Alternative Therapy in the Prevention of Experimental and Clinical Inflammatory Bowel Disease. Impact of Regular Physical Activity, Intestinal Alkaline Phosphatase and Herbal Products

Author(s): Jan Bilski, Dagmara Wojcik, Aleksandra Danielak, Agnieszka Mazur-Bialy, Marcin Magierowski, Katherine Tønnesen, Bartosz Brzozowski, Marcin Surmiak, Katarzyna Magierowska, Robert Pajdo, Agata Ptak-Belowska, Tomasz Brzozowski*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 25 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are multifactorial, chronic, disabling, and progressive diseases characterised by cyclical nature, alternating between active and quiescent states. While the aetiology of IBD is not fully understood, this complex of diseases involve a combination of factors including the genetic predisposition and changes in microbiome as well as environmental risk factors such as high-fat and low-fibre diets, reduced physical activity, air pollution and exposure to various toxins and drugs such as antibiotics. The prevalence of both IBD and obesity is increasing in parallel, undoubtedly proving the existing interactions between these risk factors common to both disorders to unravel poorly recognized cell signaling and molecular alterations leading to human IBD. Therefore, there is still a significant and unmet need for supportive and adjunctive therapy for IBD patients directed against the negative consequences of visceral obesity and bacterial dysbiosis. Among the alternative therapies, a moderate-intensity exercise can benefit the health and well-being of IBD patients and improve both the healing of human IBD and experimental animal colitis. Intestinal alkaline phosphatase (IAP) plays an essential role in the maintenance of intestinal homeostasis intestinal and the mechanism of mucosal defence. The administration of exogenous IAP could be recommended as a therapeutic strategy for the cure of diseases resulting from the intestinal barrier dysfunction such as IBD. Curcumin, a natural anti-inflammatory agent, which is capable of stimulating the synthesis of endogenous IAP, represents another alternative approach in the treatment of IBD. This review was designed to discuss potential “nonpharmacological” alternative and supplementary therapeutic approaches taking into account epidemiological and pathophysiological links between obesity and IBD, including changes in the functional parameters of the intestinal mucosa and alterations in the intestinal microbiome.

Keywords: Inflammatory bowel disease, ulcerative colitis, Crohn's disease, obesity, microbiome, intestine alkaline phosphatase, curcumin.

[1]
Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med 2009; 361(21): 2066-78.
[http://dx.doi.org/10.1056/NEJMra0804647] [PMID: 19923578]
[2]
Shanahan F. Crohn’s disease. Lancet 2002; 359(9300): 62-9.
[http://dx.doi.org/10.1016/S0140-6736(02)07284-7] [PMID: 11809204]
[3]
Ullman TA, Itzkowitz SH. Intestinal inflammation and cancer. Gastroenterology 2011; 140(6): 1807-16.
[http://dx.doi.org/10.1053/j.gastro.2011.01.057] [PMID: 21530747]
[4]
Nurmi E, Haapamäki J, Paavilainen E, Rantanen A, Hillilä M, Arkkila P. The burden of inflammatory bowel disease on health care utilization and quality of life. Scand J Gastroenterol 2013; 48(1): 51-7.
[http://dx.doi.org/10.3109/00365521.2012.685750] [PMID: 22577851]
[5]
Randall CW, Vizuete JA, Martinez N, et al. From historical perspectives to modern therapy: a review of current and future biological treatments for Crohn’s disease. Therap Adv Gastroenterol 2015; 8(3): 143-59.
[http://dx.doi.org/10.1177/1756283X15576462] [PMID: 25949527]
[6]
Torres J, Mehandru S, Colombel JF, Peyrin-Biroulet L. Crohn’s disease. Lancet 2017; 389(10080): 1741-55.
[http://dx.doi.org/10.1016/S0140-6736(16)31711-1] [PMID: 27914655]
[7]
Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 2012; 70(1): 3-21.
[http://dx.doi.org/10.1111/j.1753-4887.2011.00456.x] [PMID: 22221213]
[8]
Ng SC, Zeng Z, Niewiadomski O, et al. Asia-Pacific Cs, Colitis Epidemiology Study G. Early Course of Inflammatory Bowel Disease in a Population-Based Inception Cohort Study From 8 Countries in Asia and Australia Gastroenterology 2016; 150 : 86-95. e3. quiz e13-4
[9]
Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012; 142: 46-54. e42. quiz e30
[http://dx.doi.org/10.1053/j.gastro.2011.10.001]
[10]
Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 2018; 390(10114): 2769-78.
[http://dx.doi.org/10.1016/S0140-6736(17)32448-0] [PMID: 29050646]
[11]
Zhai H, Liu A, Huang W, et al. Increasing rate of inflammatory bowel disease: a 12-year retrospective study in NingXia, China. BMC Gastroenterol 2016; 16: 2.
[http://dx.doi.org/10.1186/s12876-015-0405-0] [PMID: 26754840]
[12]
Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 2004; 126(6): 1504-17.
[http://dx.doi.org/10.1053/j.gastro.2004.01.063] [PMID: 15168363]
[13]
Cosnes J, Gower-Rousseau C, Seksik P, Cortot A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 2011; 140(6): 1785-94.
[http://dx.doi.org/10.1053/j.gastro.2011.01.055] [PMID: 21530745]
[14]
Sartor RB. Microbial and dietary factors in the pathogenesis of chronic, immune-mediated intestinal inflammation. Adv Exp Med Biol 2006; 579: 35-54.
[http://dx.doi.org/10.1007/0-387-33778-4_4] [PMID: 16620011]
[15]
Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology 2008; 134(2): 577-94.
[http://dx.doi.org/10.1053/j.gastro.2007.11.059] [PMID: 18242222]
[16]
Sartor RB. Microbial-host interactions in inflammatory bowel diseases and experimental colitis. Nestle Nutr Workshop Ser Pediatr Program 2009; 64: 121-32. discussion 132-7, 251-7
[http://dx.doi.org/10.1159/000235787]
[17]
Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature 2009; 457(7228): 480-4.
[http://dx.doi.org/10.1038/nature07540] [PMID: 19043404]
[18]
De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010; 107(33): 14691-6.
[http://dx.doi.org/10.1073/pnas.1005963107] [PMID: 20679230]
[19]
Albenberg LG, Lewis JD, Wu GD. Food and the gut microbiota in inflammatory bowel diseases: a critical connection. Curr Opin Gastroenterol 2012; 28(4): 314-20.
[http://dx.doi.org/10.1097/MOG.0b013e328354586f] [PMID: 22573192]
[20]
Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology 2014; 146(6): 1564-72.
[http://dx.doi.org/10.1053/j.gastro.2014.01.058] [PMID: 24503132]
[21]
Ni J, Wu GD, Albenberg L, Tomov VT. Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol 2017; 14(10): 573-84.
[http://dx.doi.org/10.1038/nrgastro.2017.88] [PMID: 28743984]
[22]
Eder P, Adler M, Dobrowolska A, Kamhieh-Milz J, Witowski J. The Role of Adipose Tissue in the Pathogenesis and Therapeutic Outcomes of Inflammatory Bowel Disease. Cells 2019; 8(6): 8.
[http://dx.doi.org/10.3390/cells8060628] [PMID: 31234447]
[23]
Kreuter R, Wankell M, Ahlenstiel G, Hebbard L. The role of obesity in inflammatory bowel disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865(1): 63-72.
[http://dx.doi.org/10.1016/j.bbadis.2018.10.020] [PMID: 30352258]
[24]
Griffiths AM, Nguyen P, Smith C, MacMillan JH, Sherman PM. Growth and clinical course of children with Crohn’s disease. Gut 1993; 34(7): 939-43.
[http://dx.doi.org/10.1136/gut.34.7.939] [PMID: 8344582]
[25]
Azcue M, Rashid M, Griffiths A, Pencharz PB. Energy expenditure and body composition in children with Crohn’s disease: effect of enteral nutrition and treatment with prednisolone. Gut 1997; 41(2): 203-8.
[http://dx.doi.org/10.1136/gut.41.2.203] [PMID: 9301499]
[26]
Sentongo TA, Semeao EJ, Piccoli DA, Stallings VA, Zemel BS. Growth, body composition, and nutritional status in children and adolescents with Crohn’s disease. J Pediatr Gastroenterol Nutr 2000; 31(1): 33-40.
[http://dx.doi.org/10.1097/00005176-200007000-00009] [PMID: 10896068]
[27]
Nic Suibhne T, Raftery TC, McMahon O, Walsh C, O’Morain C, O’Sullivan M. High prevalence of overweight and obesity in adults with Crohn’s disease: associations with disease and lifestyle factors. J Crohn’s Colitis 2013; 7(7): e241-8.
[http://dx.doi.org/10.1016/j.crohns.2012.09.009] [PMID: 23040290]
[28]
Long MD, Crandall WV, Leibowitz IH, et al. ImproveCareNow Collaborative for Pediatric IBD. Prevalence and epidemiology of overweight and obesity in children with inflammatory bowel disease. Inflamm Bowel Dis 2011; 17(10): 2162-8.
[http://dx.doi.org/10.1002/ibd.21585] [PMID: 21910178]
[29]
Moran GW, Dubeau MF, Kaplan GG, Panaccione R, Ghosh S. The increasing weight of Crohn’s disease subjects in clinical trials: a hypothesis-generatings time-trend analysis. Inflamm Bowel Dis 2013; 19(13): 2949-56.
[http://dx.doi.org/10.1097/MIB.0b013e31829936a4] [PMID: 23945182]
[30]
Steed H, Walsh S, Reynolds N. A brief report of the epidemiology of obesity in the inflammatory bowel disease population of Tayside, Scotland. Obes Facts 2009; 2(6): 370-2.
