IL-37 As a Potential Biotherapeutics of Inflammatory Diseases

Author(s): Junhui Bai, Yukun Li, Meixiang Li, Sijie Tan*, Daichao Wu*

Journal Name: Current Drug Targets

Volume 21 , Issue 9 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Interleukin-37 (IL-37) was discovered as a new member of pro-inflammatory IL-1 superfamily. However, further studies suggested that IL-37 plays a critical anti-inflammatory role in innate and adaptive immunity. IL-37 may suppress the inflammatory process via intracellular SMAD family member 3 (SMAD3) and extracellular IL-18 Receptor alpha (IL-18Rα) signaling pathway, respectively. Meanwhile, the abnormal expression of IL-37 was observed in immune-mediated inflammatory diseases, such as inflammatory bowel disease, rheumatoid arthritis, atherosclerosis, systemic lupus erythematosus, asthma, and multiple sclerosis, which suggest IL-37 is a potential therapeutic target for these diseases. In this review, we summarize the anti-inflammatory mechanism of IL-37 and discuss the critical roles of IL-37 in the pathogenesis of these diseases. Further studies are required to confirm the effectiveness of IL-37 as a novel target for these inflammatory diseases.

Keywords: Interleukin-37, inflammatory diseases, anti-inflammatory, cytokine, immune-mediated inflammatory, rheumatoid arthritis.

[1]
Smith DE, Renshaw BR, Ketchem RR, Kubin M, Garka KE, Sims JE. Four new members expand the interleukin-1 superfamily. J Biol Chem 2000; 275(2): 1169-75.
[http://dx.doi.org/10.1074/jbc.275.2.1169] [PMID: 10625660]
[2]
Sharma S, Kulk N, Nold MF, et al. The IL-1 family member 7b translocates to the nucleus and down-regulates proinflammatory cytokines. J Immunol 2008; 180(8): 5477-82.
[http://dx.doi.org/10.4049/jimmunol.180.8.5477] [PMID: 18390730]
[3]
Taylor SL, Renshaw BR, Garka KE, Smith DE, Sims JE. Genomic organization of the interleukin-1 locus. Genomics 2002; 79(5): 726-33.
[http://dx.doi.org/10.1006/geno.2002.6752] [PMID: 11991723]
[4]
Nold MF, Nold-Petry CA, Zepp JA, Palmer BE, Bufler P, Dinarello CA. IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol 2010; 11(11): 1014-22.
[http://dx.doi.org/10.1038/ni.1944] [PMID: 20935647]
[5]
Nold-Petry CA, Lo CY, Rudloff I, et al. IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat Immunol 2015; 16(4): 354-65.
[http://dx.doi.org/10.1038/ni.3103] [PMID: 25729923]
[6]
Dinarello CA, Nold-Petry C, Nold M, et al. Suppression of innate inflammation and immunity by interleukin-37. Eur J Immunol 2016; 46(5): 1067-81.
[http://dx.doi.org/10.1002/eji.201545828] [PMID: 27060871]
[7]
Kumar S, Hanning CR, Brigham-Burke MR, et al. Interleukin-1F7B (IL-1H4/IL-1F7) is processed by caspase-1 and mature IL-1F7B binds to the IL-18 receptor but does not induce IFN-gamma production. Cytokine 2002; 18(2): 61-71.
[http://dx.doi.org/10.1006/cyto.2002.0873] [PMID: 12096920]
[8]
Wu D, Li G, Ma Y, et al. Expression and Purification of Tag-removed Human IL37 by Digestion on Beads in Escherichia coli. Protein Pept Lett 2018; 25(11): 996-1002.
[http://dx.doi.org/10.2174/0929866526666181128124028] [PMID: 30484398]
[9]
Zuhdi Alimam M, Piazza FM, Selby DM, Letwin N, Huang L, Rose MC. Muc-5/5ac mucin messenger RNA and protein expression is a marker of goblet cell metaplasia in murine airways. Am J Respir Cell Mol Biol 2000; 22(3): 253-60.
[http://dx.doi.org/10.1165/ajrcmb.22.3.3768] [PMID: 10696060]
[10]
van de Veerdonk FL, Netea MG. New Insights in the Immunobiology of IL-1 Family Members. Front Immunol 2013; 4: 167.
[http://dx.doi.org/10.3389/fimmu.2013.00167] [PMID: 23847614]
[11]
Bufler P, Gamboni-Robertson F, Azam T, Kim SH, Dinarello CA. Interleukin-1 homologues IL-1F7b and IL-18 contain functional mRNA instability elements within the coding region responsive to lipopolysaccharide. Biochem J 2004; 381(Pt 2): 503-10.
