A Comprehensive Review of Monoamine Oxidase-A Inhibitors in their Syntheses and Potencies

Author(s): Nisha A. Rehuman, Bijo Mathew*, Rakesh K. Jat, Orazio Nicolotti, Hoon Kim*

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 9 , 2020

Become EABM
Become Reviewer
Call for Editor


Background: Monoamine oxidases (MAOs) play a crucial role during the development of various neurodegenerative disorders. There are two MAO isozymes, MAO-A and MAO-B. MAO-A is a flavoenzyme, which binds to the outer mitochondrial membrane and catalyzes the oxidative transformations of neurotransmitters like serotonin, norepinephrine, and dopamine.

Materials and Methods: Focus on synthetic studies has culminated in the preparation of many MAOA inhibitors, and advancements in combinatorial and parallel synthesis have accelerated the developments of synthetic schemes. Here, we provided an overview of the synthetic protocols employed to prepare different classes of MAO-A inhibitors. We classified these inhibitors according to their molecular scaffolds and the synthetic methods used.

Results: Various synthetic and natural derivatives from a different class of MAO-A inhibitors were reported.

Conclusion: The review provides a valuable tool for the development of a new class of various selective MAO-A inhibitors for the treatment of depression and other anxiety disorders.

Keywords: MAO-A, MAO-B, inhibitors, neurotransmitters, molecular scaffolds, neurodegenerative disorders.

De Colibus, L.; Li, M.; Binda, C.; Lustig, A.; Edmondson, D.E.; Mattevi, A. Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc. Natl. Acad. Sci. USA, 2005, 102(36), 12684-12689.
[http://dx.doi.org/10.1073/pnas.0505975102] [PMID: 16129825]
Binda, C.; Hubálek, F.; Li, M.; Edmondson, D.E.; Mattevi, A. Crystal structure of human monoamine oxidase B, a drug target enzyme monotopically inserted into the mitochondrial outer membrane. FEBS Lett., 2004, 564(3), 225-228.
[http://dx.doi.org/10.1016/S0014-5793(04)00209-1] [PMID: 15111100]
Binda, C.; Mattevi, A.; Edmondson, D.E. Structural properties of human monoamine oxidases A and B. Int. Rev. Neurobiol., 2011, 100, 1-11.
[http://dx.doi.org/10.1016/B978-0-12-386467-3.00001-7] [PMID: 21971000]
Iacovino, L.G.; Magnani, F.; Binda, C. The structure of monoamine oxidases: past, present, and future. J. Neural Transm. (Vienna), 2018, 125(11), 1567-1579.
[http://dx.doi.org/10.1007/s00702-018-1915-z] [PMID: 30167931]
Hubalek, F.; Pohl, J.; Edmondson, D.E. Structural comparison of human monoamine oxidases A and B: mass spectrometry monitoring of cysteine reactivities. J. Biol. Chem., 2003, 278(31), 28612-28618.
[http://dx.doi.org/10.1074/jbc.M303712200] [PMID: 12777388]
Mathew, B.; Mathew, G.E.; Suresh, J.; Ucar, G.; Sasidharan, R.; Vilapurathu, J.K.; Anbazhagan, S.; Jayaprakash, V. Monoamine oxidase inhibitors: Perspective design for the treatment of depression and, neurological disorders. Curr. Enzym. Inhib., 2016, 12, 115-122.
Shih, J.C.; Chen, K.; Ridd, M.J. Monoamine oxidase: from genes to behavior. Annu. Rev. Neurosci., 1999, 22, 197-217.
[http://dx.doi.org/10.1146/annurev.neuro.22.1.197] [PMID: 10202537]
Youdim, M.B.; Weinstock, M. Therapeutic applications of selective and non-selective inhibitors of monoamine oxidase A and B that do not cause significant tyramine potentiation. Neurotoxicology, 2004, 25(1-2), 243-250.
[http://dx.doi.org/10.1016/S0161-813X(03)00103-7] [PMID: 14697899]
Finberg, J.P.M.; Rabey, J.M. Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front. Pharmacol., 2016, 7(7), 340.
[http://dx.doi.org/10.3389/fphar.2016.00340] [PMID: 27803666]
Yamada, M.; Yasuhara, H. Clinical pharmacology of MAO inhibitors: safety and future. Neurotoxicology, 2004, 25(1-2), 215-221.