[http://dx.doi.org/10.1159/000262276] [PMID: 20090388]
[31]
Kugathasan S, Nebel J, Skelton JA, et al. Wisconsin Pediatric Inflammatory Bowel Disease Alliance; Pediatric Inflammatory Bowel Disease Collaborative Research Group. . Body mass index in children with newly diagnosed inflammatory bowel disease: observations from two multicenter North American inception cohorts. J Pediatr 2007; 151(5): 523-7.
[http://dx.doi.org/10.1016/j.jpeds.2007.04.004] [PMID: 17961699]
[32]
Lynn AM, Harmsen WS, Aniwan S, Tremaine WJ, Loftus EV. Su1855-Prevalence of Obesity and Influence on Phenotype within a Population-Based Cohort of Inflammatory Bowel Disease Patients. Gastroenterology 2018; 154: S-608.
[http://dx.doi.org/10.1016/S0016-5085(18)32201-7]
[33]
Lynn AM, Harmsen WS, Tremaine WJ, Loftus EV. Su1872-Trends in the Prevalence of Overweight and Obesity at the Time of Inflammatory Bowel Disease Diagnosis: A Population-Based Study. Gastroenterology 2018; 154: S-614-5.
[http://dx.doi.org/10.1016/S0016-5085(18)32218-2]
[34]
Khalili H, Ananthakrishnan AN, Konijeti GG, et al. Measures of obesity and risk of Crohn’s disease and ulcerative colitis. Inflamm Bowel Dis 2015; 21(2): 361-8.
[http://dx.doi.org/10.1097/MIB.0000000000000283] [PMID: 25563694]
[35]
Harpsøe MC, Basit S, Andersson M, et al. Body mass index and risk of autoimmune diseases: a study within the Danish National Birth Cohort. Int J Epidemiol 2014; 43(3): 843-55.
[http://dx.doi.org/10.1093/ije/dyu045] [PMID: 24609069]
[36]
Hemminki K, Li X, Sundquist J, Sundquist K. Risk of asthma and autoimmune diseases and related conditions in patients hospitalized for obesity. Ann Med 2012; 44(3): 289-95.
[http://dx.doi.org/10.3109/07853890.2010.547515] [PMID: 21284531]
[37]
Jensen CB, Ängquist LH, Mendall MA, Sørensen TIA, Baker JL, Jess T. Childhood body mass index and risk of inflammatory bowel disease in adulthood: a population-based cohort study. Am J Gastroenterol 2018; 113(5): 694-701.
[http://dx.doi.org/10.1038/s41395-018-0031-x] [PMID: 29535417]
[38]
Mendall MA, Gunasekera AV, John BJ, Kumar D. Is obesity a risk factor for Crohn’s disease? Dig Dis Sci 2011; 56(3): 837-44.
[http://dx.doi.org/10.1007/s10620-010-1541-6] [PMID: 21221790]
[39]
Rahmani J, Kord-Varkaneh H, Hekmatdoost A, et al. Body mass index and risk of inflammatory bowel disease: A systematic review and dose-response meta-analysis of cohort studies of over a million participants. Obes Rev 2019; 20(9): 1312-20.
[http://dx.doi.org/10.1111/obr.12875] [PMID: 31190427]
[40]
Chan SS, Luben R, Olsen A, et al. Body mass index and the risk for Crohn’s disease and ulcerative colitis: data from a European Prospective Cohort Study (The IBD in EPIC Study). Am J Gastroenterol 2013; 108(4): 575-82.
[http://dx.doi.org/10.1038/ajg.2012.453] [PMID: 23318483]
[41]
Uko V, Vortia E, Achkar JP, et al. Impact of abdominal visceral adipose tissue on disease outcome in pediatric Crohn’s disease. Inflamm Bowel Dis 2014; 20(12): 2286-91.
[http://dx.doi.org/10.1097/MIB.0000000000000200] [PMID: 25222655]
[42]
Kredel L, Batra A, Siegmund B. Role of fat and adipokines in intestinal inflammation. Curr Opin Gastroenterol 2014; 30(6): 559-65.
[http://dx.doi.org/10.1097/MOG.0000000000000116] [PMID: 25188546]
[43]
Kredel LI, Siegmund B. Adipose-tissue and intestinal inflammation - visceral obesity and creeping fat. Front Immunol 2014; 5: 462.
[http://dx.doi.org/10.3389/fimmu.2014.00462] [PMID: 25309544]
[44]
Blain A, Cattan S, Beaugerie L, Carbonnel F, Gendre JP, Cosnes J. Crohn’s disease clinical course and severity in obese patients. Clin Nutr 2002; 21(1): 51-7.
[http://dx.doi.org/10.1054/clnu.2001.0503] [PMID: 11884013]
[45]
Malik TA, Manne A, Oster RA, Eckhoff A, Inusah S, Gutierrez AM. Obesity is Associated With Poor Surgical Outcome in Crohn’s Disease. Gastroenterol Res 2013; 6(3): 85-90.
[http://dx.doi.org/10.4021/gr553w] [PMID: 27785234]
[46]
Singla MB, Eickhoff C, Betteridge J. Extraintestinal Manifestations Are Common in Obese Patients with Crohn’s Disease. Inflamm Bowel Dis 2017; 23(9): 1637-42.
[http://dx.doi.org/10.1097/MIB.0000000000001187] [PMID: 28691941]
[47]
Pavelock N, Masood U, Minchenberg S, Heisig D. Effects of obesity on the course of inflammatory bowel disease. Proc Bayl Univ Med Cent 2019; 32(1): 14-7.
[http://dx.doi.org/10.1080/08998280.2018.1542887] [PMID: 30956572]
[48]
Jain A, Nguyen NH, Proudfoot JA, et al. Impact of Obesity on Disease Activity and Patient-Reported Outcomes Measurement Information System (PROMIS) in Inflammatory Bowel Diseases. Am J Gastroenterol 2019; 114(4): 630-9.
[http://dx.doi.org/10.14309/ajg.0000000000000197] [PMID: 30865012]
[49]
Seminerio JL, Koutroubakis IE, Ramos-Rivers C, et al. Impact of Obesity on the Management and Clinical Course of Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis 2015; 21(12): 2857-63.
[http://dx.doi.org/10.1097/MIB.0000000000000560] [PMID: 26241001]
[50]
Pringle PL, Stewart KO, Peloquin JM, et al. Body Mass Index, Genetic Susceptibility, and Risk of Complications Among Individuals with Crohn’s Disease. Inflamm Bowel Dis 2015; 21(10): 2304-10.
[PMID: 26181430]
[51]
Singh S, Proudfoot J, Xu R, Sandborn WJ. Obesity and Response to Infliximab in Patients with Inflammatory Bowel Diseases: Pooled Analysis of Individual Participant Data from Clinical Trials. Am J Gastroenterol 2018; 113(6): 883-9.
[http://dx.doi.org/10.1038/s41395-018-0104-x] [PMID: 29867171]
[52]
Flores A, Burstein E, Cipher DJ, Feagins LA. Obesity in Inflammatory Bowel Disease: A Marker of Less Severe Disease. Dig Dis Sci 2015; 60(8): 2436-45.
[http://dx.doi.org/10.1007/s10620-015-3629-5] [PMID: 25799938]
[53]
Stabroth-Akil D, Leifeld L, Pfützer R, Morgenstern J, Kruis W. The effect of body weight on the severity and clinical course of ulcerative colitis. Int J Colorectal Dis 2015; 30(2): 237-42.
[http://dx.doi.org/10.1007/s00384-014-2051-3] [PMID: 25392256]
[54]
Hu Q, Ren J, Li G, Wu X, Li J. The Impact of Obesity on the Clinical Course of Inflammatory Bowel Disease: A Meta-Analysis. Med Sci Monit 2017; 23: 2599-606.
[http://dx.doi.org/10.12659/MSM.901969] [PMID: 28552901]
[55]
Erhayiem B, Dhingsa R, Hawkey CJ, Subramanian V. Ratio of visceral to subcutaneous fat area is a biomarker of complicated Crohn’s disease. Clin Gastroenterol Hepatol 2011; 9(8): 684-687.e1.
[http://dx.doi.org/10.1016/j.cgh.2011.05.005] [PMID: 21642015]
[56]
Li Y, Zhu W, Gong J, et al. Visceral fat area is associated with a high risk for early postoperative recurrence in Crohn’s disease. Colorectal Dis 2015; 17(3): 225-34.
[http://dx.doi.org/10.1111/codi.12798] [PMID: 25307174]
[57]
Bryant RV, Schultz CG, Ooi S, et al. Visceral Adipose Tissue Is Associated With Stricturing Crohn’s Disease Behavior, Fecal Calprotectin, and Quality of Life. Inflamm Bowel Dis 2019; 25(3): 592-600.
[http://dx.doi.org/10.1093/ibd/izy278] [PMID: 30215805]
[58]
Connelly TM, Juza RM, Sangster W, Sehgal R, Tappouni RF, Messaris E. Volumetric fat ratio and not body mass index is predictive of ileocolectomy outcomes in Crohn’s disease patients. Dig Surg 2014; 31(3): 219-24.
[http://dx.doi.org/10.1159/000365359] [PMID: 25277149]
[59]
Holt DQ, Moore GT, Strauss BJ, Hamilton AL, De Cruz P, Kamm MA. Visceral adiposity predicts post-operative Crohn’s disease recurrence. Aliment Pharmacol Ther 2017; 45(9): 1255-64.
[http://dx.doi.org/10.1111/apt.14018] [PMID: 28244124]
[60]
Van Der Sloot KW, Joshi AD, Bellavance DR, et al. Visceral adiposity, genetic susceptibility, and risk of complications among individuals with Crohn’s disease. Inflamm Bowel Dis 2017; 23(1): 82-8.
