GC-MS Based Metabolic Profiling of Parkinson’s Disease with Glutathione S-transferase M1 and T1 Polymorphism in Tunisian Patients

Author(s): Amal Rebai*, Tuba Reçber, Emirhan Nemutlu, Chahra Chbili, Sevinç Kurbanoglu, Sedef Kir, Sana B. Amor, Sibel A. Özkan, Saad Saguem

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 10 , 2020

Become EABM
Become Reviewer
Call for Editor


Aim and Objective: Parkinson’s disease (PD) is the second most common neurodegenerative disease. It is a multifactorial disorder (caused by aging, environmental, and genetic factors). Metabolomics can help explore the biomarker profiles for aging. Recent studies showed an association between the glutathione S-transferases (GSTs) polymorphisms and PD risk. The purpose of this study was to evaluate the association of this genetic polymorphism and the metabolomic profile in PD Tunisian patients, in order to identify effective biomarkers in the genetic differentiation.

Materials and Methods: In this study, the metabolomic profile changes related to GSTs polymorphism were searched in 54 Tunisian PD patients treated with L-dopa, using a gas chromatography-mass spectrometry (GC-MS) technique.

Results: The study results showed that mannose, methyl stearate, and three other unknown metabolites, increased in patients with GSTM1 positive genotype, while glycolic acid, porphine, monomethyl phosphate, fumaric acid, and three other unknown metabolites decreased in patients with GSTM1 positive genotype. Subsequently, the levels of glycolic acid, erythronic acid, lactic acid, citric acid, fructose, stearic acid, 2-amino-2-methyl-1,3-propanediol and three other unknown metabolites increased in patients with GSTM1 positive genotype, while the levels of proline, valine and two unknown metabolites decreased with GSTT1 positive genotype.

Conclusion: All these altered metabolites are related to energy metabolism and it can be concluded that GSTs polymorphism based the shifting in energy metabolism and led to oxidative stress.

Keywords: Glutathione S-transferases polymorphism, metabolomic profile, metabolites, oxidative stress, Parkinson's disease, Tunisian patient.