[http://dx.doi.org/10.1016/S0161-813X(03)00097-4] [PMID: 14697896]
Fowler, J.S.; Logan, J.; Azzaro, A.J.; Fielding, R.M.; Zhu, W.; Poshusta, A.K.; Burch, D.; Brand, B.; Free, J.; Asgharnejad, M.; Wang, G.J.; Telang, F.; Hubbard, B.; Jayne, M.; King, P.; Carter, P.; Carter, S.; Xu, Y.; Shea, C.; Muench, L.; Alexoff, D.; Shumay, E.; Schueller, M.; Warner, D.; Apelskog-Torres, K. Reversible inhibitors of monoamine oxidase-A (RIMAs): robust, reversible inhibition of human brain MAO-A by CX157. Neuropsychopharmacology, 2010, 35(3), 623-631.
[http://dx.doi.org/10.1038/npp.2009.167] [PMID: 19890267]
Velasquez, D.; Quines, C.; Pistóia, R.; Zeni, G.; Nogueira, C.W. Selective inhibition of MAO-A activity results in an antidepressant-like action of 2-benzoyl 4-iodoselenophene in mice. Physiol. Behav., 2017, 170, 100-105.
[http://dx.doi.org/10.1016/j.physbeh.2016.12.024] [PMID: 28012831]
Amr, A.E.E.; Al-Omar, M.A.; Abdalla, M.M. Monoamino oxidase inhibitors activities of some synthesized 2,6-bis (tetracarboxamide)-pyridine and macrocyclic octacarboxamide derivatives. Int. J. Pharmacol., 2016, 12(2), 66-73.
Wimbiscus, M.; Kostenko, O.; Malone, D. MAO inhibitors: risks, benefits, and lore. Cleve. Clin. J. Med., 2010, 77(12), 859-882.
[http://dx.doi.org/10.3949/ccjm.77a.09103] [PMID: 21147941]
Xu, M.K.; Gaysina, D.; Tsonaka, R.; Morin, A.J.S.; Croudace, T.J.; Barnett, J.H.; Duistermaat, J.H.; Richards, M.; Jones, P.B. LHA Genetics Group Monoamine oxidase A (MAOA) gene and personality traits from late adolescence through early adulthood: A Latent Variable Investigation. Front. Pharmacol., 1736, 2017, 8.
Viña, D.; Serra, S.; Lamela, M.; Delogu, G. Herbal natural products as a source of monoamine oxidase inhibitors: a review. Curr. Top. Med. Chem., 2012, 12(20), 2131-2144.
[http://dx.doi.org/10.2174/156802612805219996] [PMID: 23231392]
Tong, J.; Rathitharan, G.; Meyer, J.H.; Furukawa, Y.; Ang, L.C.; Boileau, I.; Guttman, M.; Hornykiewicz, O.; Kish, S.J. Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders. Brain, 2017, 140(9), 2460-2474.
[http://dx.doi.org/10.1093/brain/awx172] [PMID: 29050386]
Müller, T.; Riederer, P.; Grünblatt, E. Determination of monoamine oxidase A and B activity in long-term treated patients with Parkinson disease. Clin. Neuropharmacol., 2017, 40(5), 208-211.
[http://dx.doi.org/10.1097/WNF.0000000000000233] [PMID: 28682929]
Chaurasiya, N.D.; León, F.; Ding, Y. Interactions of desmethoxyyangonin, a secondary metabolite from Renealmia alpinia, with human monoamine oxidase-A and oxidase-B. Evid.-. Based Complementary Altern. Med., 2017, 20174018724
Zhang, Y.; Wang, Q.; Liu, R.; Zhou, H.; Crommen, J.; Moaddel, R.; Jiang, Z.; Zhang, T. Rapid screening and identification of monoamine oxidase-A inhibitors from Corydalis Rhizome using enzyme-immobilized magnetic beads based method. J. Chromatogr. A, 2019, 1592, 1-8.
[http://dx.doi.org/10.1016/j.chroma.2019.01.062] [PMID: 30712820]
Higuchi, Y.; Soga, T.; Parhar, I.S. Regulatory pathways of monoamine oxidase A during social stress. Front. Neurosci., 2017, 11, 604.