[http://dx.doi.org/10.1097/MIB.0000000000000978] [PMID: 27893544]
[61]
Desreumaux P, Ernst O, Geboes K, et al. Inflammatory alterations in mesenteric adipose tissue in Crohn’s disease. Gastroenterology 1999; 117(1): 73-81.
[http://dx.doi.org/10.1016/S0016-5085(99)70552-4] [PMID: 10381912]
[62]
Bryant RV, Schultz CG, Ooi S, et al. Obesity in Inflammatory Bowel Disease: Gains in Adiposity despite High Prevalence of Myopenia and Osteopenia. Nutrients 2018; 10(9): 10.
[http://dx.doi.org/10.3390/nu10091192] [PMID: 30200405]
[63]
Bryant RV, Ooi S, Schultz CG, et al. Low muscle mass and sarcopenia: common and predictive of osteopenia in inflammatory bowel disease. Aliment Pharmacol Ther 2015; 41(9): 895-906.
[http://dx.doi.org/10.1111/apt.13156] [PMID: 25753216]
[64]
Bryant RV, Trott MJ, Bartholomeusz FD, Andrews JM. Systematic review: body composition in adults with inflammatory bowel disease. Aliment Pharmacol Ther 2013; 38(3): 213-25.
[http://dx.doi.org/10.1111/apt.12372] [PMID: 23763279]
[65]
Vadan R, Gheorghe LS, Constantinescu A, Gheorghe C. The prevalence of malnutrition and the evolution of nutritional status in patients with moderate to severe forms of Crohn’s disease treated with Infliximab. Clin Nutr 2011; 30(1): 86-91.
[http://dx.doi.org/10.1016/j.clnu.2010.07.019] [PMID: 20719413]
[66]
Barroso T, Conway F, Emel S, et al. Patients with inflammatory bowel disease have higher abdominal adiposity and less skeletal mass than healthy controls. Ann Gastroenterol 2018; 31(5): 566-71.
[http://dx.doi.org/10.20524/aog.2018.0280] [PMID: 30174393]
[67]
Cuoco L, Vescovo G, Castaman R, et al. Skeletal muscle wastage in Crohn’s disease: a pathway shared with heart failure? Int J Cardiol 2008; 127(2): 219-27.
[http://dx.doi.org/10.1016/j.ijcard.2007.06.006] [PMID: 17692969]
[68]
Scaldaferri F, Pizzoferrato M, Lopetuso LR, et al. Nutrition and IBD: Malnutrition and/or Sarcopenia? A Practical Guide. Gastroenterol Res Pract 2017; 2017 8646495
[http://dx.doi.org/10.1155/2017/8646495] [PMID: 28127306]
[69]
Bilski J, Mazur-Bialy A, Brzozowski B, et al. Can exercise affect the course of inflammatory bowel disease? Experimental and clinical evidence. Pharmacol Rep 2016; 68(4): 827-36.
[http://dx.doi.org/10.1016/j.pharep.2016.04.009] [PMID: 27255494]
[70]
Bilski J, Brzozowski B, Mazur-Bialy A, Sliwowski Z, Brzozowski T. The role of physical exercise in inflammatory bowel disease. BioMed Res Int 2014; 2014 429031
[http://dx.doi.org/10.1155/2014/429031] [PMID: 24877092]
[71]
Bilski J, Mazur-Bialy AI, Wierdak M, Brzozowski T. The impact of physical activity and nutrition on inflammatory bowel disease: the potential role of cross talk between adipose tissue and skeletal muscle. J Physiol Pharmacol 2013; 64(2): 143-55.
[PMID: 23756389]
[72]
Shi C, Li H, Qu X, et al. High fat diet exacerbates intestinal barrier dysfunction and changes gut microbiota in intestinal-specific ACF7 knockout mice. Biomed Pharmacother 2019; 110: 537-45.
[http://dx.doi.org/10.1016/j.biopha.2018.11.100] [PMID: 30530289]
[73]
Ma X, Torbenson M, Hamad AR, Soloski MJ, Li Z. High-fat diet modulates non-CD1d-restricted natural killer T cells and regulatory T cells in mouse colon and exacerbates experimental colitis. Clin Exp Immunol 2008; 151(1): 130-8.
[http://dx.doi.org/10.1111/j.1365-2249.2007.03530.x] [PMID: 17991290]
[74]
Cheng L, Jin H, Qiang Y, et al. High fat diet exacerbates dextran sulfate sodium induced colitis through disturbing mucosal dendritic cell homeostasis. Int Immunopharmacol 2016; 40: 1-10.
[http://dx.doi.org/10.1016/j.intimp.2016.08.018] [PMID: 27567245]
[75]
Peyrin-Biroulet L, Gonzalez F, Dubuquoy L, et al. Mesenteric fat as a source of C reactive protein and as a target for bacterial translocation in Crohn’s disease. Gut 2012; 61(1): 78-85.
[http://dx.doi.org/10.1136/gutjnl-2011-300370] [PMID: 21940721]
[76]
Teixeira LG, Leonel AJ, Aguilar EC, et al. The combination of high-fat diet-induced obesity and chronic ulcerative colitis reciprocally exacerbates adipose tissue and colon inflammation. Lipids Health Dis 2011; 10: 204.
[http://dx.doi.org/10.1186/1476-511X-10-204] [PMID: 22073943]
[77]
Bilski J, Mazur-Bialy A, Wojcik D, et al. Effect of Forced Physical Activity on the Severity of Experimental Colitis in Normal Weight and Obese Mice. Involvement of Oxidative Stress and Proinflammatory Biomarkers. Nutrients 2019; 11(5): 11.
[http://dx.doi.org/10.3390/nu11051127] [PMID: 31117199]
[78]
Mazur-Bialy AI, Bilski J, Wojcik D, et al. Beneficial Effect of Voluntary Exercise on Experimental Colitis in Mice Fed a High-Fat Diet: The Role of Irisin, Adiponectin and Proinflammatory Biomarkers. Nutrients 2017; 9(4): 9.
[http://dx.doi.org/10.3390/nu9040410] [PMID: 28425943]
[79]
Bilski J, Mazur-Bialy AI, Brzozowski B, et al. Moderate exercise training attenuates the severity of experimental rodent colitis: the importance of crosstalk between adipose tissue and skeletal muscles. Mediators Inflamm 2015; 2015 605071
[http://dx.doi.org/10.1155/2015/605071] [PMID: 25684862]
[80]
Sideri A, Stavrakis D, Bowe C, et al. Effects of obesity on severity of colitis and cytokine expression in mouse mesenteric fat. Potential role of adiponectin receptor 1. Am J Physiol Gastrointest Liver Physiol 2015; 308(7): G591-604.
[http://dx.doi.org/10.1152/ajpgi.00269.2014] [PMID: 25591865]
[81]
Batra A, Heimesaat MM, Bereswill S, et al. Mesenteric fat - control site for bacterial translocation in colitis? Mucosal Immunol 2012; 5(5): 580-91.
[http://dx.doi.org/10.1038/mi.2012.33] [PMID: 22569302]
[82]
Bibi S, de Sousa Moraes LF, Lebow N, Zhu MJ. Dietary Green Pea Protects against DSS-Induced Colitis in Mice Challenged with High-Fat Diet. Nutrients 2017; 9(5): 9.
[PMID: 28524086]
[83]
Liu WX, Wang T, Zhou F, et al. Voluntary exercise prevents colonic inflammation in high-fat diet-induced obese mice by up-regulating PPAR-γ activity. Biochem Biophys Res Commun 2015; 459(3): 475-80.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.047] [PMID: 25701789]
[84]
Stenman LK, Holma R, Gylling H, Korpela R. Genetically obese mice do not show increased gut permeability or faecal bile acid hydrophobicity. Br J Nutr 2013; 110(6): 1157-64.
[http://dx.doi.org/10.1017/S000711451300024X] [PMID: 23442231]
[85]
Brun P, Castagliuolo I, Di Leo V, et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2007; 292(2): G518-25.
[http://dx.doi.org/10.1152/ajpgi.00024.2006] [PMID: 17023554]
[86]
Suzuki T, Hara H. Dietary fat and bile juice, but not obesity, are responsible for the increase in small intestinal permeability induced through the suppression of tight junction protein expression in LETO and OLETF rats. Nutr Metab (Lond) 2010; 7: 19.
[http://dx.doi.org/10.1186/1743-7075-7-19] [PMID: 20222989]
[87]
Gruber L, Kisling S, Lichti P, et al. High fat diet accelerates pathogenesis of murine Crohn’s disease-like ileitis independently of obesity. PLoS One 2013; 8(8) e71661
[http://dx.doi.org/10.1371/journal.pone.0071661] [PMID: 23977107]
[88]
Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol 2018; 11(1): 1-10.
[http://dx.doi.org/10.1007/s12328-017-0813-5] [PMID: 29285689]
[89]
Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu Rev Immunol 2012; 30: 759-95.
[http://dx.doi.org/10.1146/annurev-immunol-020711-074937] [PMID: 22224764]
[90]
Wright EK, Kamm MA, Teo SM, Inouye M, Wagner J, Kirkwood CD. Recent advances in characterizing the gastrointestinal microbiome in Crohn’s disease: a systematic review. Inflamm Bowel Dis 2015; 21(6): 1219-28.
[PMID: 25844959]
[91]
Schaubeck M, Haller D. Reciprocal interaction of diet and microbiome in inflammatory bowel diseases. Curr Opin Gastroenterol 2015; 31(6): 464-70.
