The Role of Endostatin in Rheumatoid Arthritis

Author(s): Priya Nijhawan, Tapan Behl*

Journal Name: Current Rheumatology Reviews

Volume 17 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Endostatin by its therapeutic value against rheumatoid arthritis has recently gained significant interest in biomedical science. A recent study revealed that various approaches have been made to prevent rheumatoid arthritis by either controlling or inhibiting the progression of angiogenesis.

Objective: The main objective of the current manuscript is to enumerate the intrinsic role of endostatin in rheumatoid arthritis.

Methods: A thorough and detailed review of literature from the papers published from the year 1997-2019 was studied for the preparation of the current article.

Results: Endostatin is one such agent of the subfamily of ECM called as multiplexins obtained from proteolytic cleavage of XVIII and its carboxylic terminal fragments and is known for its antiangiogenic and antiproliferative property. The exact mechanism of endostatin is still unclear, but it acts by downregulating or inhibiting the responses of various factors, including Id1, Id3, matrix metalloproteinase, and Nuclear factor Kappa B that are liable for angiogenesis. The mutual effects on adipogenesis and angiogenesis, endostatin inhibits dietary-induced obesity and its related metabolic disorders, such as insulin resistance, glucose intolerance, and hepatic steatosis.

Conclusion: The present review demonstrates the intrinsic usage of endostatin as a novel molecule in rheumatoid arthritis. It focuses on the status of the therapeutic potential of endostatin in inhibiting the activity of angiogenesis is also very well explored.

Keywords: Rheumatoid arthritis, angiogenesis, endostatin, matrix metalloproteinases, transcription factor, obesity.