[http://dx.doi.org/10.1042/BJ20040217] [PMID: 15046617]
[12]
Boraschi D, Lucchesi D, Hainzl S, et al. IL-37: a new anti-inflammatory cytokine of the IL-1 family. Eur Cytokine Netw 2011; 22(3): 127-47.
[http://dx.doi.org/10.1684/ecn.2011.0288] [PMID: 22047735]
[13]
Ellisdon AM, Nold-Petry CA, D’Andrea L, et al. Homodimerization attenuates the anti-inflammatory activity of interleukin-37. Sci Immunol 2017; 2(8): 2.
[http://dx.doi.org/10.1126/sciimmunol.aaj1548] [PMID: 28783685]
[14]
Bulau AM, Nold MF, Li S, et al. Role of caspase-1 in nuclear translocation of IL-37, release of the cytokine, and IL-37 inhibition of innate immune responses. Proc Natl Acad Sci USA 2014; 111(7): 2650-5.
[http://dx.doi.org/10.1073/pnas.1324140111] [PMID: 24481253]
[15]
Abulkhir A, Samarani S, Amre D, et al. A protective role of IL-37 in cancer: a new hope for cancer patients. J Leukoc Biol 2017; 101(2): 395-406.
[http://dx.doi.org/10.1189/jlb.5RU0816-341R] [PMID: 27881603]
[16]
Liu L, Xue Y, Zhu Y, et al. Interleukin 37 limits monosodium urate crystal-induced innate immune responses in human and murine models of gout. Arthritis Res Ther 2016; 18(1): 268.
[http://dx.doi.org/10.1186/s13075-016-1167-y] [PMID: 27863506]
[17]
Coussens AK, Wilkinson RJ, Martineau AR. Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D3. PLoS Pathog 2015; 11(7)e1005007
[http://dx.doi.org/10.1371/journal.ppat.1005007] [PMID: 26133770]
[18]
Tsutsumi N, Kimura T, Arita K, et al. The structural basis for receptor recognition of human interleukin-18. Nat Commun 2014; 5: 5340.
[http://dx.doi.org/10.1038/ncomms6340] [PMID: 25500532]
[19]
Zhuang X, Wu B, Li J, Shi H, Jin B, Luo X. The emerging role of interleukin-37 in cardiovascular diseases. Immun Inflamm Dis 2017; 5(3): 373-9.
[http://dx.doi.org/10.1002/iid3.159] [PMID: 28548248]
[20]
Novick D, Kim S, Kaplanski G, Dinarello CA. Interleukin-18, more than a Th1 cytokine. Semin Immunol 2013; 25(6): 439-48.
[http://dx.doi.org/10.1016/j.smim.2013.10.014] [PMID: 24275602]
[21]
Wald D, Qin J, Zhao Z, et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 2003; 4(9): 920-7.
[http://dx.doi.org/10.1038/ni968] [PMID: 12925853]
[22]
Li S, Neff CP, Barber K, et al. Extracellular forms of IL-37 inhibit innate inflammation in vitro and in vivo but require the IL-1 family decoy receptor IL-1R8. Proc Natl Acad Sci USA 2015; 112(8): 2497-502.
[http://dx.doi.org/10.1073/pnas.1424626112] [PMID: 25654981]
[23]
Gallino A, Aboyans V, Diehm C, et al. European Society of Cardiology Working Group on Peripheral Circulation. Non-coronary atherosclerosis. Eur Heart J 2014; 35(17): 1112-9.
[http://dx.doi.org/10.1093/eurheartj/ehu071] [PMID: 24595865]
[24]
Libby P. Inflammation in atherosclerosis. Nature 2002; 420(6917): 868-74.
[http://dx.doi.org/10.1038/nature01323] [PMID: 12490960]
[25]
Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ Res 2016; 118(4): 535-46.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307611] [PMID: 26892956]
[26]
Kruk ME, Gage AD, Joseph NT, Danaei G, García-Saisó S, Salomon JA. Mortality due to low-quality health systems in the universal health coverage era: a systematic analysis of amenable deaths in 137 countries. Lancet 2018; 392(10160): 2203-12.
