The Role of Inflammasomes in Atherosclerosis and Stroke Pathogenesis

Author(s): Deepaneeta Sarmah, Aishika Datta, Swapnil Raut, Ankan Sarkar, Birva Shah, Mariya Bohra, Upasna Singh, Priya Jagtap, Falguni Baidya, Kiran Kalia, Xin Wang, Kunjan R. Dave, Dileep R. Yavagal, Pallab Bhattacharya*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 34 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Inflammation is a devastating outcome of cerebrovascular diseases (CVD), namely stroke and atherosclerosis. Numerous studies over the decade have shown that inflammasomes play a role in mediating inflammatory reactions post cellular injury occurring after a stroke or a rupture of an atherosclerotic plaque. In view of this, targeting these inflammatory pathways using different pharmacological therapies may improve outcomes in patients with CVD. Here, we review the mechanisms by which inflammasomes drive the pathogenesis of stroke and atherosclerosis. Also, discussed here are the possible treatment strategies available for inhibiting inflammasomes or their up-stream/down-stream mediators.

Keywords: Inflammasomes, inflammation, stroke, atherosclerosis, therapies, NLRP.

[1]
Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers 2019; 5(1): 56.
[http://dx.doi.org/10.1038/s41572-019-0106-z] [PMID: 31420554]
[2]
Organization WH. Cardiovascular diseases (CVDs) In: ed^eds. 2017.
[3]
Organization WH. Cardiovascular diseases (CVDs): fact sheet 2017. 2017; 12 Diambil dari: http://www. who. int/mediacentre/factsheets/fs317/en/Diakses
[4]
GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388(10053): 1545-602.
[http://dx.doi.org/10.1016/S0140-6736(16)31678-6] [PMID: 27733282]
[5]
Tsivgoulis G, Safouris A, Kim DE, Alexandrov AV. Recent advances in primary and secondary prevention of atherosclerotic stroke. J Stroke 2018; 20(2): 145-66.
[http://dx.doi.org/10.5853/jos.2018.00773] [PMID: 29886715]
[6]
Ge J-J, Xing Y-Q, Chen H-X, Wang L-J, Cui L. Analysis of young ischemic stroke patients in northeast China. Ann Transl Med 2020; 8(1): 3.
[http://dx.doi.org/10.21037/atm.2019.12.72] [PMID: 32055594]
[7]
Nagayoshi M, Everson-Rose SA, Iso H, Mosley TH Jr, Rose KM, Lutsey PL. Social network, social support, and risk of incident stroke: Atherosclerosis risk in communities study. Stroke 2014; 45(10): 2868-73.
[http://dx.doi.org/10.1161/STROKEAHA.114.005815] [PMID: 25139878]
[8]
Mosley JD, Gupta DK, Tan J, et al. Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease. JAMA 2020; 323(7): 627-35.
[http://dx.doi.org/10.1001/jama.2019.21782] [PMID: 32068817]
[9]
Sarmah D, Kaur H, Saraf J, et al. Getting closer to an effective intervention of ischemic stroke: the big promise of stem cell. Transl Stroke Res 2018; 9(4): 356-74.
[http://dx.doi.org/10.1007/s12975-017-0580-0] [PMID: 29075984]
[10]
Sarmah D, Saraf J, Kaur H, et al. Stroke management: An emerging role of nanotechnology. Micromachines (Basel) 2017; 8(9): 262.
[http://dx.doi.org/10.3390/mi8090262] [PMID: 30400452]
[11]
Vats K, Sarmah D, Kaur H, et al. Inflammasomes in stroke: a triggering role for acid-sensing ion channels. Ann N Y Acad Sci 2018; 1431(1): 14-24.
[http://dx.doi.org/10.1111/nyas.13852] [PMID: 29917247]
[12]
Baldrighi M, Mallat Z, Li X. NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis 2017; 267: 127-38.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.10.027] [PMID: 29126031]
[13]
Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 2016; 16(7): 407-20.