[1]
Sana I, Rattu A, Neal S. Review on rheumatoid arthritis. US Pharm 2019; 44(1)(Specialty & Oncology suppl). : 8-11.
[2]
Elisa C, Marrelli E. An update on research advances in rheumatoid arthritis: from clinic to basic science. J Lab Precis Med 2018; 3(6)
[3]
Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res 2018; 6: 15.
[http://dx.doi.org/10.1038/s41413-018-0016-9 ] [PMID: 29736302]
[4]
Bullock J, Rizvi SAA, Saleh AM, et al. Rheumatoid arthritis: A brief overview of the treatmentMedicinal principles and practice 2018; 27(6): 501-7.
[http://dx.doi.org/10.1159/000493390]
[5]
Benjamin O, Bansal P, Goyal A, et al. Disease modifying antirheumatic drugs (DMARDS). Stat Pearls 2020.
[6]
Gregori D, Giacovelli G, Minto C, et al. Association of pharmacological treatments with long-term pain control in patients with knee osteoarthritis: A systematic review and meta-analysis. JAMA 2018; 320(24): 2564-79.
[http://dx.doi.org/10.1001/jama.2018.19319 ] [PMID: 30575881]
[7]
Lyseng-Williamson KA. Anakinra in Still’s disease: a profile of its use. Drugs Ther Perspect 2018; 34(12): 543-53.
[http://dx.doi.org/10.1007/s40267-018-0572-5 ] [PMID: 30546251]
[8]
Abbasi M, Mousavi MJ, Jamalzehi S, et al. Strategies toward rheumatoid arthritis therapy; the old and the new. J Cell Physiol 2019; 234(7): 10018-31.
[http://dx.doi.org/10.1002/jcp.27860 ] [PMID: 30536757]
[9]
Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: A review. JAMA 2018; 320(13): 1360-72.
[http://dx.doi.org/10.1001/jama.2018.13103 ] [PMID: 30285183]
[10]
Wang W, Zhou H, Liu L. Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review. Eur J Med Chem 2018; 158: 502-16.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.027 ] [PMID: 30243154]
[11]
Vallerand IA, Patten SB, Barnabe C. Depression and the risk of rheumatoid arthritis. Curr Opin Rheumatol 2019; 31(3): 279-84.
[http://dx.doi.org/10.1097/BOR.0000000000000597 ] [PMID: 30789849]
[12]
Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahrara S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis 2015; 18(4): 433-48.
[http://dx.doi.org/10.1007/s10456-015-9477-2 ] [PMID: 26198292]
[13]
Qazi Y, Maddula S, Ambati BK. Mediators of ocular angiogenesis. J Genet 2009; 88(4): 495-515.
[http://dx.doi.org/10.1007/s12041-009-0068-0 ] [PMID: 20090210]
[14]
Mehdi R, Shaker A. The role of Angiogenesis in cancer treatment. Biomedicine (Taipei) 2017; 5(2): 34.
[15]
Marmé D. Tumor angiogenesis: A key target for cancer therapy. Oncol Res Treat 2018; 41(4): 164.
[http://dx.doi.org/10.1159/000488340 ] [PMID: 29587285]
[16]
Gupta N, Nodzenski E, Khodarev NN, et al. Angiostatin effects on endothelial cells mediated by ceramide and RhoA. EMBO Rep 2001; 2(6): 536-40.
[http://dx.doi.org/10.1093/embo-reports/kve115 ] [PMID: 11415988]
[17]
Rehn M, Veikkola T, Kukk-Valdre E, et al. Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci USA 2001; 98(3): 1024-9.
[http://dx.doi.org/10.1073/pnas.98.3.1024 ] [PMID: 11158588]
[18]
Huang Y, Wan X, Lan X, et al. Cells surface receptor of nucleolin mediates antiangiogenic and antitumor activity. Oncotarget 2017; 9(2): 2220-35.
[PMID: 29416766]
[19]
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell 2014; 159(1): 134-47.
[http://dx.doi.org/10.1016/j.cell.2014.09.001 ] [PMID: 25242744]
[20]
Ren X, Sun J, Housden BE, et al. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad Sci USA 2013; 110(47): 19012-7.
[http://dx.doi.org/10.1073/pnas.1318481110 ] [PMID: 24191015]
[21]
Chen D, Forootan SS, Gosney JR, Forootan FS, Ke Y. Increased expression of Id1 and Id3 promotes tumorigenicity by enhancing angiogenesis and suppressing apoptosis in small cell lung cancer. Genes Cancer 2014; 5(5-6): 212-25.
[PMID: 25061504]
[22]
Lee TK, Poon RT, Yuen AP, et al. Regulation of angiogenesis by Id-1 through hypoxia-inducible factor-1α-mediated vascular endothelial growth factor up-regulation in hepatocellular carcinoma. Clin Cancer Res 2006; 12(23): 6910-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0489 ] [PMID: 17145808]
[23]
Fabian S, Arreola R, Enrique B, et al. Role of matrix metalloproteinases in angiogenesis and cancer. Expert Opin. Mol Cell Oncol 2019; 9: 1370.
[24]
