Antimicrobial Peptides and their Multiple Effects at Sub-Inhibitory Concentrations

Author(s): Bruno Casciaro*, Floriana Cappiello, Walter Verrusio, Mauro Cacciafesta, Maria Luisa Mangoni*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 14 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

The frequent occurrence of multidrug-resistant strains to conventional antimicrobials has led to a clear decline in antibiotic therapies. Therefore, new molecules with different mechanisms of action are extremely necessary. Due to their unique properties, antimicrobial peptides (AMPs) represent a valid alternative to conventional antibiotics and many of them have been characterized for their activity and cytotoxicity. However, the effects that these peptides cause at concentrations below the minimum growth inhibitory concentration (MIC) have yet to be fully analyzed along with the underlying molecular mechanism. In this mini-review, the ability of AMPs to synergize with different antibiotic classes or different natural compounds is examined. Furthermore, data on microbial resistance induction are reported to highlight the importance of antibiotic resistance in the fight against infections. Finally, the effects that sub-MIC levels of AMPs can have on the bacterial pathogenicity are summarized while showing how signaling pathways can be valid therapeutic targets for the treatment of infectious diseases. All these aspects support the high potential of AMPs as lead compounds for the development of new drugs with antibacterial and immunomodulatory activities.

Keywords: Antimicrobial peptides, Antibiotic resistance, Synergism, Induction of resistance, Pathogenicity, Quorum sensing.

[1]
Casciaro, B.; Cappiello, F.; Loffredo, M.R.; Ghirga, F.; Mangoni, M.L. The potential of frog skin peptides for anti-infective therapies: the case of esculentin-1a(1-21)NH2. Curr. Med. Chem., 2020, 27(9), 1405-1419.
[PMID: 31333082]
[2]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[3]
Moravej, H.; Moravej, Z.; Yazdanparast, M.; Heiat, M.; Mirhosseini, A.; Moosazadeh Moghaddam, M.; Mirnejad, R. Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb. Drug Resist., 2018, 24(6), 747-767.
[http://dx.doi.org/10.1089/mdr.2017.0392] [PMID: 29957118]
[4]
Jenssen, H.; Hamill, P.; Hancock, R.E. Peptide antimicrobial agents. Clin. Microbiol. Rev., 2006, 19(3), 491-511.
[http://dx.doi.org/10.1128/CMR.00056-05] [PMID: 16847082]
[5]
Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals (Basel), 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[6]
Brice, D.C.; Diamond, G. Antiviral activities of human host defense peptides. Curr. Med. Chem., 2020, 27(9), 1420-1443.
[PMID: 31385762]
[7]
Marcocci, M.E.; Amatore, D.; Villa, S.; Casciaro, B.; Aimola, P.; Franci, G.; Grieco, P.; Galdiero, M.; Palamara, A.T.; Mangoni, M.L.; Nencioni, L. The amphibian antimicrobial peptide temporin B inhibits in vitro herpes simplex virus 1 infection. Antimicrob. Agents Chemother., 2018, 62(5), e02367-e17.
[http://dx.doi.org/10.1128/AAC.02367-17] [PMID: 29483113]
[8]
Zhang, C.; Yang, M.; Ericsson, A.C. Antimicrobial peptides: Potential application in liver cancer. Front. Microbiol., 2019, 10, 1257.
[http://dx.doi.org/10.3389/fmicb.2019.01257] [PMID: 31231341]
[9]
Malik, E.; Dennison, S.R.; Harris, F.; Phoenix, D.A. pH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Pharmaceuticals (Basel), 2016, 9(4)E67
[http://dx.doi.org/10.3390/ph9040067] [PMID: 27809281]
[10]
Hancock, R.E.; Chapple, D.S. Peptide antibiotics. Antimicrob. Agents Chemother., 1999, 43(6), 1317-1323.
[http://dx.doi.org/10.1128/AAC.43.6.1317] [PMID: 10348745]
[11]
Arnison, P.G.; Bibb, M.J.; Bierbaum, G.; Bowers, A.A.; Bugni, T.S.; Bulaj, G.; Camarero, J.A.; Campopiano, D.J.; Challis, G.L.; Clardy, J.; Cotter, P.D.; Craik, D.J.; Dawson, M.; Dittmann, E.; Donadio, S.; Dorrestein, P.C.; Entian, K.D.; Fischbach, M.A.; Garavelli, J.S.; Göransson, U.; Gruber, C.W.; Haft, D.H.; Hemscheidt, T.K.; Hertweck, C.; Hill, C.; Horswill, A.R.; Jaspars, M.; Kelly, W.L.; Klinman, J.P.; Kuipers, O.P.; Link, A.J.; Liu, W.; Marahiel, M.A.; Mitchell, D.A.; Moll, G.N.; Moore, B.S.; Müller, R.; Nair, S.K.; Nes, I.F.; Norris, G.E.; Olivera, B.M.; Onaka, H.; Patchett, M.L.; Piel, J.; Reaney, M.J.; Rebuffat, S.; Ross, R.P.; Sahl, H.G.; Schmidt, E.W.; Selsted, M.E.; Severinov, K.; Shen, B.; Sivonen, K.; Smith, L.; Stein, T.; Süssmuth, R.D.; Tagg, J.R.; Tang, G.L.; Truman, A.W.; Vederas, J.C.; Walsh, C.T.; Walton, J.D.; Wenzel, S.C.; Willey, J.M.; van der Donk, W.A. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep., 2013, 30(1), 108-160.