[http://dx.doi.org/10.1097/MOG.0000000000000216] [PMID: 26406564]
[92]
Kim A. Dysbiosis: A Review Highlighting Obesity and Inflammatory Bowel Disease. J Clin Gastroenterol 2015; 49(Suppl. 1): S20-4.
[http://dx.doi.org/10.1097/MCG.0000000000000356] [PMID: 26447959]
[93]
Henson MA, Phalak P. Microbiota dysbiosis in inflammatory bowel diseases: in silico investigation of the oxygen hypothesis. BMC Syst Biol 2017; 11(1): 145.
[http://dx.doi.org/10.1186/s12918-017-0522-1] [PMID: 29282051]
[94]
Zhou Y, Zhi F. Lower level of bacteroides in the gut microbiota is associated with inflammatory bowel disease: a meta-analysis. BioMed Res Int 2016; 2016 5828959
[http://dx.doi.org/10.1155/2016/5828959] [PMID: 27999802]
[95]
Martin HM, Campbell BJ, Hart CA, et al. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 2004; 127(1): 80-93.
[http://dx.doi.org/10.1053/j.gastro.2004.03.054] [PMID: 15236175]
[96]
Rolhion N, Darfeuille-Michaud A. Adherent-invasive Escherichia coli in inflammatory bowel disease. Inflamm Bowel Dis 2007; 13(10): 1277-83.
[http://dx.doi.org/10.1002/ibd.20176] [PMID: 17476674]
[97]
Mazzarella G, Perna A, Marano A, et al. Pathogenic Role of Associated Adherent-Invasive Escherichia coli in Crohn’s Disease. J Cell Physiol 2017; 232(10): 2860-8.
[http://dx.doi.org/10.1002/jcp.25717] [PMID: 27925192]
[98]
Uranga JA, López-Miranda V, Lombó F, Abalo R. Food, nutrients and nutraceuticals affecting the course of inflammatory bowel disease. Pharmacol Rep 2016; 68(4): 816-26.
[http://dx.doi.org/10.1016/j.pharep.2016.05.002] [PMID: 27267792]
[99]
Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 2008; 3(4): 213-23.
[http://dx.doi.org/10.1016/j.chom.2008.02.015] [PMID: 18407065]
[100]
Kruis T, Batra A, Siegmund B. Bacterial translocation - impact on the adipocyte compartment. Front Immunol 2014; 4: 510.
[http://dx.doi.org/10.3389/fimmu.2013.00510] [PMID: 24432024]
[101]
DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm Bowel Dis 2016; 22(5): 1137-50.
[http://dx.doi.org/10.1097/MIB.0000000000000750] [PMID: 27070911]
[102]
Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008; 57(6): 1470-81.
[http://dx.doi.org/10.2337/db07-1403] [PMID: 18305141]
[103]
Ding S, Chi MM, Scull BP, et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 2010; 5(8) e12191
[http://dx.doi.org/10.1371/journal.pone.0012191] [PMID: 20808947]
[104]
Amar J, Chabo C, Waget A, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med 2011; 3(9): 559-72.
[http://dx.doi.org/10.1002/emmm.201100159] [PMID: 21735552]
[105]
Lam YY, Ha CW, Campbell CR, et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One 2012; 7(3) e34233
[http://dx.doi.org/10.1371/journal.pone.0034233] [PMID: 22457829]
[106]
Maillard F, Vazeille E, Sauvanet P, et al. Preventive Effect of Spontaneous Physical Activity on the Gut-Adipose Tissue in a Mouse Model That Mimics Crohn’s Disease Susceptibility. Cells 2019; 8(1): 8.
[http://dx.doi.org/10.3390/cells8010033] [PMID: 30634469]
[107]
Martinez-Medina M, Denizot J, Dreux N, et al. Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut 2014; 63(1): 116-24.
[http://dx.doi.org/10.1136/gutjnl-2012-304119] [PMID: 23598352]
[108]
Agus A, Denizot J, Thévenot J, et al. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. Sci Rep 2016; 6: 19032.
[http://dx.doi.org/10.1038/srep19032] [PMID: 26742586]
[109]
Bassaganya-Riera J, Ferrer G, Casagran O, et al. F4/80hiCCR2hi macrophage infiltration into the intra-abdominal fat worsens the severity of experimental IBD in obese mice with DSS colitis. e-SPEN, the Eur e-J Clin. Nutr Metab (Lond) 2009; 4: e90-7.
[110]
Kim KA, Gu W, Lee IA, Joh EH, Kim DH. High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 2012; 7(10) e47713
[http://dx.doi.org/10.1371/journal.pone.0047713] [PMID: 23091640]
[111]
Lee JC, Lee HY, Kim TK, et al. Obesogenic diet-induced gut barrier dysfunction and pathobiont expansion aggravate experimental colitis. PLoS One 2017; 12(11) e0187515
[http://dx.doi.org/10.1371/journal.pone.0187515] [PMID: 29107964]
[112]
Genser L, Aguanno D, Soula HA, et al. Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. J Pathol 2018; 246(2): 217-30.
[http://dx.doi.org/10.1002/path.5134] [PMID: 29984492]
[113]
Erridge C, Attina T, Spickett CM, Webb DJ. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 2007; 86(5): 1286-92.
[http://dx.doi.org/10.1093/ajcn/86.5.1286] [PMID: 17991637]
[114]
Elin RJ, Wolff SM. Biology of endotoxin. Annu Rev Med 1976; 27: 127-41.
[http://dx.doi.org/10.1146/annurev.me.27.020176.001015] [PMID: 779593]
[115]
Moreira AP, Texeira TF, Ferreira AB, Peluzio MdoC, Alfenas RdeC. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr 2012; 108(5): 801-9.
[http://dx.doi.org/10.1017/S0007114512001213] [PMID: 22717075]
[116]
O’Neill LA, Golenbock D, Bowie AG. The history of Toll-like receptors - redefining innate immunity. Nat Rev Immunol 2013; 13(6): 453-60.
[http://dx.doi.org/10.1038/nri3446] [PMID: 23681101]
[117]
Janssens S, Beyaert R. Role of Toll-like receptors in pathogen recognition. Clin Microbiol Rev 2003; 16(4): 637-46.
[http://dx.doi.org/10.1128/CMR.16.4.637-646.2003] [PMID: 14557290]
[118]
Kamada N, Seo SU, Chen GY, Núñez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 2013; 13(5): 321-35.
[http://dx.doi.org/10.1038/nri3430] [PMID: 23618829]
[119]
Curtis JR, Westfall AO, Allison J, et al. Population-based assessment of adverse events associated with long-term glucocorticoid use. Arthritis Rheum 2006; 55(3): 420-6.
[http://dx.doi.org/10.1002/art.21984] [PMID: 16739208]
[120]
Swanson SM, Harper J, Zisman TL. Obesity and inflammatory bowel disease: diagnostic and therapeutic implications. Curr Opin Gastroenterol 2018; 34(2): 112-9.
[http://dx.doi.org/10.1097/MOG.0000000000000422] [PMID: 29356687]
[121]
Triantafillidis JK, Merikas E, Georgopoulos F. Current and emerging drugs for the treatment of inflammatory bowel disease. Drug Des Devel Ther 2011; 5: 185-210.
[http://dx.doi.org/10.2147/DDDT.S11290] [PMID: 21552489]
[122]
Knox NC, Forbes JD, Van Domselaar G, Bernstein CN. The gut microbiome as a target for IBD treatment: are we there yet? Curr Treat Options Gastroenterol 2019; 17(1): 115-26.
[http://dx.doi.org/10.1007/s11938-019-00221-w] [PMID: 30661163]
[123]
Costello SP, Soo W, Bryant RV, Jairath V, Hart AL, Andrews JM. Systematic review with meta-analysis: faecal microbiota transplantation for the induction of remission for active ulcerative colitis. Aliment Pharmacol Ther 2017; 46(3): 213-24.
[http://dx.doi.org/10.1111/apt.14173] [PMID: 28612983]
[124]
Levy AN, Allegretti JR. Insights into the role of fecal microbiota transplantation for the treatment of inflammatory bowel disease. Therap Adv Gastroenterol 2019; 12 1756284819836893
[http://dx.doi.org/10.1177/1756284819836893] [PMID: 30906424]
[125]
Borody TJ, Eslick GD, Clancy RL. Fecal microbiota transplantation as a new therapy: from Clostridioides difficile infection to inflammatory bowel disease, irritable bowel syndrome, and colon cancer. Curr Opin Pharmacol 2019; 49: 43-51.
[http://dx.doi.org/10.1016/j.coph.2019.04.017] [PMID: 31173991]
[126]
Cheifetz AS, Gianotti R, Luber R, Gibson PR. Complementary and alternative medicines used by patients with inflammatory bowel diseases. Gastroenterology 2017; 152: 415-29. . e15
[http://dx.doi.org/10.1053/j.gastro.2016.10.004]
[127]
Guandalini S, Sansotta N. Probiotics in the Treatment of Inflammatory Bowel Disease.Probiotics and Child Gastrointestinal Health: Advances in Microbiology, Infectious Diseases and Public Health. Springer International Publishing: Cham 2019; pp. 101-1.
[http://dx.doi.org/10.1007/5584_2018_319]
[128]
Derwa Y, Gracie DJ, Hamlin PJ, Ford AC. Systematic review with meta-analysis: the efficacy of probiotics in inflammatory bowel disease. Aliment Pharmacol Ther 2017; 46(4): 389-400.
[http://dx.doi.org/10.1111/apt.14203] [PMID: 28653751]
[129]
Hashash JG, Binion DG. Exercise and Inflammatory Bowel Disease: Insights into Etiopathogenesis and Modification of Clinical Course. Gastroenterol Clin North Am 2017; 46(4): 895-905.