[http://dx.doi.org/10.1016/S0140-6736(18)31668-4] [PMID: 30195398]
[27]
Al Shahi H, Shimada K, Miyauchi K, et al. Elevated Circulating Levels of Inflammatory Markers in Patients with Acute Coronary Syndrome. Int J Vasc Med 2015; 2015805375
[http://dx.doi.org/10.1155/2015/805375] [PMID: 26504600]
[28]
Ji Q, Zeng Q, Huang Y, et al. Elevated plasma IL-37, IL-18, and IL-18BP concentrations in patients with acute coronary syndrome. Mediators Inflamm 2014; 2014165742
[http://dx.doi.org/10.1155/2014/165742] [PMID: 24733959]
[29]
Chai M, Ji Q, Zhang H, et al. The Protective Effect of Interleukin-37 on Vascular Calcification and Atherosclerosis in Apolipoprotein E-Deficient Mice with Diabetes. J Interferon Cytokine Res 2015; 35(7): 530-9.
[http://dx.doi.org/10.1089/jir.2014.0212] [PMID: 25866993]
[30]
Yu K, Min X, Lin Y, et al. Increased IL-37 concentrations in patients with arterial calcification. Clin Chim Acta 2016; 461: 19-24.
[http://dx.doi.org/10.1016/j.cca.2016.07.011] [PMID: 27451144]
[31]
Liu J, Lin J, He S, et al. Transgenic Overexpression of IL-37 Protects Against Atherosclerosis and Strengthens Plaque Stability. Cell Physiol Biochem 2018; 45(3): 1034-50.
[http://dx.doi.org/10.1159/000487344] [PMID: 29439249]
[32]
Hamid Q, Tulic M. Immunobiology of asthma. Annu Rev Physiol 2009; 71: 489-507.
[http://dx.doi.org/10.1146/annurev.physiol.010908.163200] [PMID: 19575684]
[33]
Wills-Karp M. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu Rev Immunol 1999; 17: 255-81.
[http://dx.doi.org/10.1146/annurev.immunol.17.1.255] [PMID: 10358759]
[34]
Perry MM, Baker JE, Gibeon DS, Adcock IM, Chung KF. Airway smooth muscle hyperproliferation is regulated by microRNA-221 in severe asthma. Am J Respir Cell Mol Biol 2014; 50(1): 7-17.
[PMID: 23944957]
[35]
Huang N, Liu K, Liu J, et al. Interleukin-37 alleviates airway inflammation and remodeling in asthma via inhibiting the activation of NF-κB and STAT3 signalings. Int Immunopharmacol 2018; 55: 198-204.
[http://dx.doi.org/10.1016/j.intimp.2017.12.010] [PMID: 29268192]
[36]
Charrad R, Berraïes A, Hamdi B, Ammar J, Hamzaoui K, Hamzaoui A. Anti-inflammatory activity of IL-37 in asthmatic children: Correlation with inflammatory cytokines TNF-α, IL-β, IL-6 and IL-17A. Immunobiology 2016; 221(2): 182-7.
[http://dx.doi.org/10.1016/j.imbio.2015.09.009] [PMID: 26454413]
[37]
Lunding L, Webering S, Vock C, et al. IL-37 requires IL-18Rα and SIGIRR/IL-1R8 to diminish allergic airway inflammation in mice. Allergy 2015; 70(4): 366-73.
[http://dx.doi.org/10.1111/all.12566] [PMID: 25557042]
[38]
Podolsky DK. Inflammatory bowel disease. N Engl J Med 2002; 347(6): 417-29.
[http://dx.doi.org/10.1056/NEJMra020831] [PMID: 12167685]
[39]
Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011; 474(7351): 298-306.
[http://dx.doi.org/10.1038/nature10208] [PMID: 21677746]
[40]
Macdonald TT, Monteleone G. Immunity, inflammation, and allergy in the gut. Science 2005; 307(5717): 1920-5.
[http://dx.doi.org/10.1126/science.1106442] [PMID: 15790845]
[41]
Imaeda H, Takahashi K, Fujimoto T, et al. Epithelial expression of interleukin-37b in inflammatory bowel disease. Clin Exp Immunol 2013; 172(3): 410-6.
[http://dx.doi.org/10.1111/cei.12061] [PMID: 23600829]
[42]
Li Y, Wang Y, Liu Y, et al. The possible role of the novel cytokines il-35 and il-37 in inflammatory bowel disease. Mediators Inflamm 2014; 2014136329
[http://dx.doi.org/10.1155/2014/136329] [PMID: 25214710]
[43]
Günaltay S, Nyhlin N, Kumawat AK, et al. Differential expression of interleukin-1/Toll-like receptor signaling regulators in microscopic and ulcerative colitis. World J Gastroenterol 2014; 20(34): 12249-59.