[http://dx.doi.org/10.1039/C2NP20085F] [PMID: 23165928]
[12]
McIntosh, J.A.; Donia, M.S.; Schmidt, E.W. Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat. Prod. Rep., 2009, 26(4), 537-559.
[http://dx.doi.org/10.1039/b714132g] [PMID: 19642421]
[13]
Miller, B.R.; Gulick, A.M. Structural biology of nonribosomal peptide synthetases. Methods Mol. Biol., 2016, 1401, 3-29.
[http://dx.doi.org/10.1007/978-1-4939-3375-4_1] [PMID: 26831698]
[14]
Süssmuth, R.D.; Mainz, A. Nonribosomal peptide synthesis-principles and prospects. Angew. Chem. Int. Ed. Engl., 2017, 56(14), 3770-3821.
[http://dx.doi.org/10.1002/anie.201609079] [PMID: 28323366]
[15]
Wang, G.; Li, X.; Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[16]
Ventola, C.L. The antibiotic resistance crisis: part 1: causes and threats. P&T, 2015, 40(4), 277-283.
[PMID: 25859123]
[17]
Ventola, C.L. The antibiotic resistance crisis: part 2: management strategies and new agents. P&T, 2015, 40(5), 344-352.
[PMID: 25987823]
[18]
Wright, G.D. Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol., 2016, 24(11), 862-871.
[http://dx.doi.org/10.1016/j.tim.2016.06.009] [PMID: 27430191]
[19]
Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr., 2016, 4(2)
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015] [PMID: 27227291]
[20]
Lewies, A.; Du Plessis, L.H.; Wentzel, J.F. Antimicrobial peptides: the achilles’ heel of antibiotic resistance? Probiotics Antimicrob. Proteins, 2019, 11(2), 370-381.
[http://dx.doi.org/10.1007/s12602-018-9465-0] [PMID: 30229514]
[21]
Primon-Barros, M.; José Macedo, A. Animal venom peptides: potential for new antimicrobial agents. Curr. Top. Med. Chem., 2017, 17(10), 1119-1156.
[http://dx.doi.org/10.2174/1568026616666160930151242] [PMID: 27697042]
[22]
Casciaro, B.; Calcaterra, A.; Cappiello, F.; Mori, M.; Loffredo, M.R.; Ghirga, F.; Mangoni, M.L.; Botta, B.; Quaglio, D. Nigritanine as a new potential antimicrobial alkaloid for the treatment of Staphylococcus aureus-induced infections. Toxins (Basel), 2019, 11(9)E511
[http://dx.doi.org/10.3390/toxins11090511] [PMID: 31480508]
[23]
Pham, J.V.; Yilma, M.A.; Feliz, A.; Majid, M.T.; Maffetone, N.; Walker, J.R.; Kim, E.; Cho, H.J.; Reynolds, J.M.; Song, M.C.; Park, S.R.; Yoon, Y.J. A review of the microbial production of bioactive natural products and biologics. Front. Microbiol., 2019, 10, 1404.
[http://dx.doi.org/10.3389/fmicb.2019.01404] [PMID: 31281299]
[24]
Drlica, K. The mutant selection window and antimicrobial resistance. J. Antimicrob. Chemother., 2003, 52(1), 11-17.
[http://dx.doi.org/10.1093/jac/dkg269] [PMID: 12805267]
[25]
Drlica, K.; Zhao, X. Mutant selection window hypothesis updated. Clin. Infect. Dis., 2007, 44(5), 681-688.
[http://dx.doi.org/10.1086/511642] [PMID: 17278059]
[26]
Baquero, F.; Negri, M.C.; Morosini, M.I.; Blázquez, J. Antibiotic-selective environments. Clin. Infect. Dis., 1998, 27(Suppl. 1), S5-S11.
[http://dx.doi.org/10.1086/514916] [PMID: :9710666]
[27]
Carvalho, I.T.; Santos, L. Antibiotics in the aquatic environments: A review of the European scenario. Environ. Int., 2016, 94, 736-757.
[http://dx.doi.org/10.1016/j.envint.2016.06.025] [PMID: 27425630]
[28]
Hu, Y.; Gao, G.F.; Zhu, B. The antibiotic resistome: gene flow in environments, animals and human beings. Front. Med., 2017, 11(2), 161-168.
[http://dx.doi.org/10.1007/s11684-017-0531-x] [PMID: 28500429]
[29]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: an emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6, 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[30]
Lewies, A.; Wentzel, J.F.; Jacobs, G.; Du Plessis, L.H. The potential use of natural and structural analogues of antimicrobial peptides in the fight against neglected tropical diseases. Molecules, 2015, 20(8), 15392-15433.
[http://dx.doi.org/10.3390/molecules200815392] [PMID: 26305243]
[31]
Patocka, J.; Nepovimova, E.; Klimova, B.; Wu, Q.; Kuca, K. Antimicrobial peptides: amphibian host defense peptides. Curr. Med. Chem., 2018, 25(32)
[PMID: 30009702]
[32]
Loffredo, M.R.; Ghosh, A.; Harmouche, N.; Casciaro, B.; Luca, V.; Bortolotti, A.; Cappiello, F.; Stella, L.; Bhunia, A.; Bechinger, B.; Mangoni, M.L. Membrane perturbing activities and structural properties of the frog-skin derived peptide Esculentin-1a(1-21)NH2 and its Diastereomer Esc(1-21)-1c: Correlation with their antipseudomonal and cytotoxic activity. Biochim. Biophys. Acta Biomembr., 2017, 1859(12), 2327-2339.