[http://dx.doi.org/10.3389/fnins.2017.00604] [PMID: 29163009]
Cai, S.; Huang, S.; Hao, W. New hypothesis and treatment targets of depression: an integrated view of key findings. Neurosci. Bull., 2015, 31(1), 61-74.
[PMID: 25575479]
Caraci, F.; Copani, A.; Nicoletti, F.; Drago, F. Depression and Alzheimer’s disease: neurobiological links and common pharmacological targets. Eur. J. Pharmacol., 2010, 626(1), 64-71.
[http://dx.doi.org/10.1016/j.ejphar.2009.10.022] [PMID: 19837057]
Mathew, B.; Mathew, G.E.; Petzer, J.P.; Petzer, A. Structural exploration of synthetic chromones as selective MAO-B inhibitors. A Mini Review. Comb. Chem. High Throughput Screen., 2017, 20(6), 522-532.
[http://dx.doi.org/10.2174/1386207320666170227155517] [PMID: 28245770]
Ibrar, A.; Shehzadi, S.A.; Saeed, F.; Khan, I. Developing hybrid molecule therapeutics for diverse enzyme inhibitory action: Active role of coumarin-based structural leads in drug discovery. Bioorg. Med. Chem., 2018, 26(13), 3731-3762.
[http://dx.doi.org/10.1016/j.bmc.2018.05.042] [PMID: 30017112]
Pereira, T.M.; Franco, D.P.; Vitorio, F.; Kümmerle, A.E. Coumarin compounds in medicinal chemistry: some important examples from the last years. Curr. Top. Med. Chem., 2018, 18(2), 124-148.
[http://dx.doi.org/10.2174/1568026618666180329115523] [PMID: 29595110]
Emami, S.; Dadashpour, S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem., 2015, 102, 611-630.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.033] [PMID: 26318068]
Jameel, E.; Umar, T.; Kumar, J.; Hoda, N. Coumarin: a privileged scaffold for the design and development of antineurodegenerative agents. Chem. Biol. Drug Des., 2016, 87(1), 21-38.
[http://dx.doi.org/10.1111/cbdd.12629] [PMID: 26242562]
Abdelhafez, O.M.; Amin, K.M.; Ali, H.I.; Abdalla, M.M.; Batran, R.Z. Synthesis of new 7-oxycoumarin derivatives as potent and selective monoamine oxidase A inhibitors. J. Med. Chem., 2012, 55(23), 10424-10436.
[http://dx.doi.org/10.1021/jm301014y] [PMID: 23153282]
Yusufzai, S.K.; Khan, M.S.; Sulaiman, O.; Osman, H.; Lamjin, D.N. Molecular docking studies of coumarin hybrids as potential acetylcholinesterase, butyrylcholinesterase, monoamine oxidase A/B and β-amyloid inhibitors for Alzheimer’s disease. Chem. Cent. J., 2018, 12(1), 128.
[http://dx.doi.org/10.1186/s13065-018-0497-z] [PMID: 30515636]
Chimenti, F.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.; Befani, O.; Turini, P.; Alcaro, S.; Ortuso, F. Inhibition of monoamine oxidases by coumarin-3-acyl derivatives: biological activity and computational study. Bioorg. Med. Chem. Lett., 2004, 14(14), 3697-3703.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.010] [PMID: 15203146]
Aguirre, P.; García-Beltrán, O.; Tapia, V.; Muñoz, Y.; Cassels, B.K.; Nunez, M.T. Neuroprotective effect of a new 7,8-dihydroxycoumarin-based Fe2+/Cu2+ chelator in cell and animal models of Parkinson’s disease. ACS Chem. Neurosci., 2017, 8(1), 178-185.
[PMID: 27806193]
Matos, M.J.; Viña, D.; Picciau, C.; Orallo, F.; Santana, L.; Uriarte, E. Synthesis and evaluation of 6-methyl-3-phenylcoumarins as potent and selective MAO-B inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(17), 5053-5055.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.039] [PMID: 19628387]
Gnerre, C.; Catto, M.; Leonetti, F.; Weber, P.; Carrupt, P.A.; Altomare, C.; Carotti, A.; Testa, B. Inhibition of monoamine oxidases by functionalized coumarin derivatives: biological activities, QSARs, and 3D-QSARs. J. Med. Chem., 2000, 43(25), 4747-4758.