[http://dx.doi.org/10.1038/nri.2016.58] [PMID: 27291964]
[14]
de Zoete MR, Palm NW, Zhu S, Flavell RA. Inflammasomes. Cold Spring Harb Perspect Biol 2014; 6(12): a016287.
[http://dx.doi.org/10.1101/cshperspect.a016287] [PMID: 25324215]
[15]
Kesharwani R, Sarmah D, Kaur H, et al. Interplay between mitophagy and inflammasomes in neurological disorders. ACS Chem Neurosci 2019; 10(5): 2195-208.
[http://dx.doi.org/10.1021/acschemneuro.9b00117] [PMID: 30917655]
[16]
Grebe A, Hoss F, Latz E. NLRP3 Inflammasome and the IL-1 pathway in atherosclerosis. Circ Res 2018; 122(12): 1722-40.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311362] [PMID: 29880500]
[17]
Mayerl C, Lukasser M, Sedivy R, Niederegger H, Seiler R, Wick G. Atherosclerosis research from past to present--on the track of two pathologists with opposing views, Carl von Rokitansky and Rudolf Virchow. Virchows Arch 2006; 449(1): 96-103.
[http://dx.doi.org/10.1007/s00428-006-0176-7] [PMID: 16612625]
[18]
Anitschkow N. On experimental cholesterin steatosis and its significance in the origin of some pathological processes (1913). Arteriosclerosis 1983; 3: 178-82.
[http://dx.doi.org/10.1161/01.ATV.3.2.178] [PMID: 6340651]
[19]
Kannel WB, Castelli WP, Gordon T. Cholesterol in the prediction of atherosclerotic disease. New perspectives based on the Framingham study. Ann Intern Med 1979; 90(1): 85-91.
[http://dx.doi.org/10.7326/0003-4819-90-1-85] [PMID: 217290]
[20]
Karasawa T, Takahashi M. Role of NLRP3 inflammasomes in atherosclerosis. J Atheroscler Thromb 2017; 24(5): 443-51.
[http://dx.doi.org/10.5551/jat.RV17001] [PMID: 28260724]
[21]
Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340(2): 115-26.
[http://dx.doi.org/10.1056/NEJM199901143400207] [PMID: 9887164]
[22]
Libby P, Lichtman AH, Hansson GK. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 2013; 38(6): 1092-104.
[http://dx.doi.org/10.1016/j.immuni.2013.06.009] [PMID: 23809160]
[23]
Shi X, Xie W-L, Kong W-W, Chen D, Qu P. Expression of the NLRP3 inflammasome in carotid atherosclerosis. J Stroke Cerebrovasc Dis 2015; 24(11): 2455-66.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2015.03.024] [PMID: 26381780]
[24]
Xiao H, Lu M, Lin TY, et al. Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation 2013; 128(6): 632-42.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002714] [PMID: 23838163]
[25]
Zheng F, Xing S, Gong Z, Xing Q. NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis. Heart Lung Circ 2013; 22(9): 746-50.
[http://dx.doi.org/10.1016/j.hlc.2013.01.012] [PMID: 23462287]
[26]
Jin Y, Fu J. Novel insights into the NLRP 3 inflammasome in atherosclerosis. J Am Heart Assoc 2019; 8(12): e012219.
[http://dx.doi.org/10.1161/JAHA.119.012219] [PMID: 31184236]
[27]
Kirii H, Niwa T, Yamada Y, et al. Lack of interleukin-1β decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 2003; 23(4): 656-60.
[http://dx.doi.org/10.1161/01.ATV.0000064374.15232.C3] [PMID: 12615675]
[28]
Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464(7293): 1357-61.
[http://dx.doi.org/10.1038/nature08938] [PMID: 20428172]
[29]
Gage J, Hasu M, Thabet M, Whitman SC. Caspase-1 deficiency decreases atherosclerosis in apolipoprotein E-null mice. Can J Cardiol 2012; 28(2): 222-9.