Glass, C.K.; Saijo, K; Winner, B.; Marchetto, M.C; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
de Lau, L.M; Breteler, M.M. Epidemiology of Parkinson’s disease. Lancet Neurol., 2006, 5(6), 525-535.
[http://dx.doi.org/10.1016/S1474-4422(06)70471-9] [PMID: 16713924]
Hatano, T.; Saiki, S.; Okuzumi, A.; Mohney, R.P; Hattori, N. Identification of novel biomarkers for Parkinson’s disease by metabolomic technologies. J. Neurol. Neurosurg. Psychiatry, 2016, 87(3), 295-301.
[http://dx.doi.org/10.1136/jnnp-2014-309676] [PMID: 25795009]
Luan, H.; Liu, L.F.; Tang, Z.; Zhang, M.; Chua, K.K.; Song, J.X.; Mok, V.C.; Li, M.; Cai, Z. Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson’s disease. Sci. Rep., 2015, 5, 13888.
[http://dx.doi.org/10.1038/srep13888] [PMID: 26365159]
Dai, D.J.; Wang, Y.; Wang, L.; Li, J.; Zhou, H.; Ma, Q.; Zhou, X.; Pan, J.; Pan, G.; Chen, C.; Xu, L.; Ru, P.; Wang, H.; Zhu, S.; Lv, Y.; Xu, L.; Ye, M.; Duan, S. Association of four GSTs gene polymorphisms with Parkinson disease: A meta-analysis. Adv. Biosci. Biotechnol., 2014, 5, 100-107.
Valdes, A.M.; Glass, D.; Spector, T.D. Omics technologies and the study of human ageing. Nat. Rev. Genet., 2013, 14(9), 601-607.
[http://dx.doi.org/10.1038/nrg3553] [PMID: 23938363]
Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol., 2016, 17(7), 451-459.
[http://dx.doi.org/10.1038/nrm.2016.25] [PMID: 26979502]
Jové, M.; Portero-Otín, M.; Naudí, A.; Ferrer, I.; Pamplona, R. Metabolomics of human brain aging and age-related neurodegenerative diseases. J. Neuropathol. Exp. Neurol., 2014, 73(7), 640-657.
[http://dx.doi.org/10.1097/NEN.0000000000000091] [PMID: 24918636]
Ahmed, S.S.J.; Santosh, W.; Kumar, S.; Christlet, H.T. Metabolic profiling of Parkinson’s disease: evidence of biomarker from gene expression analysis and rapid neural network detection. J. Biomed. Sci., 2009, 16, 63.
[http://dx.doi.org/10.1186/1423-0127-16-63] [PMID: 19594911]
Luan, H.; Liu, L.F.; Meng, N.; Tang, Z.; Chua, K.K.; Chen, L.L.; Song, J.X.; Mok, V.C.; Xie, L.X.; Li, M.; Cai, Z. LC-MS-based urinary metabolite signatures in idiopathic Parkinson’s disease. J. Proteome Res., 2015, 14(1), 467-478.
[http://dx.doi.org/10.1021/pr500807t] [PMID: 25271123]
Lewitt, P.A.; Li, J.; Lu, M.; Beach, T.G.; Adler, C.H.; Guo, L. Arizona Parkinson’s Disease Consortium. 3-hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis. Mov. Disord., 2013, 28(12), 1653-1660.
[http://dx.doi.org/10.1002/mds.25555] [PMID: 23873789]
Bogdanov, M.; Matson, W.R.; Wang, L.; Matson, T.; Saunders-Pullman, R.; Bressman, S.S.; Flint Beal, M. Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain, 2008, 131(Pt 2), 389-396.
[http://dx.doi.org/10.1093/brain/awm304] [PMID: 18222993]
Havelund, J.F.; Heegaard, N.H.H.; Færgeman, N.J.K.; Gramsbergen, J.B. Biomarker research in parkinson’s disease using metabolite profiling. Metabolites, 2017, 7(3)E42
[http://dx.doi.org/10.3390/metabo7030042] [PMID: 28800113]
Johansen, K.K.; Wang, L.; Aasly, J.O.; White, L.R.; Matson, W.R.; Henchcliffe, C.; Beal, M.F.; Bogdanov, M. Metabolomic profiling in LRRK2-related Parkinson’s disease. PLoS One, 2009, 4(10)e7551
[http://dx.doi.org/10.1371/journal.pone.0007551] [PMID: 19847307]