[http://dx.doi.org/10.1016/j.bbamem.2017.09.009] [PMID: 28912103]
[33]
Zasloff, M. Antimicrobial Peptides of Multicellular Organisms: My Perspective. Adv. Exp. Med. Biol., 2019, 1117, 3-6.
[http://dx.doi.org/10.1007/978-981-13-3588-4_1] [PMID: 30980349]
[34]
Di Grazia, A.; Cappiello, F.; Cohen, H.; Casciaro, B.; Luca, V.; Pini, A.; Di, Y.P.; Shai, Y.; Mangoni, M.L. D-Amino acids incorporation in the frog skin-derived peptide esculentin-1a(1-21)NH2 is beneficial for its multiple functions. Amino Acids, 2015, 47(12), 2505-2519.
[http://dx.doi.org/10.1007/s00726-015-2041-y] [PMID: 26162435]
[35]
Pasupuleti, M.; Schmidtchen, A.; Malmsten, M. Antimicrobial peptides: key components of the innate immune system. Crit. Rev. Biotechnol., 2012, 32(2), 143-171.
[http://dx.doi.org/10.3109/07388551.2011.594423] [PMID: 22074402]
[36]
De Smet, K.; Contreras, R. Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol. Lett., 2005, 27(18), 1337-1347.
[http://dx.doi.org/10.1007/s10529-005-0936-5] [PMID: 16215847]
[37]
Álvarez, A.H.; Martínez Velázquez, M.; Prado Montes de Oca, E. Human β-defensin 1 update: Potential clinical applications of the restless warrior. Int. J. Biochem. Cell Biol., 2018, 104, 133-137.
[http://dx.doi.org/10.1016/j.biocel.2018.09.007] [PMID: 30236992]
[38]
Powers, J.P.; Hancock, R.E. The relationship between peptide structure and antibacterial activity. Peptides, 2003, 24(11), 1681-1691.
[http://dx.doi.org/10.1016/j.peptides.2003.08.023] [PMID: 15019199]
[39]
Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim. Biophys. Acta, 2006, 1758(9), 1184-1202.
[http://dx.doi.org/10.1016/j.bbamem.2006.04.006] [PMID: 16756942]
[40]
Andrès, E. Cationic antimicrobial peptides in clinical development, with special focus on thanatin and heliomicin. Eur. J. Clin. Microbiol. Infect. Dis., 2012, 31(6), 881-888.
[http://dx.doi.org/10.1007/s10096-011-1430-8] [PMID: 21964560]
[41]
Zhao, H.; Mattila, J.P.; Holopainen, J.M.; Kinnunen, P.K. Comparison of the membrane association of two antimicrobial peptides, magainin 2 and indolicidin. Biophys. J., 2001, 81(5), 2979-2991.
[http://dx.doi.org/10.1016/S0006-3495(01)75938-3] [PMID: 11606308]
[42]
Shai, Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta, 1999, 1462(1-2), 55-70.
[http://dx.doi.org/10.1016/S0005-2736(99)00200-X] [PMID: 10590302]
[43]
Epand, R.F.; Savage, P.B.; Epand, R.M. Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochim. Biophys. Acta, 2007, 1768(10), 2500-2509.
[http://dx.doi.org/10.1016/j.bbamem.2007.05.023] [PMID: 17599802]
[44]
Oren, Z.; Lerman, J.C.; Gudmundsson, G.H.; Agerberth, B.; Shai, Y. Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem. J., 1999, 341(Pt 3), 501-513.
[http://dx.doi.org/10.1042/bj3410501] [PMID: 10417311]
[45]
Casciaro, B.; Cappiello, F.; Cacciafesta, M.; Mangoni, M.L. Promising approaches to optimize the biological properties of the antimicrobial peptide esculentin-1a(1-21)NH2: amino acids substitution and conjugation to nanoparticles. Front Chem., 2017, 5, 26.
[http://dx.doi.org/10.3389/fchem.2017.00026] [PMID: 28487853]
[46]
Lee, M.T.; Chen, F.Y.; Huang, H.W. Energetics of pore formation induced by membrane active peptides. Biochemistry, 2004, 43(12), 3590-3599.
[http://dx.doi.org/10.1021/bi036153r] [PMID: 15035629]
[47]
Melo, M.N.; Ferre, R.; Castanho, M.A. Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat. Rev. Microbiol., 2009, 7(3), 245-250.
[http://dx.doi.org/10.1038/nrmicro2095] [PMID: 19219054]
[48]
Brogden, K.A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[49]
Le, C.F.; Fang, C.M.; Sekaran, S.D. Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimicrob. Agents Chemother., 2017, 61(4), e02340-e16.
[http://dx.doi.org/10.1128/AAC.02340-16] [PMID: 28167546]
[50]
Haney, E.F.; Straus, S.K.; Hancock, R.E.W. Reassessing the host defense peptide landscape. Front Chem., 2019, 7, 43.
[http://dx.doi.org/10.3389/fchem.2019.00043] [PMID: 30778385]
[51]
Graf, M.; Wilson, D.N. Intracellular antimicrobial peptides targeting the protein synthesis machinery. Adv. Exp. Med. Biol., 2019, 1117, 73-89.
[http://dx.doi.org/10.1007/978-981-13-3588-4_6] [PMID: 30980354]
[52]
Hammami, R.; Bédard, F.; Gomaa, A.; Subirade, M.; Biron, E.; Fliss, I. Lasso-inspired peptides with distinct antibacterial mechanisms. Amino Acids, 2015, 47(2), 417-428.