[http://dx.doi.org/10.1016/j.gtc.2017.08.010] [PMID: 29173530]
[130]
Engels M, Cross RK, Long MD. Exercise in patients with inflammatory bowel diseases: current perspectives. Clin Exp Gastroenterol 2017; 11: 1-11.
[http://dx.doi.org/10.2147/CEG.S120816] [PMID: 29317842]
[131]
Pedersen BK. Myokines and Metabolism. Metabolic Syndrome: A Comprehensive Textbook. 2016 `; p. 541-54.
[http://dx.doi.org/10.1007/978-3-319-11251-0_31]
[132]
Eckel J. Myokines in metabolic homeostasis and diabetes. Diabetologia 2019; 62(9): 1523-8.
[http://dx.doi.org/10.1007/s00125-019-4927-9] [PMID: 31263909]
[133]
Tsuchida K. Myokines and Signal Crosstalk between Skeletal Muscle and Adipose Tissue. Austin J Endocrinol Diabetes 2014; 3: 1-2.
[134]
Pedersen BK, Saltin B. Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports 2006; 16(Suppl. 1): 3-63.
[http://dx.doi.org/10.1111/j.1600-0838.2006.00520.x] [PMID: 16451303]
[135]
Ellingsgaard H, Hojman P, Pedersen BK. Exercise and health - emerging roles of IL-6. Curr Opin Physiol 2019; 10: 49-54.
[http://dx.doi.org/10.1016/j.cophys.2019.03.009]
[136]
Pedersen BK. Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest 2017; 47(8): 600-11.
[http://dx.doi.org/10.1111/eci.12781] [PMID: 28722106]
[137]
Ostrowski K, Schjerling P, Pedersen BK. Physical activity and plasma interleukin-6 in humans--effect of intensity of exercise. Eur J Appl Physiol 2000; 83(6): 512-5.
[http://dx.doi.org/10.1007/s004210000312] [PMID: 11192058]
[138]
Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol 1999; 515(Pt 1): 287-91.
[http://dx.doi.org/10.1111/j.1469-7793.1999.287ad.x] [PMID: 9925898]
[139]
Ostrowski K, Rohde T, Zacho M, Asp S, Pedersen BK. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J Physiol 1998; 508(Pt 3): 949-53.
[http://dx.doi.org/10.1111/j.1469-7793.1998.949bp.x] [PMID: 9518745]
[140]
Croisier JL, Camus G, Venneman I, et al. Effects of training on exercise-induced muscle damage and interleukin 6 production. Muscle Nerve 1999; 22(2): 208-12.
[http://dx.doi.org/10.1002/(SICI)10974598(199902)22:2<208:AID-MUS8>3.0.CO;2-B] [PMID: 10024133]
[141]
Allen TL, Whitham M, Febbraio MA. IL-6 muscles in on the gut and pancreas to enhance insulin secretion. Cell Metab 2012; 15(1): 8-9.
[http://dx.doi.org/10.1016/j.cmet.2011.12.004] [PMID: 22225871]
[142]
Ellingsgaard H, Hauselmann I, Schuler B, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 2011; 17(11): 1481-9.
[http://dx.doi.org/10.1038/nm.2513] [PMID: 22037645]
[143]
Brubaker PL, Drucker DJ. Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 2004; 145(6): 2653-9.
[http://dx.doi.org/10.1210/en.2004-0015] [PMID: 15044356]
[144]
Drucker DJ, Yusta B, Boushey RP, DeForest L, Brubaker PL. Human [Gly2]GLP-2 reduces the severity of colonic injury in a murine model of experimental colitis. Am J Physiol 1999; 276(1): G79-91.
[PMID: 9886982]
[145]
Geier MS, Tenikoff D, Yazbeck R, McCaughan GW, Abbott CA, Howarth GS. Development and resolution of experimental colitis in mice with targeted deletion of dipeptidyl peptidase IV. J Cell Physiol 2005; 204(2): 687-92.
[http://dx.doi.org/10.1002/jcp.20333] [PMID: 15754331]
[146]
Cereijo R, Giralt M, Villarroya F. Thermogenic brown and beige/brite adipogenesis in humans. Ann Med 2015; 47(2): 169-77.
[http://dx.doi.org/10.3109/07853890.2014.952328] [PMID: 25230914]
[147]
Chen JQ, Huang YY, Gusdon AM, Qu S. Irisin: a new molecular marker and target in metabolic disorder. Lipids Health Dis 2015; 14: 2.
[http://dx.doi.org/10.1186/1476-511X-14-2] [PMID: 25588692]
[148]
Mazur-Bialy AI, Bilski J, Pochec E, Brzozowski T. New insight into the direct anti-inflammatory activity of a myokine irisin against proinflammatory activation of adipocytes. Implication for exercise in obesity. J Physiol Pharmacol 2017; 68(2): 243-51.
[PMID: 28614774]
[149]
Mazur-Bialy AI, Kozlowska K, Pochec E, Bilski J, Brzozowski T. Myokine irisin-induced protection against oxidative stress in vitro. Involvement of heme oxygenase-1 and antioxidazing enzymes superoxide dismutase-2 and glutathione peroxidase. J Physiol Pharmacol 2018; 69(1): 117-25.
[PMID: 29769428]
[150]
Kasimay O, Güzel E, Gemici A, et al. Colitis-induced oxidative damage of the colon and skeletal muscle is ameliorated by regular exercise in rats: the anxiolytic role of exercise. Exp Physiol 2006; 91(5): 897-906.
[http://dx.doi.org/10.1113/expphysiol.2006.034439] [PMID: 16763006]
[151]
Cook MD, Martin SA, Williams C, et al. Forced treadmill exercise training exacerbates inflammation and causes mortality while voluntary wheel training is protective in a mouse model of colitis. Brain Behav Immun 2013; 33: 46-56.
[http://dx.doi.org/10.1016/j.bbi.2013.05.005] [PMID: 23707215]
[152]
Liu WX, Zhou F, Wang Y, et al. Voluntary exercise protects against ulcerative colitis by up-regulating glucocorticoid-mediated PPAR-γ activity in the colon in mice. Acta Physiol (Oxf) 2015; 215(1): 24-36.
[http://dx.doi.org/10.1111/apha.12534] [PMID: 26031185]
[153]
Hoffman-Goetz L, Pervaiz N, Guan J. Voluntary exercise training in mice increases the expression of antioxidant enzymes and decreases the expression of TNF-alpha in intestinal lymphocytes. Brain Behav Immun 2009; 23(4): 498-506.
[http://dx.doi.org/10.1016/j.bbi.2009.01.015] [PMID: 19486647]
[154]
Hoffman-Goetz L, Pervaiz N, Packer N, Guan J. Freewheel training decreases pro- and increases anti-inflammatory cytokine expression in mouse intestinal lymphocytes. Brain Behav Immun 2010; 24(7): 1105-15.
[http://dx.doi.org/10.1016/j.bbi.2010.05.001] [PMID: 20510350]
[155]
Szalai Z, Szász A, Nagy I, et al. Anti-inflammatory effect of recreational exercise in TNBS-induced colitis in rats: role of NOS/HO/MPO system. Oxid Med Cell Longev 2014; 2014 925981
[http://dx.doi.org/10.1155/2014/925981] [PMID: 24683438]
[156]
Brzozowski B, Mazur-Bialy A, Pajdo R, et al. Mechanisms by which Stress Affects the Experimental and Clinical Inflammatory Bowel Disease (IBD): Role of Brain-Gut Axis. Curr Neuropharmacol 2016; 14(8): 892-900.
[http://dx.doi.org/10.2174/1570159X14666160404124127] [PMID: 27040468]
[157]
Saxena A, Fletcher E, Larsen B, Baliga MS, Durstine JL, Fayad R. Effect of exercise on chemically-induced colitis in adiponectin deficient mice. J Inflamm (Lond) 2012; 9(1): 30.
[http://dx.doi.org/10.1186/1476-9255-9-30] [PMID: 22909126]
[158]
Luo B, Xiang D, Nieman DC, Chen P. The effects of moderate exercise on chronic stress-induced intestinal barrier dysfunction and antimicrobial defense. Brain Behav Immun 2014; 39: 99-106.
[http://dx.doi.org/10.1016/j.bbi.2013.11.013] [PMID: 24291325]
[159]
Qin L, Yao ZQ, Chang Q, et al. Swimming attenuates inflammation, oxidative stress, and apoptosis in a rat model of dextran sulfate sodium-induced chronic colitis. Oncotarget 2017; 8(5): 7391-404.
[http://dx.doi.org/10.18632/oncotarget.14080] [PMID: 28030847]
[160]
Kang SS, Jeraldo PR, Kurti A, et al. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol Neurodegener 2014; 9: 36.
[http://dx.doi.org/10.1186/1750-1326-9-36] [PMID: 25217888]
[161]
Daniel H, Gholami AM, Berry D, et al. High-fat diet alters gut microbiota physiology in mice. ISME J 2014; 8(2): 295-308.
[http://dx.doi.org/10.1038/ismej.2013.155] [PMID: 24030595]
[162]
Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 2009; 137: 1716-24. e1-2
[http://dx.doi.org/10.1053/j.gastro.2009.08.042]
[163]
Mika A, Van Treuren W, González A, Herrera JJ, Knight R, Fleshner M. Exercise is More Effective at Altering Gut Microbial Composition and Producing Stable Changes in Lean Mass in Juvenile versus Adult Male F344 Rats. PLoS One 2015; 10 : e0125889
[164]
Mika A, Van Treuren W, González A, Herrera JJ, Knight R, Fleshner M. Exercise is More Effective at Altering Gut Microbial Composition and Producing Stable Changes in Lean Mass in Juvenile versus Adult Male F344 Rats. PLoS One 2015; 10 : e0125889
[http://dx.doi.org/10.1289/ehp.1306534] [PMID: 23632211]
[165]
Choi JJ, Eum SY, Rampersaud E, Daunert S, Abreu MT, Toborek M. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ Health Perspect 2013; 121(6): 725-30.