[http://dx.doi.org/10.3748/wjg.v20.i34.12249] [PMID: 25232259]
[44]
Wang WQ, Dong K, Zhou L, et al. IL-37b gene transfer enhances the therapeutic efficacy of mesenchumal stromal cells in DSS-induced colitis mice. Acta Pharmacol Sin 2015; 36(11): 1377-87.
[http://dx.doi.org/10.1038/aps.2015.51] [PMID: 26190499]
[45]
Wagner EF, Schonthaler HB, Guinea-Viniegra J, Tschachler E. Psoriasis: what we have learned from mouse models. Nat Rev Rheumatol 2010; 6(12): 704-14.
[http://dx.doi.org/10.1038/nrrheum.2010.157] [PMID: 20877306]
[46]
Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med 2009; 361(5): 496-509.
[http://dx.doi.org/10.1056/NEJMra0804595] [PMID: 19641206]
[47]
Teng X, Hu Z, Wei X, et al. IL-37 ameliorates the inflammatory process in psoriasis by suppressing proinflammatory cytokine production. J Immunol 2014; 192(4): 1815-23.
[http://dx.doi.org/10.4049/jimmunol.1300047] [PMID: 24453242]
[48]
Honda K. IL-22 from T cells: better late than never. Immunity 2012; 37(6): 952-4.
[http://dx.doi.org/10.1016/j.immuni.2012.11.006] [PMID: 23244715]
[49]
Cai Y, Shen X, Ding C, et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 2011; 35(4): 596-610.
[http://dx.doi.org/10.1016/j.immuni.2011.08.001] [PMID: 21982596]
[50]
Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature 2007; 445(7130): 866-73.
[http://dx.doi.org/10.1038/nature05663] [PMID: 17314973]
[51]
Keermann M, Kõks S, Reimann E, et al. Expression of IL-36 family cytokines and IL-37 but not IL-38 is altered in psoriatic skin. J Dermatol Sci 2015; 80(2): 150-2.
[http://dx.doi.org/10.1016/j.jdermsci.2015.08.002] [PMID: 26319074]
[52]
Li B, Tsoi LC, Swindell WR, et al. Transcriptome analysis of psoriasis in a large case-control sample: RNA-seq provides insights into disease mechanisms. J Invest Dermatol 2014; 134(7): 1828-38.
[http://dx.doi.org/10.1038/jid.2014.28] [PMID: 24441097]
[53]
International Team for the Revision of the International Criteria for Behçet’s Disease (ITR-ICBD). The International Criteria for Behçet’s Disease (ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the new criteria. J Eur Acad Dermatol Venereol 2014; 28(3): 338-47.
[http://dx.doi.org/10.1111/jdv.12107] [PMID: 23441863]
[54]
Sarica-Kucukoglu R, Akdag-Kose A, KayabalI M, et al. Vascular involvement in Behçet’s disease: a retrospective analysis of 2319 cases. Int J Dermatol 2006; 45(8): 919-21.
[http://dx.doi.org/10.1111/j.1365-4632.2006.02832.x] [PMID: 16911374]
[55]
Tascilar K, Melikoglu M, Ugurlu S, Sut N, Caglar E, Yazici H. Vascular involvement in Behçet’s syndrome: a retrospective analysis of associations and the time course. Rheumatology (Oxford) 2014; 53(11): 2018-22.
[http://dx.doi.org/10.1093/rheumatology/keu233] [PMID: 24907156]
[56]
Calamia KT, Schirmer M, Melikoglu M. Major vessel involvement in Behçet disease. Curr Opin Rheumatol 2005; 17(1): 1-8.
[http://dx.doi.org/10.1097/01.bor.0000145520.76348.dd] [PMID: 15604898]
[57]
Ye Z, Wang C, Kijlstra A, Zhou X, Yang P. A possible role for interleukin 37 in the pathogenesis of Behcet’s disease. Curr Mol Med 2014; 14(4): 535-42.
[http://dx.doi.org/10.2174/1566524014666140414210831] [PMID: 24730521]
[58]
Bouali E, Kaabachi W, Hamzaoui A, Hamzaoui K. Interleukin-37 expression is decreased in Behçet’s disease and is associated with inflammation. Immunol Lett 2015; 167(2): 87-94.
[http://dx.doi.org/10.1016/j.imlet.2015.08.001] [PMID: 26253248]
[59]
Tan H, Deng B, Yu H, et al. Genetic analysis of innate immunity in Behcet’s disease identifies an association with IL-37 and IL-18RAP. Sci Rep 2016; 6: 35802.