[http://dx.doi.org/10.1007/s00726-014-1877-x] [PMID: 25466905]
[53]
Graf, M.; Mardirossian, M.; Nguyen, F.; Seefeldt, A.C.; Guichard, G.; Scocchi, M.; Innis, C.A.; Wilson, D.N. Proline-rich antimicrobial peptides targeting protein synthesis. Nat. Prod. Rep., 2017, 34(7), 702-711.
[http://dx.doi.org/10.1039/C7NP00020K] [PMID: 28537612]
[54]
Aisenbrey, C.; Marquette, A.; Bechinger, B. The mechanisms of action of cationic antimicrobial peptides refined by novel concepts from biophysical investigations. Adv. Exp. Med. Biol., 2019, 1117, 33-64.
[http://dx.doi.org/10.1007/978-981-13-3588-4_4] [PMID: 30980352]
[55]
Li, C.; Liu, H.; Yang, Y.; Xu, X.; Lv, T.; Zhang, H.; Liu, K.; Zhang, S.; Chen, Y. N-myristoylation of antimicrobial peptide cm4 enhances its anticancer activity by interacting with cell membrane and targeting mitochondria in breast cancer cells. Front. Pharmacol., 2018, 9, 1297.
[http://dx.doi.org/10.3389/fphar.2018.01297] [PMID: 30483133]
[56]
Veldhuizen, E.J.A.; Scheenstra, M.R.; Tjeerdsma-van Bokhoven, J.L.M.; Coorens, M.; Schneider, V.A.F.; Bikker, F.J.; van Dijk, A.; Haagsman, H.P. Antimicrobial and immunomodulatory activity of PMAP-23 derived peptides. Protein Pept. Lett., 2017, 24(7), 609-616.
[http://dx.doi.org/10.2174/0929866524666170428150925] [PMID: 28462713]
[57]
Marquette, A.; Bechinger, B. Biophysical investigations elucidating the mechanisms of action of antimicrobial peptides and their synergism. Biomolecules, 2018, 8(2)E18
[http://dx.doi.org/10.3390/biom8020018] [PMID: 29670065]
[58]
Yu, G.; Baeder, D.Y.; Regoes, R.R.; Rolff, J. Combination effects of antimicrobial peptides. Antimicrob. Agents Chemother., 2016, 60(3), 1717-1724.
[http://dx.doi.org/10.1128/AAC.02434-15] [PMID: 26729502]
[59]
Davis, B.D. Mechanism of bactericidal action of aminoglycosides. Microbiol. Rev., 1987, 51(3), 341-350.
[http://dx.doi.org/10.1128/MMBR.51.3.341-350.1987] [PMID: 3312985]
[60]
Plotz, P.H.; Davis, B.D. Synergism between streptomycin and penicillin: a proposed mechanism. Science, 1962, 135(3508), 1067-1068.
[http://dx.doi.org/10.1126/science.135.3508.1067] [PMID: 14487239]
[61]
Cottagnoud, P.; Cottagnoud, M.; Täuber, M.G. Vancomycin acts synergistically with gentamicin against penicillin-resistant pneumococci by increasing the intracellular penetration of gentamicin. Antimicrob. Agents Chemother., 2003, 47(1), 144-147.
[http://dx.doi.org/10.1128/AAC.47.1.144-147.2003] [PMID: 12499182]
[62]
Dinos, G.P.; Connell, S.R.; Nierhaus, K.H.; Kalpaxis, D.L. Erythromycin, roxithromycin, and clarithromycin: use of slow-binding kinetics to compare their in vitro interaction with a bacterial ribosomal complex active in peptide bond formation. Mol. Pharmacol., 2003, 63(3), 617-623.
[http://dx.doi.org/10.1124/mol.63.3.617] [PMID: 12606769]
[63]
Cheesman, M.J.; Ilanko, A.; Blonk, B.; Cock, I.E. Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn. Rev., 2017, 11(22), 57-72.
[http://dx.doi.org/10.4103/phrev.phrev_21_17] [PMID: 28989242]
[64]
Mohr, K.I. History of antibiotics research. Curr. Top. Microbiol. Immunol., 2016, 398, 237-272.
[http://dx.doi.org/10.1007/82_2016_499] [PMID: 27738915]
[65]
Nichols, R.J.; Sen, S.; Choo, Y.J.; Beltrao, P.; Zietek, M.; Chaba, R.; Lee, S.; Kazmierczak, K.M.; Lee, K.J.; Wong, A.; Shales, M.; Lovett, S.; Winkler, M.E.; Krogan, N.J.; Typas, A.; Gross, C.A. Phenotypic landscape of a bacterial cell. Cell, 2011, 144(1), 143-156.
[http://dx.doi.org/10.1016/j.cell.2010.11.052] [PMID: 21185072]
[66]
Peña-Miller, R.; Lähnemann, D.; Schulenburg, H.; Ackermann, M.; Beardmore, R. The optimal deployment of synergistic antibiotics: a control-theoretic approach. J. R. Soc. Interface, 2012, 9(75), 2488-2502.
[http://dx.doi.org/10.1098/rsif.2012.0279] [PMID: 22628215]
[67]
Ayaz, M.; Ullah, F.; Sadiq, A.; Ullah, F.; Ovais, M.; Ahmed, J.; Devkota, H.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact., 2019, 308, 294-303.
[http://dx.doi.org/10.1016/j.cbi.2019.05.050] [PMID: 31158333]
[68]
Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine, 2008, 15(8), 639-652.