D’Alessio A, Moccia F, Li JH, Micera A, Kyriakides TR. Angiogenesis and vasculogenesis in health and disease. BioMed Res Int 2015; 2015126582
[http://dx.doi.org/10.1155/2015/126582 ] [PMID: 26171386]
[25]
Kappelmann M, Bosserhoff A, Kuphal S. AP-1/c-Jun transcription factors: regulation and function in malignant melanoma. Eur J Cell Biol 2014; 93(1-2): 76-81.
[http://dx.doi.org/10.106/j.ejcb.2013.10.003]
[26]
Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG. The activator protein-1 transcription factor in respiratory epithelium carcinogenesis. Mol Cancer Res 2007; 5(2): 109-20.
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0311 ] [PMID: 17314269]
[27]
Evellin S, Galvagni F, Alessio Zippo A, et al. FOSL1 controls the assembly of endothelial cells into capillary tubes by direct repression of αv and β3 integrin transcription. Mol Cell Biol 2013; 33(6): 1198-209.
[http://dx.doi.org/10.1128/MCB.01054-12]
[28]
Galvagni F, Orlandini M, Oliviero S. Role of the AP-1 transcription factor FOSL1 in endothelial cells adhesion and migration. Cell Adhes Migr 2013; 7(5): 408-11.
[http://dx.doi.org/10.4161/cam.25894 ] [PMID: 24084233]
[29]
Marion M, Manuel S, Christine B, et al. Cell type specific role of NF-κB linking inflammation and thrombosis. Front Immunol 2019.
[30]
Aurora AB, Biyashev D, Mirochnik Y, et al. NF-κB balances vascular regression and angiogenesis via chromatin remodeling and NFAT displacement. Blood 2010; 116(3): 475-84.
[31]
Tabruyn SP, Mémet S, Avé P, et al. NF-kappaB activation in endothelial cells is critical for the activity of angiostatic agents. Mol Cancer Ther 2009; 8(9): 2645-54.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0383 ] [PMID: 19706735]
[32]
Santoni M, Bracarda S, Nabissi M, et al. CXC and CC chemokines as angiogenic modulators in nonhaematological tumors. BioMed Res Int 2014; 2014768758
[http://dx.doi.org/10.1155/2014/768758 ] [PMID: 24971349]
[33]
Tang J, Allen Lee C, Du Y, et al. MyD88-dependent pathways in leukocytes affect the retina in diabetes. PLoS One 2013; 8(7)e68871
[http://dx.doi.org/10.1371/journal.pone.0068871 ] [PMID: 23874797]
[34]
Guo L, Song N, He T, et al. Endostatin inhibits the tumorigenesis of hemangioendothelioma via downregulation of CXCL1. Mol Carcinog 2014; 1-16.
[PMID: 25175281]
[35]
Gacche RN, Meshram RJ. Angiogenic factors as potential drug target: efficacy and limitations of anti-angiogenic therapy. Biochim Biophys Acta 2014; 1846(1): 161-79.
[PMID: 24836679]
[36]
Walia A, Yang JF, Huang YH, Rosenblatt MI, Chang JH, Azar DT. Endostatin’s emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. Biochim Biophys Acta 2015; 1850(12): 2422-38.
[http://dx.doi.org/10.1016/j.bbagen.2015.09.007 ] [PMID: 26367079]
[37]
Zhang M, Yang Y, Yan M, Zhang J. Downregulation of vascular endothelial growth factor and integrinbeta3 by endostatin in a mouse model of retinal neovascularization. Exp Eye Res 2006; 82(1): 74-80.
[http://dx.doi.org/10.1016/j.exer.2005.05.005 ] [PMID: 16198337]
[38]
Nestorov I. Clinical pharmacokinetics of TNF antagonists: how do they differ? Semin Arthritis Rheum 2005; 34(5)(Suppl. 1): 12-8.
[http://dx.doi.org/10.1016/j.semarthrit.2005.01.004 ] [PMID: 15852249]
[39]
Voulgari PV, Drosos AA. Adalimumab for rheumatoid arthritis. Expert Opin Biol Ther 2006; 6(12): 1349-60.
[http://dx.doi.org/10.1517/14712598.6.12.1349 ] [PMID: 17223742]
[40]
St Clair EW, van der Heijde DM, Smolen JS, et al. Active-Controlled Study of Patients Receiving Infliximab for the Treatment of Rheumatoid Arthritis of Early Onset Study Group. Combination of infliximab and methotrexate therapy for early rheumatoid arthritis: a randomized, controlled trial. Arthritis Rheum 2004; 50(11): 3432-43.
[http://dx.doi.org/10.1002/art.20568 ] [PMID: 15529377]
[41]
Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 2006; 295(19): 2275-85.
[http://dx.doi.org/10.1001/jama.295.19.2275 ] [PMID: 16705109]
[42]
Klarenbeek NB, Güler-Yüksel M, van der Kooij SM, et al. The impact of four dynamic, goal-steered treatment strategies on the 5-year outcomes of rheumatoid arthritis patients in the BeSt study. Ann Rheum Dis 2011; 70(6): 1039-46.
[http://dx.doi.org/10.1136/ard.2010.141234 ] [PMID: 21415052]
[43]