[http://dx.doi.org/10.1289/ehp.1306534] [PMID: 23632211]
[166]
Allen JM, Berg Miller ME, Pence BD, et al. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice. J Appl Physiol 2015; 118(8): 1059-66.
[http://dx.doi.org/10.1152/japplphysiol.01077.2014] [PMID: 25678701]
[167]
Allen JM, Mailing LJ, Cohrs J, et al. Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut Microbes 2018; 9(2): 115-30.
[http://dx.doi.org/10.1080/19490976.2017.1372077] [PMID: 28862530]
[168]
Denou E, Marcinko K, Surette MG, Steinberg GR, Schertzer JD. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol Endocrinol Metab 2016; 310(11): E982-93.
[http://dx.doi.org/10.1152/ajpendo.00537.2015] [PMID: 27117007]
[169]
Evans CC, LePard KJ, Kwak JW, et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One 2014; 9(3) e92193
[http://dx.doi.org/10.1371/journal.pone.0092193] [PMID: 24670791]
[170]
Sonnenberg A, Walker JT. Occupational mortality associated with inflammatory bowel disease in the United States 1984-1998. Inflamm Bowel Dis 2012; 18(7): 1249-53.
[http://dx.doi.org/10.1002/ibd.21807] [PMID: 21710539]
[171]
Persson PG, Leijonmarck CE, Bernell O, Hellers G, Ahlbom A. Risk indicators for inflammatory bowel disease. Int J Epidemiol 1993; 22(2): 268-72.
[http://dx.doi.org/10.1093/ije/22.2.268] [PMID: 8505183]
[172]
Klein I, Reif S, Farbstein H, Halak A, Gilat T. Preillness non dietary factors and habits in inflammatory bowel disease. Ital J Gastroenterol Hepatol 1998; 30(3): 247-51.
[PMID: 9759588]
[173]
Cucino C, Sonnenberg A. Occupational mortality from inflammatory bowel disease in the United States 1991-1996. Am J Gastroenterol 2001; 96(4): 1101-5.
[PMID: 11316154]
[174]
Khalili H, Ananthakrishnan AN, Konijeti GG, et al. Physical activity and risk of inflammatory bowel disease: prospective study from the Nurses’ Health Study cohorts. BMJ 2013; 347: f6633.
[http://dx.doi.org/10.1136/bmj.f6633] [PMID: 24231178]
[175]
Hlavaty T, Toth J, Koller T, et al. Smoking, breastfeeding, physical inactivity, contact with animals, and size of the family influence the risk of inflammatory bowel disease: A Slovak case-control study. United European Gastroenterol J 2013; 1(2): 109-19.
[http://dx.doi.org/10.1177/2050640613478011] [PMID: 24917948]
[176]
Melinder C, Hiyoshi A, Hussein O, Halfvarson J, Ekbom A, Montgomery S. Physical Fitness in Adolescence and Subsequent Inflammatory Bowel Disease Risk. Clin Transl Gastroenterol 2015. : 6e121
[http://dx.doi.org/10.1038/ctg.2015.49] [PMID: 26540026]
[177]
Halfvarson J, Jess T, Magnuson A, et al. Environmental factors in inflammatory bowel disease: a co-twin control study of a Swedish-Danish twin population. Inflamm Bowel Dis 2006; 12(10): 925-33.
[http://dx.doi.org/10.1097/01.mib.0000228998.29466.ac] [PMID: 17012962]
[178]
Bøggild H, Tüchsen F, Orhede E. Occupation, employment status and chronic inflammatory bowel disease in Denmark. Int J Epidemiol 1996; 25(3): 630-7.
[http://dx.doi.org/10.1093/ije/25.3.630] [PMID: 8671566]
[179]
Wang Q, Xu KQ, Qin XR, Wen-Lu , Yan-Liu , Wang XY. Association between physical activity and inflammatory bowel disease risk: A meta-analysis. Dig Liver Dis 2016; 48(12): 1425-31.
[http://dx.doi.org/10.1016/j.dld.2016.08.129] [PMID: 27671622]
[180]
Mack DE, Wilson PM, Gilmore JC, Gunnell KE. Leisure-time physical activity in Canadians living with Crohn disease and ulcerative colitis: population-based estimates. Gastroenterol Nurs 2011; 34(4): 288-94.
[http://dx.doi.org/10.1097/SGA.0b013e3182248732] [PMID: 21814062]
[181]
van Langenberg DR, Papandony MC, Gibson PR. Sleep and physical activity measured by accelerometry in Crohn’s disease. Aliment Pharmacol Ther 2015; 41(10): 991-1004.
[http://dx.doi.org/10.1111/apt.13160] [PMID: 25783784]
[182]
DeFilippis EM, Tabani S, Warren RU, Christos PJ, Bosworth BP, Scherl EJ. Exercise and Self-Reported Limitations in Patients with Inflammatory Bowel Disease. Dig Dis Sci 2016; 61(1): 215-20.
[http://dx.doi.org/10.1007/s10620-015-3832-4] [PMID: 26254773]
[183]
Chan D, Robbins H, Rogers S, Clark S, Poullis A. Inflammatory bowel disease and exercise: results of a Crohn’s and Colitis UK survey. Frontline Gastroenterol 2014; 5(1): 44-8.
[http://dx.doi.org/10.1136/flgastro-2013-100339] [PMID: 28839750]
[184]
Tew GA, Jones K, Mikocka-Walus A. Physical Activity Habits, Limitations, and Predictors in People with Inflammatory Bowel Disease: A Large Cross-sectional Online Survey. Inflamm Bowel Dis 2016; 22(12): 2933-42.
[http://dx.doi.org/10.1097/MIB.0000000000000962] [PMID: 27824653]
[185]
Robbins H, Poullis A, Rogers S. Inflammatory Bowel Disease and Exercise - Preliminary results of a Crohn’s and Colitis UK Survey. Gastroenterology Today 2012; 22: 62-3.
[186]
D’Incà R, Varnier M, Mestriner C, Martines D, D’Odorico A, Sturniolo GC. Effect of moderate exercise on Crohn’s disease patients in remission. Ital J Gastroenterol Hepatol 1999; 31(3): 205-10.
[PMID: 10379481]
[187]
Loudon CP, Corroll V, Butcher J, Rawsthorne P, Bernstein CN. The effects of physical exercise on patients with Crohn’s disease. Am J Gastroenterol 1999; 94(3): 697-703.
[http://dx.doi.org/10.1111/j.1572-0241.1999.00939.x] [PMID: 10086654]
[188]
Ng V, Millard W, Lebrun C, Howard J. Low-intensity exercise improves quality of life in patients with Crohn’s disease. Clin J Sport Med 2007; 17(5): 384-8.
[PMID: 17873551]
[189]
Klare P, Nigg J, Nold J, et al. The impact of a ten-week physical exercise program on health-related quality of life in patients with inflammatory bowel disease: a prospective randomized controlled trial. Digestion 2015; 91(3): 239-47.
[http://dx.doi.org/10.1159/000371795] [PMID: 25823689]
[190]
Ploeger H, Obeid J, Nguyen T, et al. Exercise and inflammation in pediatric Crohn’s disease. Int J Sports Med 2012; 33(8): 671-9.
[http://dx.doi.org/10.1055/s-0032-1304323] [PMID: 22562735]
[191]
Hassid B, Lamere B, Kattah M, Mahadevan U. Effect of intense exercise on inflammatory bowel disease activity. Am J Gastroenterol 2016; 111(S1): 312.
[http://dx.doi.org/10.14309/00000434-201610001-00686]
[192]
Sharma P, Poojary G, Dwivedi SN, Deepak KK. Effect of Yoga-Based Intervention in Patients with Inflammatory Bowel Disease. Int J Yoga Therap 2015; 25(1): 101-12.
[http://dx.doi.org/10.17761/1531-2054-25.1.101] [PMID: 26667293]
[193]
Cramer H, Schäfer M, Schöls M, et al. Randomised clinical trial: yoga vs written self-care advice for ulcerative colitis. Aliment Pharmacol Ther 2017; 45(11): 1379-89.
[http://dx.doi.org/10.1111/apt.14062] [PMID: 28378342]
[194]
Candow D, Rizzi A, Chillibeck P, Worobetz L. Effect of resistance training on Crohn’s disease. Can J Appl Physiol 2002; 27: S7-8.
[195]
de Souza Tajiri GJ, de Castro CL, Zaltman C. Progressive resistance training improves muscle strength in women with inflammatory bowel disease and quadriceps weakness. J Crohn’s Colitis 2014; 8(12): 1749-50.
[http://dx.doi.org/10.1016/j.crohns.2014.09.001] [PMID: 25239575]
[196]
Costa RJS, Snipe RMJ, Kitic CM, Gibson PR. Systematic review: exercise-induced gastrointestinal syndrome-implications for health and intestinal disease. Aliment Pharmacol Ther 2017; 46(3): 246-65.
[http://dx.doi.org/10.1111/apt.14157] [PMID: 28589631]
[197]
Bi L, Triadafilopoulos G. Exercise and gastrointestinal function and disease: an evidence-based review of risks and benefits. Clin Gastroenterol Hepatol 2003; 1(5): 345-55.
[http://dx.doi.org/10.1053/S1542-3565(03)00178-2] [PMID: 15017652]
[198]
Lucas W, Schroy PC III. Reversible ischemic colitis in a high endurance athlete. Am J Gastroenterol 1998; 93(11): 2231-4.