[http://dx.doi.org/10.1016/j.phymed.2008.06.008] [PMID: 18599280]
[69]
Mgbeahuruike, E.E.; Stålnacke, M.; Vuorela, H.; Holm, Y. Antimicrobial and synergistic effects of commercial piperine and piperlongumine in combination with conventional Antimicrobials. Antibiotics (Basel), 2019, 8(2)E55
[http://dx.doi.org/10.3390/antibiotics8020055] [PMID: 31060239]
[70]
Sakoulas, G.; Bayer, A.S.; Pogliano, J.; Tsuji, B.T.; Yang, S.J.; Mishra, N.N.; Nizet, V.; Yeaman, M.R.; Moise, P.A. Ampicillin enhances daptomycin- and cationic host defense peptide-mediated killing of ampicillin- and vancomycin-resistant Enterococcus faecium. Antimicrob. Agents Chemother., 2012, 56(2), 838-844.
[http://dx.doi.org/10.1128/AAC.05551-11] [PMID: 22123698]
[71]
Lin, L.; Nonejuie, P.; Munguia, J.; Hollands, A.; Olson, J.; Dam, Q.; Kumaraswamy, M.; Rivera, H., Jr; Corriden, R.; Rohde, M.; Hensler, M.E.; Burkart, M.D.; Pogliano, J.; Sakoulas, G.; Nizet, V. Azithromycin synergizes with cationic antimicrobial peptides to exert bactericidal and therapeutic activity against highly multidrug-resistant gram-negative bacterial pathogens. EBioMedicine, 2015, 2(7), 690-698.
[http://dx.doi.org/10.1016/j.ebiom.2015.05.021] [PMID: 26288841]
[72]
Bessa, L.J.; Eaton, P.; Dematei, A.; Plácido, A.; Vale, N.; Gomes, P.; Delerue-Matos, C.; Sa Leite, J.R.; Gameiro, P. Synergistic and antibiofilm properties of ocellatin peptides against multidrug-resistant Pseudomonas aeruginosa. Future Microbiol., 2018, 13, 151-163.
[http://dx.doi.org/10.2217/fmb-2017-0175] [PMID: 9308671]
[73]
Casciaro, B.; Loffredo, M.R.; Luca, V.; Verrusio, W.; Cacciafesta, M.; Mangoni, M.L. Esculentin-1a derived antipseudomonal peptides: limited induction of resistance and synergy with aztreonam. Protein Pept. Lett., 2018, 25(12), 1155-1162.
[http://dx.doi.org/10.2174/0929866525666181101104649] [PMID: 30381056]
[74]
Tabbene, O.; Azaiez, S.; Di Grazia, A.; Karkouch, I.; Ben Slimene, I.; Elkahoui, S.; Alfeddy, M.N.; Casciaro, B.; Luca, V.; Limam, F.; Mangoni, M.L. Bacillomycin D and its combination with amphotericin B: promising antifungal compounds with powerful antibiofilm activity and wound-healing potency. J. Appl. Microbiol., 2016, 120(2), 289-300.
[http://dx.doi.org/10.1111/jam.13030] [PMID: 26669801]
[75]
Tabbene, O.; Di Grazia, A.; Azaiez, S.; Ben Slimene, I.; Elkahoui, S.; Alfeddy, M.N.; Casciaro, B.; Luca, V.; Limam, F.; Mangoni, M.L. Synergistic fungicidal activity of the lipopeptide bacillomycin D with amphotericin B against pathogenic Candida species. FEMS Yeast Res., 2015, 15(4)fov022
[http://dx.doi.org/10.1093/femsyr/fov022] [PMID: 25956541]
[76]
Feng, Q.; Huang, Y.; Chen, M.; Li, G.; Chen, Y. Functional synergy of α-helical antimicrobial peptides and traditional antibiotics against Gram-negative and Gram-positive bacteria in vitro and in vivo. Eur. J. Clin. Microbiol. Infect. Dis., 2015, 34(1), 197-204.
[http://dx.doi.org/10.1007/s10096-014-2219-3] [PMID: 25169965]
[77]
Singh, N.; Yeh, P.J. Suppressive drug combinations and their potential to combat antibiotic resistance. J. Antibiot. (Tokyo), 2017, 70(11), 1033-1042.
[http://dx.doi.org/10.1038/ja.2017.102] [PMID: 28874848]
[78]
Bollenbach, T. Antimicrobial interactions: mechanisms and implications for drug discovery and resistance evolution. Curr. Opin. Microbiol., 2015, 27, 1-9.
[http://dx.doi.org/10.1016/j.mib.2015.05.008] [PMID: 26042389]
[79]
Ocampo, P.S.; Lázár, V.; Papp, B.; Arnoldini, M.; Abel zur Wiesch, P.; Busa-Fekete, R.; Fekete, G.; Pál, C.; Ackermann, M.; Bonhoeffer, S. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob. Agents Chemother., 2014, 58(8), 4573-4582.
[http://dx.doi.org/10.1128/AAC.02463-14] [PMID: 24867991]
[80]
Olajuyigbe, O.O.; Adeoye-Isijola, M.O.; Okon, V.; Adedayo, O.; Coopoosamy, R.M. In vitro pharmacological interaction of caffeine and first-line antibiotics is antagonistic against clinically important bacterial pathogens. Acta Biochim. Pol., 2017, 64(2), 255-263.
[http://dx.doi.org/10.18388/abp.2016_1327] [PMID: 28612062]
[81]
Pizzolato-Cezar, L.R.; Okuda-Shinagawa, N.M.; Machini, M.T. Combinatory therapy antimicrobial peptide-antibiotic to minimize the ongoing rise of resistance. Front. Microbiol., 2019, 10, 1703.