Ramiro S, Sepriano A, Chatzidionysiou K, et al. Safety of synthetic and biological DMARDs: a systematic literature review informing the 2016 update of the EULAR recommendations for management of rheumatoid arthritis. Ann Rheum Dis 2017; 76(6): 1101-36.
[http://dx.doi.org/10.1136/annrheumdis-2016-210708 ] [PMID: 28298374]
[44]
Singh JA, Saag KG, Bridges SL Jr, et al. American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol 2016; 68(1): 1-26.
[http://dx.doi.org/10.1002/art.39480 ] [PMID: 26545940]
[45]
Aletaha D, Alasti F, Smolen JS. Optimisation of a treat-to-target approach in rheumatoid arthritis: strategies for the 3-month time point. Ann Rheum Dis 2016; 75(8): 1479-85.
[http://dx.doi.org/10.1136/annrheumdis-2015-208324 ] [PMID: 26420577]
[46]
Kuusalo L, Puolakka K, Kautiainen H, et al. Neo-RACo Study Group. Impact of physicians’ adherence to treat-to-target strategy on outcomes in early rheumatoid arthritis in the NEO-RACo trial. Scand J Rheumatol 2015; 44(6): 449-55.
[http://dx.doi.org/10.3109/03009742.2015.1043142 ] [PMID: 26324784]
[47]
Felbor U, Dreier L, Bryant RA, Ploegh HL, Olsen BR, Mothes W. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J 2000; 19(6): 1187-94.
[http://dx.doi.org/10.1093/emboj/19.6.1187 ] [PMID: 10716919]
[48]
Brodszky V, Baji P, Balogh O, Péntek M. Budget impact analysis of biosimilar infliximab (CT-P13) for the treatment of rheumatoid arthritis in six Central and Eastern European countries. Eur J Health Econ 2014; 15(1)(Suppl. 1): S65-71.
[http://dx.doi.org/10.1007/s10198-014-0595-3 ] [PMID: 24832837]
[49]
Jørgensen KK, Olsen IC, Goll GL, et al. NOR-SWITCH study group. Switching from originator infliximab to biosimilar CT-P13 compared with maintained treatment with originator infliximab (NOR-SWITCH): a 52-week, randomised, double-blind, non-inferiority trial. Lancet 2017; 389(10086): 2304-16.
[http://dx.doi.org/10.1016/S0140-6736(17)30068-5 ] [PMID: 28502609]
[50]
Gabay C, Riek M, Scherer A, Finckh A. SCQM collaborating physicians. Effectiveness of biologic DMARDs in monotherapy versus in combination with synthetic DMARDs in rheumatoid arthritis: data from the Swiss Clinical Quality Management Registry. Rheumatology (Oxford) 2015; 54(9): 1664-72.
[http://dx.doi.org/10.1093/rheumatology/kev019 ] [PMID: 25922549]
[51]
Teitsma XM, Marijnissen AKA, Bijlsma JW, Lafeber FP, Jacobs JW. Tocilizumab as monotherapy or combination therapy for treating active rheumatoid arthritis: a meta-analysis of efficacy and safety reported in randomized controlled trials. Arthritis Res Ther 2016; 18(1): 211.
[http://dx.doi.org/10.1186/s13075-016-1108-9 ] [PMID: 27658491]
[52]
Fleischmann R, Schiff M, van der Heijde D, et al. Baricitinib, methotrexate, or combination in patients with rheumatoid arthritis and no or limited prior disease‐modifying antirheumatic drug treatment. Arthritis Rheumatol 2017; 69(3): 506-17.
[http://dx.doi.org/10.1002/art.39953 ] [PMID: 27723271]
[53]
Aslani S, Mahmoudi M, Karami J, Jamshidi AR, Malekshahi Z, Nicknam MH. Epigenetic alterations underlying autoimmune diseases. Autoimmunity 2016; 49(2): 69-83.
[http://dx.doi.org/10.3109/08916934.2015.1134511 ] [PMID: 26761426]
[54]
Karami J, Mahmoudi M, Amirzargar A, et al. Promoter hypermethylation of BCL11B gene correlates with downregulation of gene transcription in ankylosing spondylitis patients. Genes Immun 2017; 18(3): 170-5.
[http://dx.doi.org/10.1038/gene.2017.17 ] [PMID: 28794504]
[55]
Huber LC, Brock M, Hemmatazad H, et al. Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum 2007; 56(4): 1087-93.
[http://dx.doi.org/10.1002/art.22512 ] [PMID: 17393417]
[56]
Gillespie J, Savic S, Wong C, et al. Histone deacetylases are dysregulated in rheumatoid arthritis and a novel histone deacetylase 3-selective inhibitor reduces interleukin-6 production by peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Rheum 2012; 64(2): 418-22.
[http://dx.doi.org/10.1002/art.33382 ] [PMID: 21952924]
[57]
Saouaf SJ, Li B, Zhang G, et al. Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis. Exp Mol Pathol 2009; 87(2): 99-104.
[http://dx.doi.org/10.1016/j.yexmp.2009.06.003 ] [PMID: 19577564]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 1
Year: 2021
Published on: 29 April, 2020
Page: [68 - 75]
Pages: 8
DOI: 10.2174/1573397115666191127141801
Price: $65

Article Metrics

PDF: 17
HTML: 1