[http://dx.doi.org/10.1111/j.1572-0241.1998.00621.x] [PMID: 9820403]
[199]
ter Steege RW, Geelkerken RH, Huisman AB, Kolkman JJ. Abdominal symptoms during physical exercise and the role of gastrointestinal ischaemia: a study in 12 symptomatic athletes. Br J Sports Med 2012; 46(13): 931-5.
[http://dx.doi.org/10.1136/bjsports-2011-090277] [PMID: 22021352]
[200]
ter Steege RW, Van der Palen J, Kolkman JJ. Prevalence of gastrointestinal complaints in runners competing in a long-distance run: an internet-based observational study in 1281 subjects. Scand J Gastroenterol 2008; 43(12): 1477-82.
[http://dx.doi.org/10.1080/00365520802321170] [PMID: 18777440]
[201]
Zuhl M, Schneider S, Lanphere K, Conn C, Dokladny K, Moseley P. Exercise regulation of intestinal tight junction proteins. Br J Sports Med 2014; 48(12): 980-6.
[http://dx.doi.org/10.1136/bjsports-2012-091585] [PMID: 23134759]
[202]
Keeffe EB, Lowe DK, Goss JR, Wayne R. Gastrointestinal symptoms of marathon runners. West J Med 1984; 141(4): 481-4.
[PMID: 6506684]
[203]
Riddoch C, Trinick T. Gastrointestinal disturbances in marathon runners. Br J Sports Med 1988; 22(2): 71-4.
[http://dx.doi.org/10.1136/bjsm.22.2.71] [PMID: 3167507]
[204]
Oktedalen O, Lunde OC, Opstad PK, Aabakken L, Kvernebo K. Changes in the gastrointestinal mucosa after long-distance running. Scand J Gastroenterol 1992; 27(4): 270-4.
[http://dx.doi.org/10.3109/00365529209000073] [PMID: 1589703]
[205]
Pfeiffer B, Stellingwerff T, Hodgson AB, et al. Nutritional intake and gastrointestinal problems during competitive endurance events. Med Sci Sports Exerc 2012; 44(2): 344-51.
[http://dx.doi.org/10.1249/MSS.0b013e31822dc809] [PMID: 21775906]
[206]
ter Steege RW, Kolkman JJ. Review article: the pathophysiology and management of gastrointestinal symptoms during physical exercise, and the role of splanchnic blood flow. Aliment Pharmacol Ther 2012; 35(5): 516-28.
[http://dx.doi.org/10.1111/j.1365-2036.2011.04980.x] [PMID: 22229513]
[207]
Vercalsteren E, Vranckx C, Lijnen HR, Hemmeryckx B, Scroyen I. Adiposity and metabolic health in mice deficient in intestinal alkaline phosphatase. Adipocyte 2018; 7(3): 149-55.
[http://dx.doi.org/10.1080/21623945.2018.1493899] [PMID: 30064292]
[208]
Leung G, Muise AM. Monogenic Intestinal Epithelium Defects and the Development of Inflammatory Bowel Disease. Physiology (Bethesda) 2018; 33(5): 360-9.
[http://dx.doi.org/10.1152/physiol.00020.2018] [PMID: 30109822]
[209]
Parlato M, Charbit-Henrion F, Pan J, et al. Human ALPI deficiency causes inflammatory bowel disease and highlights a key mechanism of gut homeostasis. EMBO Mol Med 2018; 10(4): 10.
[http://dx.doi.org/10.15252/emmm.201708483] [PMID: 29567797]
[210]
Millán JL. Mammalian alkaline phosphatases: from biology to applications in medicine and biotechnology. John Wiley & Sons 2006.
[http://dx.doi.org/10.1002/3527608060]
[211]
Yang Y, Wandler AM, Postlethwait JH, Guillemin K. Dynamic Evolution of the LPS-Detoxifying Enzyme Intestinal Alkaline Phosphatase in Zebrafish and Other Vertebrates. Front Immunol 2012; 3: 314.
[http://dx.doi.org/10.3389/fimmu.2012.00314] [PMID: 23091474]
[212]
Narisawa S, Huang L, Iwasaki A, Hasegawa H, Alpers DH, Millán JL. Accelerated fat absorption in intestinal alkaline phosphatase knockout mice. Mol Cell Biol 2003; 23(21): 7525-30.
[http://dx.doi.org/10.1128/MCB.23.21.7525-7530.2003] [PMID: 14560000]
[213]
Molnár K, Vannay A, Szebeni B, et al. Intestinal alkaline phosphatase in the colonic mucosa of children with inflammatory bowel disease. World J Gastroenterol 2012; 18(25): 3254-9.
[PMID: 22783049]
[214]
Vaishnava S, Hooper LV. Alkaline phosphatase: keeping the peace at the gut epithelial surface. Cell Host Microbe 2007; 2(6): 365-7.
[http://dx.doi.org/10.1016/j.chom.2007.11.004] [PMID: 18078687]
[215]
Shifrin DA Jr, McConnell RE, Nambiar R, Higginbotham JN, Coffey RJ, Tyska MJ. Enterocyte microvillus-derived vesicles detoxify bacterial products and regulate epithelial-microbial interactions. Curr Biol 2012; 22(7): 627-31.
[http://dx.doi.org/10.1016/j.cub.2012.02.022] [PMID: 22386311]
[216]
McConnell RE, Higginbotham JN, Shifrin DA Jr, Tabb DL, Coffey RJ, Tyska MJ. The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol 2009; 185(7): 1285-98.
[http://dx.doi.org/10.1083/jcb.200902147] [PMID: 19564407]
[217]
Goldberg RF, Austen WG Jr, Zhang X, et al. Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci USA 2008; 105(9): 3551-6.
[http://dx.doi.org/10.1073/pnas.0712140105] [PMID: 18292227]
[218]
Estaki M, DeCoffe D, Gibson DL. Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity. World J Gastroenterol 2014; 20(42): 15650-6.
[http://dx.doi.org/10.3748/wjg.v20.i42.15650] [PMID: 25400448]
[219]
Lallès JP. Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition. Nutr Rev 2019; 77(10): 710-24.
[http://dx.doi.org/10.1093/nutrit/nuz015] [PMID: 31086953]
[220]
Lallès JP. Intestinal alkaline phosphatase: novel functions and protective effects. Nutr Rev 2014; 72(2): 82-94.
[http://dx.doi.org/10.1111/nure.12082] [PMID: 24506153]
[221]
Lallès JP. Luminal ATP: the missing link between intestinal alkaline phosphatase, the gut microbiota, and inflammation? Am J Physiol Gastrointest Liver Physiol 2014; 306(10): G824-5.
[http://dx.doi.org/10.1152/ajpgi.00435.2013] [PMID: 24674777]
[222]
Lallès JP. Intestinal alkaline phosphatase: multiple biological roles in maintenance of intestinal homeostasis and modulation by diet. Nutr Rev 2010; 68(6): 323-32.
[http://dx.doi.org/10.1111/j.1753-4887.2010.00292.x] [PMID: 20536777]
[223]
Bilski J, Mazur-Bialy A, Wojcik D, et al. The Role of Intestinal Alkaline Phosphatase in Inflammatory Disorders of Gastrointestinal Tract. Mediators Inflamm 2017; 2017 9074601
[http://dx.doi.org/10.1155/2017/9074601] [PMID: 28316376]
[224]
Fawley J, Gourlay DM. Intestinal alkaline phosphatase: a summary of its role in clinical disease. J Surg Res 2016; 202(1): 225-34.
[http://dx.doi.org/10.1016/j.jss.2015.12.008] [PMID: 27083970]
[225]
Alpers DH, Zhang Y, Ahnen DJ. Synthesis and parallel secretion of rat intestinal alkaline phosphatase and a surfactant-like particle protein. Am J Physiol 1995; 268(6 Pt 1): E1205-14.
[PMID: 7611397]
[226]
Van Dongen JM, Kooyman J, Visser WJ, Holt SJ, Galjaard H. The effect of increased crypt cell proliferation on the activity and subcellular localization of esterases and alkaline phosphatase in the rat small intestine. Histochem J 1977; 9(1): 61-75.
[http://dx.doi.org/10.1007/BF01007009] [PMID: 830626]
[227]
Beumer C, Wulferink M, Raaben W, Fiechter D, Brands R, Seinen W. Calf intestinal alkaline phosphatase, a novel therapeutic drug for lipopolysaccharide (LPS)-mediated diseases, attenuates LPS toxicity in mice and piglets. J Pharmacol Exp Ther 2003; 307(2): 737-44.
[http://dx.doi.org/10.1124/jpet.103.056606] [PMID: 12970380]
[228]
Malo MS, Moaven O, Muhammad N, et al. Intestinal alkaline phosphatase promotes gut bacterial growth by reducing the concentration of luminal nucleotide triphosphates. Am J Physiol Gastrointest Liver Physiol 2014; 306(10): G826-38.
[http://dx.doi.org/10.1152/ajpgi.00357.2013] [PMID: 24722905]
[229]
Moss AK, Hamarneh SR, Mohamed MM, et al. Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate. Am J Physiol Gastrointest Liver Physiol 2013; 304(6): G597-604.
[http://dx.doi.org/10.1152/ajpgi.00455.2012] [PMID: 23306083]
[230]
Chen KT, Malo MS, Beasley-Topliffe LK, et al. A role for intestinal alkaline phosphatase in the maintenance of local gut immunity. Dig Dis Sci 2011; 56(4): 1020-7.