[http://dx.doi.org/10.3389/fmicb.2019.01703] [PMID: 31447797]
[82]
Pletzer, D.; Hancock, R.E. Is synergy the key to treating high-density infections? Future Microbiol., 2018, 13, 1629-1632.
[http://dx.doi.org/10.2217/fmb-2018-0216] [PMID: 30426796]
[83]
Duval, R.E.; Grare, M.; Demoré, B. Fight Against Antimicrobial Resistance: We Always Need New Antibacterials but for Right Bacteria. Molecules, 2019, 24(17)E3152
[http://dx.doi.org/10.3390/molecules24173152] [PMID: 31470632]
[84]
Lorian, V. Some effects of subinhibitory concentrations of antibiotics on bacteria. Bull. N. Y. Acad. Med., 1975, 51(9), 1046-1055.
[PMID: 1058727]
[85]
Lorian, V. Some effect of subinbilitory concentrations of penicillin on the structure and division of staphylococci. Antimicrob. Agents Chemother., 1975, 7(6), 864-867.
[http://dx.doi.org/10.1128/AAC.7.6.864] [PMID: 1155930]
[86]
Andersson, D.I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol., 2014, 12(7), 465-478.
[http://dx.doi.org/10.1038/nrmicro3270] [PMID: 24861036]
[87]
Ranieri, M.R.; Whitchurch, C.B.; Burrows, L.L. Mechanisms of biofilm stimulation by subinhibitory concentrations of antimicrobials. Curr. Opin. Microbiol., 2018, 45, 164-169.
[http://dx.doi.org/10.1016/j.mib.2018.07.006] [PMID: 30053750]
[88]
Juhas, M. Horizontal gene transfer in human pathogens. Crit. Rev. Microbiol., 2015, 41(1), 101-108.
[http://dx.doi.org/10.3109/1040841X.2013.804031] [PMID: 23862575]
[89]
Balaban, N.Q.; Helaine, S.; Lewis, K.; Ackermann, M.; Aldridge, B.; Andersson, D.I.; Brynildsen, M.P.; Bumann, D.; Camilli, A.; Collins, J.J.; Dehio, C.; Fortune, S.; Ghigo, J.M.; Hardt, W.D.; Harms, A.; Heinemann, M.; Hung, D.T.; Jenal, U.; Levin, B.R.; Michiels, J.; Storz, G.; Tan, M.W.; Tenson, T.; Van Melderen, L.; Zinkernagel, A. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol., 2019, 17(7), 441-448.
[http://dx.doi.org/10.1038/s41579-019-0196-3] [PMID: 30980069]
[90]
Maria-Neto, S.; de Almeida, K.C.; Macedo, M.L.; Franco, O.L. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. Biochim. Biophys. Acta, 2015, 1848(11 Pt B), 3078-3088.
[http://dx.doi.org/10.1016/j.bbamem.2015.02.017] [PMID: 25724815]
[91]
Geitani, R.; Ayoub Moubareck, C.; Touqui, L.; Karam Sarkis, D. Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol., 2019, 19(1), 54.
[http://dx.doi.org/10.1186/s12866-019-1416-8] [PMID: 30849936]
[92]
Jahnsen, R.D.; Haney, E.F.; Franzyk, H.; Hancock, R.E. Characterization of a proteolytically stable multifunctional host defense peptidomimetic. Chem. Biol., 2013, 20(10), 1286-1295.
[http://dx.doi.org/10.1016/j.chembiol.2013.09.007] [PMID: 24120333]
[93]
Cao, L.; Wang, J.; Sun, L.; Kong, Z.; Wu, Q.; Wang, Z. Transcriptional analysis reveals the relativity of acid tolerance and antimicrobial peptide resistance of Salmonella. Microb. Pathog., 2019, 136103701
[http://dx.doi.org/10.1016/j.micpath.2019.103701] [PMID: 31472260]
[94]
Peschel, A.; Sahl, H.G. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol., 2006, 4(7), 529-536.
[http://dx.doi.org/10.1038/nrmicro1441] [PMID: 16778838]
[95]
Hong, J.; Hu, J.; Ke, F. Experimental induction of bacterial resistance to the antimicrobial peptide tachyplesin i and investigation of the resistance mechanisms. Antimicrob. Agents Chemother., 2016, 60(10), 6067-6075.
[http://dx.doi.org/10.1128/AAC.00640-16] [PMID: 27480861]
[96]
Vasilchenko, A.S.; Rogozhin, E.A. Sub-inhibitory effects of antimicrobial peptides. Front. Microbiol., 2019, 10, 1160.
[http://dx.doi.org/10.3389/fmicb.2019.01160] [PMID: 31178852]
[97]
Gonçalves-de-Albuquerque, C.F.; Silva, A.R.; Burth, P.; Rocco, P.R.; Castro-Faria, M.V.; Castro-Faria-Neto, H.C. Possible mechanisms of Pseudomonas aeruginosa-associated lung disease. Int. J. Med. Microbiol., 2016, 306(1), 20-28.
[http://dx.doi.org/10.1016/j.ijmm.2015.11.001] [PMID: 26652129]
[98]
Malhotra, S.; Hayes, D., Jr; Wozniak, D.J. Cystic fibrosis and Pseudomonas aeruginosa: the host-microbe interface. Clin. Microbiol. Rev., 2019, 32(3), e00138-e18.