[http://dx.doi.org/10.1038/srep35802] [PMID: 27775096]
[60]
Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet 2010; 376(9746): 1094-108.
[http://dx.doi.org/10.1016/S0140-6736(10)60826-4] [PMID: 20870100]
[61]
Biswas S, Sharma S, Saroha A, et al. Identification of novel autoantigen in the synovial fluid of rheumatoid arthritis patients using an immunoproteomics approach. PLoS One 2013; 8(2)e56246
[http://dx.doi.org/10.1371/journal.pone.0056246] [PMID: 23418544]
[62]
Huang QL, Zhou FJ, Wu CB, et al. Circulating Biomarkers for Predicting Infliximab Response in Rheumatoid Arthritis: A Systematic Bioinformatics Analysis. Med Sci Monit 2017; 23: 1849-55.
[http://dx.doi.org/10.12659/MSM.900897] [PMID: 28413214]
[63]
Xia T, Zheng XF, Qian BH, et al. Plasma Interleukin-37 Is Elevated in Patients with Rheumatoid Arthritis: Its Correlation with Disease Activity and Th1/Th2/Th17-Related Cytokines. Dis Markers 2015; 2015795043
[http://dx.doi.org/10.1155/2015/795043] [PMID: 26435567]
[64]
Xia L, Shen H, Lu J. Elevated serum and synovial fluid levels of interleukin-37 in patients with rheumatoid arthritis: Attenuated the production of inflammatory cytokines. Cytokine 2015; 76(2): 553-7.
[http://dx.doi.org/10.1016/j.cyto.2015.06.005] [PMID: 26159110]
[65]
Yang L, Zhang J, Tao J, Lu T. Elevated serum levels of Interleukin-37 are associated with inflammatory cytokines and disease activity in rheumatoid arthritis. APMIS 2015; 123(12): 1025-31.
[http://dx.doi.org/10.1111/apm.12467] [PMID: 26547368]
[66]
Zhao PW, Jiang WG, Wang L, Jiang ZY, Shan YX, Jiang YF. Plasma levels of IL-37 and correlation with TNF-α, IL-17A, and disease activity during DMARD treatment of rheumatoid arthritis. PLoS One 2014; 9(5)e95346
[http://dx.doi.org/10.1371/journal.pone.0095346] [PMID: 24788826]
[67]
Zhang XY, Zuo Y, Li C, et al. IL1F7 Gene Polymorphism Is not Associated with Rheumatoid Arthritis Susceptibility in the Northern Chinese Han Population: A Case-Control Study. Chin Med J (Engl) 2018; 131(2): 171-9.
[http://dx.doi.org/10.4103/0366-6999.222340] [PMID: 29336365]
[68]
Bezalel S, Asher I, Elbirt D, Sthoeger ZM. Novel biological treatments for systemic lupus erythematosus: current and future modalities. Isr Med Assoc J 2012; 14(8): 508-14.
[PMID: 22977972]
[69]
Su DL, Lu ZM, Shen MN, Li X, Sun LY. Roles of pro- and anti-inflammatory cytokines in the pathogenesis of SLE. J Biomed Biotechnol 2012; 2012347141
[http://dx.doi.org/10.1155/2012/347141] [PMID: 22500087]
[70]
Song L, Qiu F, Fan Y, et al. Glucocorticoid regulates interleukin-37 in systemic lupus erythematosus. J Clin Immunol 2013; 33(1): 111-7.
[http://dx.doi.org/10.1007/s10875-012-9791-z] [PMID: 22961070]
[71]
Ye L, Ji L, Wen Z, et al. IL-37 inhibits the production of inflammatory cytokines in peripheral blood mononuclear cells of patients with systemic lupus erythematosus: its correlation with disease activity. J Transl Med 2014; 12: 69.
[http://dx.doi.org/10.1186/1479-5876-12-69] [PMID: 24629023]
[72]
Tawfik MG, Nasef SI, Omar HH, Ghaly MS. Serum Interleukin-37: a new player in Lupus Nephritis? Int J Rheum Dis 2017; 20(8): 996-1001.
[http://dx.doi.org/10.1111/1756-185X.13122] [PMID: 28627005]
[73]
McFarland HF, Martin R. Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 2007; 8(9): 913-9.