[http://dx.doi.org/10.1016/j.cjca.2011.10.013] [PMID: 22265992]
[30]
He Y, Zeng MY, Yang D, Motro B, Núñez G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 2016; 530(7590): 354-7.
[http://dx.doi.org/10.1038/nature16959] [PMID: 26814970]
[31]
Shi C-S, Shenderov K, Huang N-N, et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 2012; 13(3): 255-63.
[http://dx.doi.org/10.1038/ni.2215] [PMID: 22286270]
[32]
Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011; 469(7329): 221-5.
[http://dx.doi.org/10.1038/nature09663] [PMID: 21124315]
[33]
Parathath S, Mick SL, Feig JE, et al. Hypoxia is present in murine atherosclerotic plaques and has multiple adverse effects on macrophage lipid metabolism. Circ Res 2011; 109(10): 1141-52.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.246363] [PMID: 21921268]
[34]
Moulton KS, Heller E, Konerding MA, Flynn E, Palinski W, Folkman J. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein Edeficient mice. Circulation 1999; 99(13): 1726-32.
[http://dx.doi.org/10.1161/01.CIR.99.13.1726] [PMID: 10190883]
[35]
Boström P, Magnusson B, Svensson PA, et al. Hypoxia converts human macrophages into triglyceride-loaded foam cells. Arterioscler Thromb Vasc Biol 2006; 26(8): 1871-6.
[http://dx.doi.org/10.1161/01.ATV.0000229665.78997.0b] [PMID: 16741148]
[36]
Folco EJ, Sheikine Y, Rocha VZ, et al. Hypoxia but not inflammation augments glucose uptake in human macrophages: Implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-Dglucose positron emission tomography. J Am Coll Cardiol 2011; 58(6): 603-14.
[http://dx.doi.org/10.1016/j.jacc.2011.03.044] [PMID: 21798423]
[37]
Folco EJ, Sukhova GK, Quillard T, Libby P. Moderate hypoxia potentiates interleukin-1β production in activated human macrophages. Circ Res 2014; 115(10): 875-83.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.304437] [PMID: 25185259]
[38]
Mariathasan S, Weiss DS, Newton K, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006; 440(7081): 228-32.
[http://dx.doi.org/10.1038/nature04515] [PMID: 16407890]
[39]
Stachon P, Heidenreich A, Merz J, et al. P2X7 deficiency blocks lesional inflammasome activity and ameliorates atherosclerosis in mice. Circulation 2017; 135(25): 2524-33.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.027400] [PMID: 28377486]
[40]
Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 2015; 349(6245): 316-20.
[http://dx.doi.org/10.1126/science.aaa8064] [PMID: 26185250]
[41]
Usui F, Shirasuna K, Kimura H, et al. Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. Biochem Biophys Res Commun 2012; 425(2): 162-8.
[http://dx.doi.org/10.1016/j.bbrc.2012.07.058] [PMID: 22819845]
[42]
Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 2011; 12(5): 408-15.
[http://dx.doi.org/10.1038/ni.2022] [PMID: 21478880]
[43]
Weber K, Schilling JD. Lysosomes integrate metabolicinflammatory cross-talk in primary macrophage inflammasome activation. J Biol Chem 2014; 289(13): 9158-71.
[http://dx.doi.org/10.1074/jbc.M113.531202] [PMID: 24532802]
[44]
Yeagle PL. Modulation of membrane function by cholesterol. Biochimie 1991; 73(10): 1303-10.
[http://dx.doi.org/10.1016/0300-9084(91)90093-G] [PMID: 1664240]
[45]
Sun M, Northup N, Marga F, et al. The effect of cellular cholesterol on membrane-cytoskeleton adhesion. J Cell Sci 2007; 120(Pt 13): 2223-31.
[http://dx.doi.org/10.1242/jcs.001370] [PMID: 17550968]
[46]
Craven BM. Crystal structure of cholesterol monohydrate. Nature 1976; 260(5553): 727-9.