[http://dx.doi.org/10.1021/jm001028o] [PMID: 11123983]
Mattsson, C.; Svensson, P.; Sonesson, C. A novel series of 6-substituted 3-(pyrrolidin-1-ylmethyl)chromen-2-ones as selective monoamine oxidase (MAO) A inhibitors. Eur. J. Med. Chem., 2014, 73, 177-186.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.035] [PMID: 24393810]
Huong, D.T.; Choi, H.C.; Rho, T.C.; Lee, H.S.; Lee, M.K.; Kim, Y.H. Inhibitory activity of monoamine oxidase by coumarins from Peucedanum japonicum. Arch. Pharm. Res., 1999, 22(3), 324-326.
[http://dx.doi.org/10.1007/BF02976373] [PMID: 10403141]
Jeong, S.H.; Han, X.H.; Hong, S.S.; Hwang, J.S.; Hwang, J.H.; Lee, D.; Lee, M.K.; Ro, J.S.; Hwang, B.Y. Monoamine oxidase inhibitory coumarins from the aerial parts of Dictamnus albus. Arch. Pharm. Res., 2006, 29(12), 1119-1124.
[http://dx.doi.org/10.1007/BF02969302] [PMID: 17225461]
Lee, H.W.; Ryu, H.W.; Baek, S.C.; Kang, M.G.; Park, D.; Han, H.Y.; An, J.H.; Oh, S.R.; Kim, H. Potent inhibitions of monoamine oxidase A and B by acacetin and its 7-O-(6-O-malonylglucoside) derivative from Agastache rugosa. Int. J. Biol. Macromol 2017, 104(Pt A), 547-553.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.076] [PMID: 28634060]
Singh, N.; Ranjana, R.; Kumari, M.; Kumar, B. A Review on biological activities of hydrazone derivatives. Inter. J. Pharm. Clin. Res., 2016, 8(3), 162-166.
Hussain, I.; Ali, A. Exploring the pharmacological activities of hydrazone derivatives: A review. J. Phytochem. Biochem., 2017, 1(1), 1-11.
Çıkla-Süzgün, P.; Küçükgüzel, S.G. Recent advances in apoptosis: The role of hydrazones. Mini Rev. Med. Chem., 2019, 19(17), 1427-1442.
[http://dx.doi.org/10.2174/1389557519666190410125910] [PMID: 30968776]
Fahmi, M.R.G.; Kurniawan, Y.S. Heterocyclic hydrazone derivatives as potential antitubercular agent against Mycobacterium tuberculosis. J. Exp. Clin. Microbiol., 2019, 2(2), 16-21.
Nagender, P.; Naresh Kumar, R.; Malla Reddy, G.; Krishna Swaroop, D.; Poornachandra, Y.; Ganesh Kumar, C.; Narsaiah, B. Synthesis of novel hydrazone and azole functionalized pyrazolo[3,4-b]pyridine derivatives as promising anticancer agents. Bioorg. Med. Chem. Lett., 2016, 26(18), 4427-4432.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.006] [PMID: 27528432]
Kumar, P.; Narasimhan, B. Hydrazides/hydrazones as antimicrobial and anticancer agents in the new millennium. Mini Rev. Med. Chem., 2013, 13(7), 971-987.
[http://dx.doi.org/10.2174/1389557511313070003] [PMID: 23621689]
Nasr, T.; Bondock, S.; Youns, M. Anticancer activity of new coumarin substituted hydrazide-hydrazone derivatives. Eur. J. Med. Chem., 2014, 76(9), 539-548.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.026] [PMID: 24607878]
Can, N.Ö.; Osmaniye, D.; Levent, S.; Sağlık, B.N.; İnci, B.; Ilgın, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis of new hydrazone derivatives for MAO enzymes inhibitory activity. Molecules, 2017, 22(8), 1381.
[http://dx.doi.org/10.3390/molecules22081381] [PMID: 28825649]
Abid, S.M.A.; Younus, H.A.; Al-Rashida, M.; Arshad, Z.; Maryum, T.; Gilani, M.A.; Alharthi, A.I.; Iqbal, J. Sulfonyl hydrazones derived from 3-formylchromone as non-selective inhibitors of MAO-A and MAO-B: Synthesis, molecular modelling and in-silico ADME evaluation. Bioorg. Chem., 2017, 75, 291-302.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.001] [PMID: 29065322]
Turan-Zitouni, G.; Hussein, W.; Sağlık, B.N.; Tabbi, A.; Korkut, B. Design, synthesis and biological evaluation of novel N-pyridyl-hydrazone derivatives as potential monoamine oxidase (MAO) inhibitors. Molecules, 2018, 23(1)E113
[http://dx.doi.org/10.3390/molecules23010113] [PMID: 29316677]
Ali, M.A.; Yar, M.S.; Kumar, M.; Pandian, G.S. Synthesis and antitubercular activity of substituted novel pyrazoline derivatives. Nat. Prod. Res., 2007, 21(7), 575-579.