Cornetta, T.; Patrono, C.; Terrenato, I.; De Nigris, F.; Bentivoglio, A.R.; Testa, A.; Palma, V.; Poggioli, T.; Padua, L.; Cozzi, R. Epidemiological, clinical, and molecular study of a cohort of Italian Parkinson disease patients: association with glutathione-S-transferase and DNA repair gene polymorphisms. Cell. Mol. Neurobiol., 2013, 33(5), 673-680.
[http://dx.doi.org/10.1007/s10571-013-9933-8] [PMID: 23552977]
Perez-Pastene, C.; Graumann, R.; Díaz-Grez, F.; Miranda, M.; Venegas, P.; Godoy, O.T.; Layson, L.; Villagra, R.; Matamala, J.M.; Herrera, L.; Segura-Aguilar, J. Association of GST M1 null polymorphism with Parkinson’s disease in a Chilean population with a strong Amerindian genetic component. Neurosci. Lett., 2007, 418(2), 181-185.
[http://dx.doi.org/10.1016/j.neulet.2007.03.024] [PMID: 17403576]
Singh, M.; Khan, A.J.; Shah, P.P.; Shukla, R.; Khanna, V.K.; Parmar, D. Polymorphism in environment responsive genes and association with Parkinson disease. Mol. Cell. Biochem., 2008, 312(1-2), 131-138.
[http://dx.doi.org/10.1007/s11010-008-9728-2] [PMID: 18327668]
Pinhel, M.A.; Sado, C.L. Longo, Gdos.S.; Gregório, M.L.; Amorim, G.S.; Florim, G.M.; Mazeti, C.M.; Martins, D.P.; Oliveira, Fde.N.; Nakazone, M.A.; Tognola, W.A.; Souza, D.R. Nullity of GSTT1/GSTM1 related to pesticides is associated with Parkinson’s disease. Arq. Neuropsiquiatr., 2013, 71(8), 527-532.
[http://dx.doi.org/10.1590/0004-282X20130076] [PMID: 23982010]
Öhman, A.; Forsgren, L. NMR metabonomics of cerebrospinal fluid distinguishes between Parkinson’s disease and controls. Neurosci. Lett., 2015, 594, 36-39.
[http://dx.doi.org/10.1016/j.neulet.2015.03.051] [PMID: 25817365]
Reinke, S.N.; Broadhurst, D.L.; Sykes, B.D.; Baker, G.B.; Catz, I.; Warren, K.G.; Power, C. Metabolomic profiling in multiple sclerosis: insights into biomarkers and pathogenesis. Mult. Scler., 2014, 20(10), 1396-1400.
[http://dx.doi.org/10.1177/1352458513516528] [PMID: 24468817]
Björkhem, I.; Sisfontes, L.; Boström, B.; Kase, B.F.; Blomstrand, R. Simple diagnosis of the Zellweger syndrome by gas-liquid chromatography of dimethylacetals. J. Lipid Res., 1986, 27(7), 786-791.
[PMID: 3760714]
Toyoda, Y.; Erkut, C.; Pan-Montojo, F.; Boland, S.; Stewart, M.P.; Müller, D.J.; Wurst, W.; Hyman, A.A.; Kurzchalia, T.V. Products of the Parkinson’s disease-related glyoxalase DJ-1, D-lactate and glycolate, support mitochondrial membrane potential and neuronal survival. Biol. Open, 2014, 3(8), 777-784.
[http://dx.doi.org/10.1242/bio.20149399] [PMID: 25063200]
Linker, R.A.; Lee, D.H.; Ryan, S.; van Dam, A.M.; Conrad, R.; Bista, P.; Zeng, W.; Hronowsky, X.; Buko, A.; Chollate, S.; Ellrichmann, G.; Brück, W.; Dawson, K.; Goelz, S.; Wiese, S.; Scannevin, R.H.; Lukashev, M.; Gold, R. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain, 2011, 134(Pt 3), 678-692.
[http://dx.doi.org/10.1093/brain/awq386] [PMID: 21354971]
Connelly, M.A.; Wolak-Dinsmore, J.; Dullaart, R.P.F. Branched chain amino acids are associated with insulin resistance independent of leptin and adiponectin in subjects with varying degrees of glucose tolerance. Metab. Syndr. Relat. Disord., 2017, 15(4), 183-186.
[http://dx.doi.org/10.1089/met.2016.0145] [PMID: 28437198]
Clarke, C.; Xiao, R.; Place, E.; Zhang, Z.; Sondheimer, N.; Bennett, M.; Yudkoff, M.; Falk, M.J. Mitochondrial respiratory chain disease discrimination by retrospective cohort analysis of blood metabolites. Mol. Genet. Metab., 2013, 110(1-2), 145-152.