[http://dx.doi.org/10.1128/CMR.00138-18] [PMID: 31142499]
[99]
Saeki, E.K.; Kobayashi, R.K.T.; Nakazato, G. Quorum sensing system: Target to control the spread of bacterial infections. Microb. Pathog., 2020, 142104068
[http://dx.doi.org/10.1016/j.micpath.2020.104068] [PMID: 32061914]
[100]
Cepas, V.; López, Y.; Muñoz, E.; Rolo, D.; Ardanuy, C.; Martí, S.; Xercavins, M.; Horcajada, J.P.; Bosch, J.; Soto, S.M. Relationship between biofilm formation and antimicrobial resistance in gram-negative bacteria. Microb. Drug Resist., 2019, 25(1), 72-79.
[http://dx.doi.org/10.1089/mdr.2018.0027] [PMID: 30142035]
[101]
Krzyściak, W.; Jurczak, A.; Kościelniak, D.; Bystrowska, B.; Skalniak, A. The virulence of Streptococcus mutans and the ability to form biofilms. Eur. J. Clin. Microbiol. Infect. Dis., 2014, 33(4), 499-515.
[http://dx.doi.org/10.1007/s10096-013-1993-7] [PMID: 24154653]
[102]
Gottschalk, S.; Gottlieb, C.T.; Vestergaard, M.; Hansen, P.R.; Gram, L.; Ingmer, H.; Thomsen, L.E. Amphibian antimicrobial peptide fallaxin analogue FL9 affects virulence gene expression and DNA replication in Staphylococcus aureus. J. Med. Microbiol., 2015, 64(12), 1504-1513.
[http://dx.doi.org/10.1099/jmm.0.000177] [PMID: : 26415708]
[103]
Mataraci, E.; Dosler, S. In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob. Agents Chemother., 2012, 56(12), 6366-6371.
[http://dx.doi.org/10.1128/AAC.01180-12] [PMID: 23070152]
[104]
Vega, L.A.; Caparon, M.G. Cationic antimicrobial peptides disrupt the Streptococcus pyogenes ExPortal. Mol. Microbiol., 2012, 85(6), 1119-1132.
[http://dx.doi.org/10.1111/j.1365-2958.2012.08163.x] [PMID: 22780862]
[105]
Marzani, B.; Pinto, D.; Minervini, F.; Calasso, M.; Di Cagno, R.; Giuliani, G.; Gobbetti, M.; De Angelis, M. The antimicrobial peptide pheromone Plantaricin A increases antioxidant defenses of human keratinocytes and modulates the expression of filaggrin, involucrin, β-defensin 2 and tumor necrosis factor-α genes. Exp. Dermatol., 2012, 21(9), 665-671.
[http://dx.doi.org/10.1111/j.1600-0625.2012.01538.x] [PMID: 22742591]
[106]
Dicks, L.M.T.; Dreyer, L.; Smith, C.; van Staden, A.D.; Review, A. A review: The fate of bacteriocins in the human gastro-intestinal tract: do they cross the gut-blood barrier? Front. Microbiol., 2018, 9, 2297.
[http://dx.doi.org/10.3389/fmicb.2018.02297] [PMID: 30323796]
[107]
Strempel, N.; Neidig, A.; Nusser, M.; Geffers, R.; Vieillard, J.; Lesouhaitier, O.; Brenner-Weiss, G.; Overhage, J. Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa. PLoS One, 2013, 8(12)e82240
[http://dx.doi.org/10.1371/journal.pone.0082240] [PMID: 24349231]
[108]
de la Fuente-Núñez, C.; Korolik, V.; Bains, M.; Nguyen, U.; Breidenstein, E.B.; Horsman, S.; Lewenza, S.; Burrows, L.; Hancock, R.E. Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob. Agents Chemother., 2012, 56(5), 2696-2704.
[http://dx.doi.org/10.1128/AAC.00064-12] [PMID: 22354291]
[109]
Casciaro, B.; Lin, Q.; Afonin, S.; Loffredo, M.R.; de Turris, V.; Middel, V.; Ulrich, A.S.; Di, Y.P.; Mangoni, M.L. Inhibition of Pseudomonas aeruginosa biofilm formation and expression of virulence genes by selective epimerization in the peptide Esculentin-1a(1-21)NH2. FEBS J., 2019, 286(19), 3874-3891.
[http://dx.doi.org/10.1111/febs.14940] [PMID: 31144441]
[110]
Algburi, A.; Zehm, S.; Netrebov, V.; Bren, A.B.; Chistyakov, V.; Chikindas, M.L. Subtilosin prevents biofilm formation by inhibiting bacterial quorum sensing. Probiotics Antimicrob. Proteins, 2017, 9(1), 81-90.
[http://dx.doi.org/10.1007/s12602-016-9242-x] [PMID: 27914001]
[111]
Tiwari, S.; Jamal, S.B.; Hassan, S.S.; Carvalho, P.V.S.D.; Almeida, S.; Barh, D.; Ghosh, P.; Silva, A.; Castro, T.L.P.; Azevedo, V. Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy: An overview. Front. Microbiol., 2017, 8, 1878.
[http://dx.doi.org/10.3389/fmicb.2017.01878] [PMID: 29067003]
[112]
Jiang, Q.; Chen, J.; Yang, C.; Yin, Y.; Yao, K. Quorum sensing: a prospective therapeutic target for bacterial diseases. BioMed Res. Int., 2019, 20192015978
[http://dx.doi.org/10.1155/2019/2015978] [PMID: 31080810]
[113]
Dürr, U.H.; Sudheendra, U.S.; Ramamoorthy, A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophys. Acta, 2006, 1758(9), 1408-1425.
[http://dx.doi.org/10.1016/j.bbamem.2006.03.030] [PMID: 16716248]
[114]
Vogel, H.; Jähnig, F. The structure of melittin in membranes. Biophys. J., 1986, 50(4), 573-582.