[http://dx.doi.org/10.1080/14786410701369367] [PMID: 17613813]
Ahmad, A.; Husain, A. AlamKhan, S.; Mujeeb, M.; AnilBhandarie. Synthesis, antimicrobial and antitubercular activities of some novel pyrazoline derivatives. J. Saudi Chem. Soc., 2016, 20(5), 577-584.
Bandgar, B.P.; Adsul, L.K.; Chavan, H.V.; Jalde, S.S.; Shringare, S.N.; Shaikh, R.; Meshram, R.J.; Gacche, R.N.; Masand, V. Synthesis, biological evaluation, and docking studies of 3-(substituted)-aryl-5-(9-methyl-3-carbazole)-1H-2-pyrazolines as potent anti-inflammatory and antioxidant agents. Bioorg. Med. Chem. Lett., 2012, 22(18), 5839-5844.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.080] [PMID: 22901385]
Banday, A.H.; Shameem, S.A.; Jeelani, S.; Jeelani, S. Steroidal pyrazolines and pyrazoles as potential 5α-reductase inhibitors: synthesis and biological evaluation. Steroids, 2014, 92, 13-19.
[http://dx.doi.org/10.1016/j.steroids.2014.09.004] [PMID: 25278254]
Karuppasamy, M.; Mahapatra, M.; Yabanoglu, S.; Ucar, G.; Sinha, B.N.; Basu, A.; Mishra, N.; Sharon, A.; Kulandaivelu, U.; Jayaprakash, V. Development of selective and reversible pyrazoline based MAO-A inhibitors: Synthesis, biological evaluation and docking studies. Bioorg. Med. Chem., 2010, 18(5), 1875-1881.
[http://dx.doi.org/10.1016/j.bmc.2010.01.043] [PMID: 20149663]
Mathew, B.; Suresh, J.; Anbazhagan, S.; Mathew, G.E. Pyrazoline: a promising scaffold for the inhibition of monoamine oxidase. Cent. Nerv. Syst. Agents Med. Chem., 2013, 13(3), 195-206.
[http://dx.doi.org/10.2174/1871524914666140129122632] [PMID: 24533911]
Tong, X.; Chen, R.; Zhang, T.T.; Han, Y.; Tang, W.J.; Liu, X.H. Design and synthesis of novel 2-pyrazoline-1-ethanone derivatives as selective MAO inhibitors. Bioorg. Med. Chem., 2015, 23(3), 515-525.
[http://dx.doi.org/10.1016/j.bmc.2014.12.010] [PMID: 25541201]
Chimenti, F.; Bolasco, A.; Manna, F.; Secci, D.; Chimenti, P.; Befani, O.; Turini, P.; Giovannini, V.; Mondovì, B.; Cirilli, R.; La Torre, F. Synthesis and selective inhibitory activity of 1-acetyl-3,5-diphenyl-4,5-dihydro-(1H)-pyrazole derivatives against monoamine oxidase. J. Med. Chem., 2004, 47(8), 2071-2074.
[http://dx.doi.org/10.1021/jm031042b] [PMID: 15056004]
Mathew, B.; Suresh, J.; Anbazhagan, S. Synthesis, preclinical evaluation and antidepressant activity of 5-substituted phenyl-3-(thiophen-2-yl)-4, 5-dihydro-1H-pyrazole-1-carbothioamides. EXCLI J., 2014, 13, 437-445.