[http://dx.doi.org/10.1038/ni1507] [PMID: 17712344]
[74]
Farrokhi M, Rezaei A, Amani-Beni A, Etemadifar M, Kouchaki E, Zahedi A. Increased serum level of IL-37 in patients with multiple sclerosis and neuromyelitis optica. Acta Neurol Belg 2015; 115(4): 609-14.
[http://dx.doi.org/10.1007/s13760-015-0491-3] [PMID: 26008726]
[75]
Kouchaki E, Tamtaji OR, Dadgostar E, Karami M, Nikoueinejad H, Akbari H. Correlation of Serum Levels of IL-33, IL-37, Soluble Form of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), and Circulatory Frequency of VEGFR2-expressing Cells with Multiple Sclerosis Severity. Iran J Allergy Asthma Immunol 2017; 16(4): 329-37.
[PMID: 28865413]
[76]
Giacoppo S, Thangavelu SR, Diomede F, et al. Anti-inflammatory effects of hypoxia-preconditioned human periodontal ligament cell secretome in an experimental model of multiple sclerosis: a key role of IL-37. FASEB J 2017; 31(12): 5592-608.
[http://dx.doi.org/10.1096/fj.201700524R] [PMID: 28842429]
[77]
Herretes S, Ross DB, Duffort S, et al. Recruitment of Donor T Cells to the Eyes During Ocular GVHD in Recipients of MHC-Matched Allogeneic Hematopoietic Stem Cell Transplants. Invest Ophthalmol Vis Sci 2015; 56(4): 2348-57.
[http://dx.doi.org/10.1167/iovs.14-15630] [PMID: 25655798]
[78]
Georgoudis P, Sabatino F, Szentmary N, et al. Ocular Mucous Membrane Pemphigoid: Current State of Pathophysiology, Diagnostics and Treatment. Ophthalmol Ther 2019; 8(1): 5-17.
[http://dx.doi.org/10.1007/s40123-019-0164-z] [PMID: 30694513]
[79]
Ogawa Y, Okamoto S, Wakui M, et al. Dry eye after haematopoietic stem cell transplantation. Br J Ophthalmol 1999; 83(10): 1125-30.
[http://dx.doi.org/10.1136/bjo.83.10.1125] [PMID: 10502571]
[80]
Bruscolini A, Lambiase A, Segatto M, La Cava M, Nebbioso M, Sacchetti M. Evaluation of IL8 pathway on the ocular surface: new insights in patients with ocular mucous membrane pemphigoid. Acta Ophthalmol 2019.
[http://dx.doi.org/10.1111/aos.14240] [PMID: 31486595]
[81]
Zhang J-L, Song X-Y, Chen Y-Y, et al. Novel inflammatory cytokines (IL-36, 37, 38) in the aqueous humor from patients with chronic primary angle closure glaucoma. Int Immunopharmacol 2019; 71: 164-8.
[http://dx.doi.org/10.1016/j.intimp.2019.03.016] [PMID: 30901679]
[82]
Jung JW, Han SJ, Song MK, et al. Tear Cytokines as Biomarkers for Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2015; 21(12): 2079-85.
[http://dx.doi.org/10.1016/j.bbmt.2015.08.020] [PMID: 26303101]
[83]
Ramos-Casals M, Font J. Primary Sjögren’s syndrome: current and emergent aetiopathogenic concepts. Rheumatology (Oxford) 2005; 44(11): 1354-67.
[http://dx.doi.org/10.1093/rheumatology/keh714] [PMID: 15956090]
[84]
Mammana S, Cavalli E, Gugliandolo A, et al. Could the Combination of Two Non-Psychotropic Cannabinoids Counteract Neuroinflammation? Effectiveness of Cannabidiol Associated with Cannabigerol. Medicina (Kaunas) 2019; 55(11): 747.
[http://dx.doi.org/10.3390/medicina55110747] [PMID: 31752240]
[85]
Rosenzwajg M, Lorenzon R, Cacoub P, et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann Rheum Dis 2019; 78(2): 209-17.
[http://dx.doi.org/10.1136/annrheumdis-2018-214229] [PMID: 30472651]
[86]
Seelig E, Howlett J, Porter L, et al. The DILfrequency study is an adaptive trial to identify optimal IL-2 dosing in patients with type 1 diabetes. JCI Insight 2018; 3(19)e99306
[http://dx.doi.org/10.1172/jci.insight.99306] [PMID: 30282826]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 9
Year: 2020
Published on: 28 July, 2020
Page: [855 - 863]
Pages: 9
DOI: 10.2174/1389450121666200429114926
Price: $65

Article Metrics

PDF: 38
HTML: 5