[http://dx.doi.org/10.1007/s10620-010-1396-x] [PMID: 20844955]
[231]
Chen KT, Malo MS, Moss AK, et al. Identification of specific targets for the gut mucosal defense factor intestinal alkaline phosphatase. Am J Physiol Gastrointest Liver Physiol 2010; 299(2): G467-75.
[http://dx.doi.org/10.1152/ajpgi.00364.2009] [PMID: 20489044]
[232]
Martínez-Moya P, Ortega-González M, González R, et al. Exogenous alkaline phosphatase treatment complements endogenous enzyme protection in colonic inflammation and reduces bacterial translocation in rats. Pharmacol Res 2012; 66(2): 144-53.
[http://dx.doi.org/10.1016/j.phrs.2012.04.006] [PMID: 22569414]
[233]
Hamarneh SR, Mohamed MM, Economopoulos KP, et al. A novel approach to maintain gut mucosal integrity using an oral enzyme supplement. Ann Surg 2014; 260(4): 706-14.
[http://dx.doi.org/10.1097/SLA.0000000000000916] [PMID: 25203888]
[234]
Liu W, Hu D, Huo H, et al. Intestinal Alkaline Phosphatase Regulates Tight Junction Protein Levels. J Am Coll Surg 2016; 222(6): 1009-17.
[http://dx.doi.org/10.1016/j.jamcollsurg.2015.12.006] [PMID: 27106638]
[235]
Ghosh SS, He H, Wang J, Korzun W, Yannie PJ, Ghosh S. Intestine-specific expression of human chimeric intestinal alkaline phosphatase attenuates Western diet-induced barrier dysfunction and glucose intolerance. Physiol Rep 2018; 6(14) e13790
[http://dx.doi.org/10.14814/phy2.13790] [PMID: 30058275]
[236]
Guo S, Al-Sadi R, Said HM, Ma TY. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol 2013; 182(2): 375-87.
[http://dx.doi.org/10.1016/j.ajpath.2012.10.014] [PMID: 23201091]
[237]
Malo MS, Alam SN, Mostafa G, et al. Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut 2010; 59(11): 1476-84.
[http://dx.doi.org/10.1136/gut.2010.211706] [PMID: 20947883]
[238]
Alam SN, Yammine H, Moaven O, et al. Intestinal alkaline phosphatase prevents antibiotic-induced susceptibility to enteric pathogens. Ann Surg 2014; 259(4): 715-22.
[http://dx.doi.org/10.1097/SLA.0b013e31828fae14] [PMID: 23598380]
[239]
Tuin A, Poelstra K, de Jager-Krikken A, et al. Role of alkaline phosphatase in colitis in man and rats. Gut 2009; 58(3): 379-87.
[http://dx.doi.org/10.1136/gut.2007.128868] [PMID: 18852260]
[240]
Bol-Schoenmakers M, Fiechter D, Raaben W, et al. Intestinal alkaline phosphatase contributes to the reduction of severe intestinal epithelial damage. Eur J Pharmacol 2010; 633(1-3): 71-7.
[http://dx.doi.org/10.1016/j.ejphar.2010.01.023] [PMID: 20132812]
[241]
Ramasamy S, Nguyen DD, Eston MA, et al. Intestinal alkaline phosphatase has beneficial effects in mouse models of chronic colitis. Inflamm Bowel Dis 2011; 17(2): 532-42.
[http://dx.doi.org/10.1002/ibd.21377] [PMID: 20645323]
[242]
Lee C, Chun J, Hwang SW, Kang SJ, Im JP, Kim JS. The effect of intestinal alkaline phosphatase on intestinal epithelial cells, macrophages and chronic colitis in mice. Life Sci 2014; 100(2): 118-24.
[http://dx.doi.org/10.1016/j.lfs.2014.02.003] [PMID: 24548630]
[243]
Hwang SW, Kim JH, Lee C, Im JP, Kim JS. Intestinal alkaline phosphatase ameliorates experimental colitis via toll-like receptor 4-dependent pathway. Eur J Pharmacol 2018; 820: 156-66.
[http://dx.doi.org/10.1016/j.ejphar.2017.12.026] [PMID: 29247612]
[244]
Wojcik D, Bilski J, Mazur-Bialy A, et al. Su1811 - Novel Insight Into Mechanism of Protective Action of Intestinal Alkaline Phosphatase Against Experimental Colitis in Obese Mice with Moderate Physical Activity. Involvement of Microbiota, Myokines Released from Skeletal Muscle and Proinflammatory Factors. Gastroenterology 2019; 156
[http://dx.doi.org/10.1016/S0016-5085(19)38448-3]
[245]
Lukas M, Drastich P, Konecny M, et al. Exogenous alkaline phosphatase for the treatment of patients with moderate to severe ulcerative colitis. Inflamm Bowel Dis 2010; 16(7): 1180-6.
[http://dx.doi.org/10.1002/ibd.21161] [PMID: 19885903]
[246]
Park SY, Kim JY, Lee SM, et al. Lower expression of endogenous intestinal alkaline phosphatase may predict worse prognosis in patients with Crohn’s disease. BMC Gastroenterol 2018; 18(1): 188.
[http://dx.doi.org/10.1186/s12876-018-0904-x] [PMID: 30558547]
[247]
Ghosh SS, He H, Wang J, Gehr TW, Ghosh S. Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects. Tissue Barriers 2018; 6(1) e1425085
[http://dx.doi.org/10.1080/21688370.2018.1425085] [PMID: 29420166]
[248]
Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 2009; 41(1): 40-59.
[http://dx.doi.org/10.1016/j.biocel.2008.06.010] [PMID: 18662800]
[249]
Foster MT, Gentile CL, Cox-York K, et al. Fuzhuan tea consumption imparts hepatoprotective effects and alters intestinal microbiota in high saturated fat diet-fed rats. Mol Nutr Food Res 2016; 60(5): 1213-20.
[http://dx.doi.org/10.1002/mnfr.201500654] [PMID: 26890069]
[250]
Chen J, Li Y, Yu B, et al. Dietary chlorogenic acid improves growth performance of weaned pigs through maintaining antioxidant capacity and intestinal digestion and absorption function. J Anim Sci 2018; 96(3): 1108-18.
[http://dx.doi.org/10.1093/jas/skx078] [PMID: 29562339]
[251]
Du CY, Choi RC, Dong TT, Lau DT, Tsim KW. Yu Ping Feng San, an ancient Chinese herbal decoction, regulates the expression of inducible nitric oxide synthase and cyclooxygenase-2 and the activity of intestinal alkaline phosphatase in cultures. PLoS One 2014; 9(6) e100382
[http://dx.doi.org/10.1371/journal.pone.0100382] [PMID: 24967898]
[252]
Ghosh SS, Bie J, Wang J, Ghosh S. Oral supplementation with non-absorbable antibiotics or curcumin attenuates western diet-induced atherosclerosis and glucose intolerance in LDLR-/- mice--role of intestinal permeability and macrophage activation. PLoS One 2014; 9(9) e108577
[http://dx.doi.org/10.1371/journal.pone.0108577] [PMID: 25251395]
[253]
Wang J, Ghosh SS, Ghosh S. Curcumin improves intestinal barrier function: modulation of intracellular signaling, and organization of tight junctions. Am J Physiol Cell Physiol 2017; 312(4): C438-45.
[http://dx.doi.org/10.1152/ajpcell.00235.2016] [PMID: 28249988]
[254]
Sugimoto K, Hanai H, Tozawa K, et al. Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice. Gastroenterology 2002; 123(6): 1912-22.
[http://dx.doi.org/10.1053/gast.2002.37050] [PMID: 12454848]
[255]
Venkataranganna M, Rafiq M, Gopumadhavan S, Peer G, Babu U, Mitra S. NCB-02 (standardized Curcumin preparation) protects dinitrochlorobenzene- induced colitis through down-regulation of NF-k-B and iNOS. WJG 2007; 13: 1103.
[http://dx.doi.org/10.3748/wjg.v13.i7.1103] [PMID: 17373747]
[256]
Yang JY, Zhong X, Kim SJ, et al. Comparative Effects of Curcumin and Tetrahydrocurcumin on Dextran Sulfate Sodium-induced Colitis and Inflammatory Signaling in Mice. J Cancer Prev 2018; 23(1): 18-24.
[http://dx.doi.org/10.15430/JCP.2018.23.1.18] [PMID: 29629345]
[257]
Gong Z, Zhao S, Zhou J, et al. Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1β production. Mol Immunol 2018; 104: 11-9.
[http://dx.doi.org/10.1016/j.molimm.2018.09.004] [PMID: 30396035]
[258]
Yue W, Liu Y, Li X, Lv L, Huang J, Liu J. Curcumin ameliorates dextran sulfate sodium-induced colitis in mice via regulation of autophagy and intestinal immunity. Turk J Gastroenterol 2019; 30(3): 290-8.
[http://dx.doi.org/10.5152/tjg.2019.18342] [PMID: 30923033]
[259]
Zhang L, Xue H, Zhao G, et al. Curcumin and resveratrol suppress dextran sulfate sodium‑induced colitis in mice. Mol Med Rep 2019; 19(4): 3053-60.
[http://dx.doi.org/10.3892/mmr.2019.9974] [PMID: 30816479]
[260]
Kim KJ, Park JM, Lee JS, et al. Oligonol prevented the relapse of dextran sulfate sodium-ulcerative colitis through enhancing NRF2-mediated antioxidative defense mechanism. J Physiol Pharmacol 2018; 69(3)
[http://dx.doi.org/10.26402/jpp.2018.3.03] [PMID: 30149369]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 25
Year: 2020
Published on: 04 August, 2020
Page: [2936 - 2950]
Pages: 15
DOI: 10.2174/1381612826666200427090127
Price: $65

Article Metrics

PDF: 34
HTML: 5