[PMID: 26417270]
Jagrat, M.; Behera, J.; Yabanoglu, S.; Ercan, A.; Ucar, G.; Sinha, B.N.; Sankaran, V.; Basu, A.; Jayaprakash, V. Pyrazoline based MAO inhibitors: synthesis, biological evaluation and SAR studies. Bioorg. Med. Chem. Lett., 2011, 21(14), 4296-4300.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.057] [PMID: 21680183]
Chimenti, F.; Fioravanti, R.; Bolasco, A.; Manna, F.; Chimenti, P.; Secci, D.; Rossi, F.; Turini, P.; Ortuso, F.; Alcaro, S.; Cardia, M.C. Synthesis, molecular modeling studies and selective inhibitory activity against MAO of N1-propanoyl-3,5-diphenyl-4,5-dihydro-(1H)-pyrazole derivatives. Eur. J. Med. Chem., 2008, 43(10), 2262-2267.
[http://dx.doi.org/10.1016/j.ejmech.2007.12.026] [PMID: 18281126]
Vishnu Nayak, B.; Ciftci-Yabanoglu, S.; Jadav, S.S.; Jagrat, M.; Sinha, B.N.; Ucar, G.; Jayaprakash, V. Monoamine oxidase inhibitory activity of 3,5-biaryl-4,5-dihydro-1H-pyrazole-1-carboxylate derivatives. Eur. J. Med. Chem., 2013, 69, 762-767.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.010] [PMID: 24099995]
Nath, C.; Badavath, V.N.; Thakur, A.; Ucar, G.; Acevedo, O.; Mohd Siddique, M.U.; Jayaprakash, V.; Jayaprakash, V. Curcumin-based pyrazoline analogues as selective inhibitors of human monoamine oxidase A. MedChemComm, 2018, 9(7), 1164-1171.
[http://dx.doi.org/10.1039/C8MD00196K] [PMID: 30109004]
Baek, S.C.; Ryu, H.W.; Kang, M.G.; Lee, H.; Park, D.; Cho, M.L.; Oh, S.R.; Kim, H. Selective inhibition of monoamine oxidase A by chelerythrine, an isoquinoline alkaloid. Bioorg. Med. Chem. Lett., 2018, 28(14), 2403-2407.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.023] [PMID: 29925480]
Baek, S.C.; Lee, H.W.; Ryu, H.W.; Kang, M.G.; Park, D.; Kim, S.H.; Cho, M.L.; Oh, S.R.; Kim, H. Selective inhibition of monoamine oxidase A by hispidol. Bioorg. Med. Chem. Lett., 2018, 28(4), 584-588.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.049] [PMID: 29395970]
Dreiseitel, A.; Korte, G.; Schreier, P.; Oehme, A.; Locher, S.; Domani, M.; Hajak, G.; Sand, P.G. Berry anthocyanins and their aglycons inhibit monoamine oxidases A and B. Pharmacol. Res., 2009, 59(5), 306-311.
[http://dx.doi.org/10.1016/j.phrs.2009.01.014] [PMID: 19416630]
Beulaa, S.J.; Rajb, V.B.A.; Mathew, B. Isolation and molecular recognition of 6-prenyl apigenin towards MAO-A as the active principle of seeds of Achyranthes aspera. Biomed. Prev. Nutr., 2014, 4, 379-382.
Kukula-Koch, W.; Koch, W.; Czernicka, L.; Głowniak, K.; Asakawa, Y.; Umeyama, A.; Marzec, Z.; Kuzuhara, T. MAO-A inhibitory potential of terpene constituents from ginger rhizome. A bioactivity guided fractionation. Molecules, 2018, 23(6), 1301.
[http://dx.doi.org/10.3390/molecules23061301] [PMID: 29844252]
Kong, L.D.; Cheng, C.H.; Tan, R.X. Inhibition of MAO A and B by some plant-derived alkaloids, phenols and anthraquinones. J. Ethnopharmacol., 2004, 91(2-3), 351-355.
[http://dx.doi.org/10.1016/j.jep.2004.01.013] [PMID: 15120460]
Zarmouh, N.O.; Messeha, S.S.; Elshami, F.M.; Soliman, K.A. Evaluation of the isoflavone genistein as reversible human monoamine oxidase-A and -B inhibitor. Evid-Based Compl. Alt., 2016, 16, 1-12.
Bandaruk, Y.; Mukai, R.; Kawamura, T.; Nemoto, H.; Terao, J. Evaluation of the inhibitory effects of quercetin-related flavonoids and tea catechins on the monoamine oxidase-A reaction in mouse brain mitochondria. J. Agric. Food Chem., 2012, 60(41), 10270-10277.
