hashemi, M.; Ghorbani, M.; Bahreyni Toosi, M.H.; Ramezani, M. Preparation, Optimization and Toxicity Evaluation of (SPION-PLGA) ±PEG Nanoparticles Loaded with Gemcitabine as a Multifunctional Nanoparticle for Therapeutic and Diagnostic Applications. Iran. J. Pharm. Res., 2017, 16(1), 8-21.
[PMID: 28496458]
Parsian, M.; Unsoy, G.; Mutlu, P.; Yalcin, S.; Tezcaner, A.; Gunduz, U. Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug. Eur. J. Pharmacol., 2016, 784, 121-128.
[http://dx.doi.org/10.1016/j.ejphar.2016.05.016] [PMID: 27181067]
Özyüncü, S.Y.; Teksöz, S.; Içhedef, Ç.; Medine, E.I.; Avci, Ç.B.; Gündüz, C.; Ünak, P. Radiolabeled D-Penicillamine Magnetic Nanocarriers for Targeted Purposes. J. Nanosci. Nanotechnol., 2016, 16(4), 4174-4179.
[http://dx.doi.org/10.1166/jnn.2016.11646] [PMID: 27451783]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2021
Published on: 29 April, 2020
Page: [37 - 45]
Pages: 9
DOI: 10.2174/1874471013666200430094113
Price: $65

Article Metrics

PDF: 21