[http://dx.doi.org/10.1016/S0006-3495(86)83497-X] [PMID: 3779000]
[115]
Podda, E.; Benincasa, M.; Pacor, S.; Micali, F.; Mattiuzzo, M.; Gennaro, R.; Scocchi, M. Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim. Biophys. Acta, 2006, 1760(11), 1732-1740.
[http://dx.doi.org/10.1016/j.bbagen.2006.09.006] [PMID: 17059867]
[116]
Biondi, B.; Casciaro, B.; Di Grazia, A.; Cappiello, F.; Luca, V.; Crisma, M.; Mangoni, M.L. Effects of Aib residues insertion on the structural-functional properties of the frog skin-derived peptide esculentin-1a(1-21)NH2. Amino Acids, 2017, 49(1), 139-150.
[http://dx.doi.org/10.1007/s00726-016-2341-x] [PMID: 27726008]
[117]
Casciaro, B.; d’Angelo, I.; Zhang, X.; Loffredo, M.R.; Conte, G.; Cappiello, F.; Quaglia, F.; Di, Y.P.; Ungaro, F.; Mangoni, M.L. Poly(lactide- co-glycolide) nanoparticles for prolonged therapeutic efficacy of esculentin-1a-derived antimicrobial peptides against Pseudomonas aeruginosa lung infection: in vitro and in vivo studies. Biomacromolecules, 2019, 20(5), 1876-1888.
[http://dx.doi.org/10.1021/acs.biomac.8b01829] [PMID: 31013061]
[118]
Marani, M.M.; Dourado, F.S.; Quelemes, P.V.; de Araujo, A.R.; Perfeito, M.L.; Barbosa, E.A.; Véras, L.M.; Coelho, A.L.; Andrade, E.B.; Eaton, P.; Longo, J.P.; Azevedo, R.B.; Delerue-Matos, C.; Leite, J.R. Characterization and biological activities of ocellatin peptides from the skin secretion of the frog leptodactylus pustulatus. J. Nat. Prod., 2015, 78(7), 1495-1504.
[http://dx.doi.org/10.1021/np500907t] [PMID: 26107622]
[119]
Pourazar Dizaji, S.; Taala, A.; Masoumi, M.; Ebrahimzadeh, N.; Fateh, A.; Siadat, S.D.; Vaziri, F. Sub-minimum inhibitory concentration of rifampin: a potential risk factor for resuscitation of Mycobacterium tuberculosis. Antimicrob. Resist. Infect. Control, 2017, 6, 116.
[http://dx.doi.org/10.1186/s13756-017-0273-1] [PMID: 29163940]
[120]
Sato, Y.; Unno, Y.; Ubagai, T.; Ono, Y. Sub-minimum inhibitory concentrations of colistin and polymyxin B promote Acinetobacter baumannii biofilm formation. PLoS One, 2018, 13(3)e0194556
[http://dx.doi.org/10.1371/journal.pone.0194556] [PMID: 29554105]
[121]
Westhoff, S.; van Leeuwe, T.M.; Qachach, O.; Zhang, Z.; van Wezel, G.P.; Rozen, D.E. The evolution of no-cost resistance at sub-MIC concentrations of streptomycin in Streptomyces coelicolor. ISME J., 2017, 11(5), 1168-1178.
[http://dx.doi.org/10.1038/ismej.2016.194] [PMID: 28094796]
[122]
Lima-E-Silva, A.A.; Silva-Filho, R.G.; Fernandes, H.M.Z.; Saramago, C.S.M.; Viana, A.S.; Souza, M.J.; Nogueira, E.M. Sub-Inhibitory concentrations of rifampicin strongly stimulated biofilm production in S. aureus. Open Microbiol. J., 2017, 11, 142-151.
[http://dx.doi.org/10.2174/1874285801711010142] [PMID: 28839494]
[123]
Hoffman, L.R.; D’Argenio, D.A.; MacCoss, M.J.; Zhang, Z.; Jones, R.A.; Miller, S.I. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 2005, 436(7054), 1171-1175.
[http://dx.doi.org/10.1038/nature03912] [PMID: 16121184]
[124]
Tezel, B.U.; Akcelik, N.; Yuksel, F.N.; Karatug, N.T.; Akcelik, M. Effects of sub-MIC antibiotic concentrations on biofilm production of Salmonella infantis. Biotechnol. Biotechnol. Equip., 2016, 30(6), 1184-1191.
[http://dx.doi.org/10.1080/13102818.2016.1224981]
[125]
Bhattacharya, G.; Dey, D.; Das, S.; Banerjee, A. Exposure to sub-inhibitory concentrations of gentamicin, ciprofloxacin and cefotaxime induces multidrug resistance and reactive oxygen species generation in meticillin-sensitive Staphylococcus aureus. J. Med. Microbiol., 2017, 66(6), 762-769.
[http://dx.doi.org/10.1099/jmm.0.000492] [PMID: 28598307]
[126]
Fernández, L.; Jenssen, H.; Bains, M.; Wiegand, I.; Gooderham, W.J.; Hancock, R.E. The two-component system CprRS senses cationic peptides and triggers adaptive resistance in Pseudomonas aeruginosa independently of ParRS. Antimicrob. Agents Chemother., 2012, 56(12), 6212-6222.
[http://dx.doi.org/10.1128/AAC.01530-12] [PMID: 23006746]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 14
Year: 2020
Published on: 10 June, 2020
Page: [1264 - 1273]
Pages: 10
DOI: 10.2174/1568026620666200427090912
Price: $65

Article Metrics

PDF: 51
HTML: 5