[http://dx.doi.org/10.1021/jf303055b] [PMID: 23009399]
Herraiz, T.; Guillén, H. Monoamine oxidase-A inhibition and associated antioxidant activity in plant extracts with potential antidepressant actions. BioMed Res. Int., 2018, 20184810394
[http://dx.doi.org/10.1155/2018/4810394] [PMID: 29568754]
Ryu, S.Y.; Han, Y.N.; Han, B.H. Monoamine oxidase-A inhibitors from medicinal plants. Arch. Pharm. Res., 1988, 11, 230-239.
Sloley, B.D.; Urichuk, L.J.; Morley, P.; Durkin, J.; Shan, J.J.; Pang, P.K.T.; Coutts, R.T. Identification of kaempferol as a monoamine oxidase inhibitor and potential Neuroprotectant in extracts of Ginkgo biloba leaves. J. Pharm. Pharmacol., 2000, 52(4), 451-459.
[http://dx.doi.org/10.1211/0022357001774075] [PMID: 10813558]
Chimenti, F.; Cottiglia, F.; Bonsignore, L.; Casu, L.; Casu, M.; Floris, C.; Secci, D.; Bolasco, A.; Chimenti, P.; Granese, A.; Befani, O.; Turini, P.; Alcaro, S.; Ortuso, F.; Trombetta, G.; Loizzo, A.; Guarino, I. Quercetin as the active principle of Hypericum hircinum exerts a selective inhibitory activity against MAO-A: extraction, biological analysis, and computational study. J. Nat. Prod., 2006, 69(6), 945-949.
[http://dx.doi.org/10.1021/np060015w] [PMID: 16792415]
Haider, S.; Alhusban, M.; Chaurasiya, N.D.; Tekwani, B.L.; Chittiboyina, A.G.; Khan, I.A. Isoform selectivity of harmine-conjugated 1,2,3-triazoles against human monoamine oxidase. Future Med. Chem., 2018, 10(12), 1435-1448.
[http://dx.doi.org/10.4155/fmc-2018-0006] [PMID: 29788780]
Kaya, B.; Yurttaş, L.; Sağlik, B.N.; Levent, S.; Özkay, Y.; Kaplancikli, Z.A. Novel 1-(2-pyrimidin-2-yl)piperazine derivatives as selective monoamine oxidase (MAO)-A inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 193-202.
[http://dx.doi.org/10.1080/14756366.2016.1247054] [PMID: 28097890]
Gallardo-Godoy, A.; Fierro, A.; McLean, T.H.; Castillo, M.; Cassels, B.K.; Reyes-Parada, M.; Nichols, D.E. Sulfur-substituted alpha-alkyl phenethylamines as selective and reversible MAO-A inhibitors: biological activities, CoMFA analysis, and active site modeling. J. Med. Chem., 2005, 48(7), 2407-2419.
[http://dx.doi.org/10.1021/jm0493109] [PMID: 15801832]
Mostert, S.; Petzer, A.; Petzer, J.P. Inhibition of monoamine oxidase by benzoxathiolone analogues. Bioorg. Med. Chem. Lett., 2016, 26(4), 1200-1204.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.034] [PMID: 26821818]
Amr, A.E.; Mohamed, A. Al- Omar.; Abdalla, M.M. Monoamino oxidase inhibitors activities of some synthesized 2,6-bis (Tetracarboxamide)-pyridine and macrocyclic octacarboxamide derivatives. Int. J. Pharmacol., 2016, 12, 66-73.
Altintop, M.D.; Sever, B.; Osmaniye, D.; Sağlık, B.N.; Özdemir, A. Design, synthesis, in vitro and in silico evaluation of new pyrrole derivatives as monoamine oxidase inhibitors. Arch. Pharm. (Weinheim), 2018, 351(7)e1800082
[http://dx.doi.org/10.1002/ardp.201800082] [PMID: 29963739]
Mathew, B.; Haridas, A.; Suresh, J.; Mathew, G.E.; Uçar, G.; Jayaprakash, V. Monoamine oxidase inhibitory actions of chalcones. A mini review. Cent. Nerv. Syst. Agents Med. Chem., 2016, 16(2), 120-136.
[http://dx.doi.org/10.2174/1871524915666151002124443] [PMID: 26429556]
Mathew, B. Unraveling the structural requirements of chalcone chemistry towards monoamine oxidase inhibition. Cent. Nerv. Syst. Agents Med. Chem., 2019, 19(1), 6-7.