[http://dx.doi.org/10.1016/j.ymgme.2013.07.011] [PMID: 23920046]
Riske, L.; Thomas, R.K.; Baker, G.B.; Dursun, S.M. Lactate in the brain: an update on its relevance to brain energy, neurons, glia and panic disorder. Ther. Adv. Psychopharmacol., 2017, 7(2), 85-89.
[http://dx.doi.org/10.1177/2045125316675579] [PMID: 28255438]
Dienel, G.A. Brain lactate metabolism: the discoveries and the controversies. J. Cereb. Blood Flow Metab., 2012, 32(7), 1107-1138.
[http://dx.doi.org/10.1038/jcbfm.2011.175] [PMID: 22186669]
Yao, J.; Rettberg, J.R.; Klosinski, L.P.; Cadenas, E.; Brinton, R.D. Shift in brain metabolism in late onset Alzheimer’s disease: implications for biomarkers and therapeutic interventions. Mol. Aspects Med., 2011, 32(4-6), 247-257.
[http://dx.doi.org/10.1016/j.mam.2011.10.005] [PMID: 22024249]
Muñoz Maniega, S.; Cvoro, V.; Chappell, F.M.; Armitage, P.A.; Marshall, I.; Bastin, M.E.; Wardlaw, J.M. Changes in NAA and lactate following ischemic stroke: a serial MR spectroscopic imaging study. Neurology, 2008, 71(24), 1993-1999.
[http://dx.doi.org/10.1212/01.wnl.0000336970.85817.4a] [PMID: 19064881]
Wang, D.; Kong, J.; Wu, J.; Wang, X.; Lai, M. GC-MS-based metabolomics identifies an amino acid signature of acute ischemic stroke. Neurosci. Lett., 2017, 642, 7-13.
[http://dx.doi.org/10.1016/j.neulet.2017.01.039] [PMID: 28111353]
Vigani, G.; Pii, Y.; Celletti, S.; Maver, M.; Mimmo, T.; Cesco, S.; Astolfi, S. Mitochondria dysfunctions under Fe and S deficiency: is citric acid involved in the regulation of adaptive responses? Plant Physiol. Biochem., 2018, 126, 86-96.
[http://dx.doi.org/10.1016/j.plaphy.2018.02.022] [PMID: 29514113]
Wang, Z.J.; Li, G.M.; Tang, W.L.; Yin, M. Neuroprotective effects of stearic acid against toxicity of oxygen/glucose deprivation or glutamate on rat cortical or hippocampal slices. Acta Pharmacol. Sin., 2006, 27(2), 145-150.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00259.x] [PMID: 16412262]
Levi, B.; Werman, M.J. Long-term fructose consumption accelerates glycation and several age-related variables in male rats. J. Nutr., 1998, 128(9), 1442-1449.
[http://dx.doi.org/10.1093/jn/128.9.1442] [PMID: 9732303]
Xu, J.; Begley, P.; Church, S.J.; Patassini, S.; Hollywood, K.A.; Jüllig, M.; Curtis, M.A.; Waldvogel, H.J.; Faull, R.L.; Unwin, R.D.; Cooper, G.J. Graded perturbations of metabolism in multiple regions of human brain in Alzheimer’s disease: Snapshot of a pervasive metabolic disorder. Biochim. Biophys. Acta, 2016, 1862(6), 1084-1092.
[http://dx.doi.org/10.1016/j.bbadis.2016.03.001] [PMID: 26957286]
Moreira, P.I.; Zhu, X.; Wang, X.; Lee, H.G.; Nunomura, A.; Petersen, R.B.; Perry, G.; Smith, M.A. Mitochondria: a therapeutic target in neurodegeneration. Biochim. Biophys. Acta, 2010, 1802(1), 212-220.
[http://dx.doi.org/10.1016/j.bbadis.2009.10.007] [PMID: 19853657]
Mosconi, L.; de Leon, M.; Murray, J.; Lezi, E.; Lu, J.; Javier, E.; McHugh, P.; Swerdlow, R.H. Reduced mitochondria cytochrome oxidase activity in adult children of mothers with Alzheimer’s disease. J. Alzheimers Dis., 2011, 27(3), 483-490.
[http://dx.doi.org/10.3233/JAD-2011-110866] [PMID: 21841246]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [1041 - 1048]
Pages: 8
DOI: 10.2174/1386207323666200428082815
Price: $65

Article Metrics

PDF: 29