[http://dx.doi.org/10.2174/1871524919666190131160122] [PMID: 30706795]
Mathew, B.; Mathew, G.E.; Uçar, G.; Baysal, I.; Suresh, J.; Vilapurathu, J.K.; Prakasan, A.; Suresh, J.K.; Thomas, A. Development of fluorinated methoxylated chalcones as selective monoamine oxidase-B inhibitors: Synthesis, biochemistry and molecular docking studies. Bioorg. Chem., 2015, 62, 22-29.
[http://dx.doi.org/10.1016/j.bioorg.2015.07.001] [PMID: 26189013]
Mathew, B.; Uçar, G.; Yabanoğlu-Çiftçi, S.; Baysal, I.; Suresh, J.; Mathew, G.E.; Vilapurathu, J.K.; Nadeena, A.M.; Nabeela, P.; Lakshmi, V.; Haridas, A.; Fathima, F. Development of fluorinated thienylchalcones as monoamine oxidase-b inhibitors: Design, synthesis, biological evaluation and molecular docking studies. Lett. Org. Chem., 2015, 12, 605-613.
Mathew, B.; Mathew, G.E.; Uçar, G.; Baysal, I.; Suresh, J.; Mathew, S.; Haridas, A.; Jayaprakash, V. Potent and selective monoamine oxidase-b inhibitory activity: Fluoro- vs trifluoromethyl-4-hydroxylated chalcone derivatives. Chem. Biodivers., 2016, 13(8), 1046-1052.
[http://dx.doi.org/10.1002/cbdv.201500367] [PMID: 27402375]
Sasidharan, R.; Manju, S.L.; Uçar, G.; Baysal, I.; Mathew, B. Identification of indole based chalcones: Discovery of potent, selective and reversible class of MAO-B inhibitors. Arch. Pharm. (Weinheim), 2016, 349(8), 627-637.
[http://dx.doi.org/10.1002/ardp.201600088] [PMID: 27373997]
Mathew, B.; Uçar, G.; Raphael, C.; Mathew, G.E.; Joy, M.; Machaba, K.E. Characterization of thienylchalcones as hMAO-B inhibitors: Synthesis, biochemistry and molecular dynamics studies. ChemistrySelect, 2017, 2, 11113-11119.
Mathew, B.; Baek, S.C.; Parambi, D.G.T.; Lee, J.P.; Mathew, G.E.; Jayanthi, S.; Devaraji, D.; Raphael, C.; Vinod, D.; Kondarath, S.S.; Uddin, M.S.; Kim, H. Potent and highly selective dual-targeting monoamine oxidase-B inhibitors: Fluorinated chalcones of morpholine versus imidazole. Arch. Pharm. Chem. Life Sci., 2019. e1800309.
Mathew, B.; Haridas, A.; Uçar, G.; Baysal, I.; Adeniyi, A.A.; Soliman, M.E.S.; Joy, M.; Mathew, G.E.; Lakshmanan, B.; Jayaprakash, V. Exploration of chlorinated thienyl chalcones: A new class of monoamine oxidase-B inhibitors. Int. J. Biol. Macromol., 2016, 91, 680-695.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.110] [PMID: 27262516]
Mathew, B.; Haridas, A.; Uçar, G.; Baysal, I.; Joy, M.; Mathew, G.E.; Lakshmanan, B.; Jayaprakash, V. Synthesis, biochemistry, and computational studies of brominated thienyl chalcones: A new class of reversible MAO-B inhibitors. ChemMedChem, 2016, 11(11), 1161-1171.
[http://dx.doi.org/10.1002/cmdc.201600122] [PMID: 27159243]
Mathew, B.; Uçar, G.; Mathew, G.E.; Mathew, S.; Kalatharakkal Purapurath, P.; Moolayil, F.; Mohan, S.; Varghese Gupta, S. Monoamine oxidase inhibitory activity: Methyl- versus chloro-chalcone derivatives. ChemMedChem, 2016, 11(24), 2649-2655.
[http://dx.doi.org/10.1002/cmdc.201600497] [PMID: 27902880]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [898 - 914]
Pages: 17
DOI: 10.2174/1386207323666200428091306
Price: $65

Article Metrics

PDF: 27