[http://dx.doi.org/10.1038/260727a0] [PMID: 1264248]
[47]
Libby P. Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. J Am Coll Cardiol 2017; 70(18): 2278-89.
[http://dx.doi.org/10.1016/j.jacc.2017.09.028] [PMID: 29073957]
[48]
Abela GS, Kalavakunta JK, Janoudi A, et al. Frequency of cholesterol crystals in culprit coronary artery aspirate during acute myocardial infarction and their relation to inflammation and myocardial injury. Am J Cardiol 2017; 120(10): 1699-707.
[http://dx.doi.org/10.1016/j.amjcard.2017.07.075] [PMID: 28867129]
[49]
Lusis AJ. Atherosclerosis. Nature 2000; 407(6801): 233-41.
[http://dx.doi.org/10.1038/35025203]] [PMID: 11001066]
[50]
Rajamäki K, Lappalainen J, Oörni K, et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One 2010; 5(7): e11765.
[http://dx.doi.org/10.1371/journal.pone.0011765] [PMID: 20668705]
[51]
Kiechl S, Lorenz E, Reindl M, et al. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 2002; 347(3): 185-92.
[http://dx.doi.org/10.1056/NEJMoa012673] [PMID: 12124407]
[52]
Galea J, Armstrong J, Gadsdon P, Holden H, Francis SE, Holt CM. Interleukin-1 β in coronary arteries of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol 1996; 16(8): 1000-6.
[http://dx.doi.org/10.1161/01.ATV.16.8.1000] [PMID: 8696938]
[53]
Westerterp M, Fotakis P, Ouimet M, et al. Cholesterol efflux pathways suppress inflammasome activation, NETosis, and atherogenesis. Circulation 2018; 138(9): 898-912.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.032636] [PMID: 29588315]
[54]
Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 2013; 339(6116): 161-6.
[http://dx.doi.org/10.1126/science.1230719] [PMID: 23307733]
[55]
Kotla S, Singh NK, Rao GN. ROS via BTK-p300-STAT1-PPARγ signaling activation mediates cholesterol crystals-induced CD36 expression and foam cell formation. Redox Biol 2017; 11: 350-64.
[http://dx.doi.org/10.1016/j.redox.2016.12.005] [PMID: 28040583]
[56]
Samstad EO, Niyonzima N, Nymo S, et al. Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J Immunol 2014; 192(6): 2837-45.
[http://dx.doi.org/10.4049/jimmunol.1302484] [PMID: 24554772]
[57]
Freigang S, Ampenberger F, Spohn G, et al. Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur J Immunol 2011; 41(7): 2040-51.
[http://dx.doi.org/10.1002/eji.201041316] [PMID: 21484785]
[58]
Redondo S, Martínez-González J, Urraca C, Tejerina T. Emerging therapeutic strategies to enhance HDL function. Lipids Health Dis 2011; 10: 175.
[http://dx.doi.org/10.1186/1476-511X-10-175] [PMID: 21985435]
[59]
Sheedy FJ, Grebe A, Rayner KJ, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 2013; 14(8): 812-20.
[http://dx.doi.org/10.1038/ni.2639] [PMID: 23812099]
[60]
Jerome WG. Lysosomes, cholesterol and atherosclerosis. Clin Lipidol 2010; 5(6): 853-65.
[http://dx.doi.org/10.2217/clp.10.70] [PMID: 21643524]
[61]
Emanuel R, Sergin I, Bhattacharya S, et al. Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arterioscler Thromb Vasc Biol 2014; 34(9): 1942-52.
[http://dx.doi.org/10.1161/ATVBAHA.114.303342] [PMID: 25060788]
[62]
Razani B, Feng C, Coleman T, et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab 2012; 15(4): 534-44.
[http://dx.doi.org/10.1016/j.cmet.2012.02.011] [PMID: 22440612]
[63]
Di Micco A, Frera G, Lugrin J, et al. AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity. Proc Natl Acad Sci USA 2016; 113(32): E4671-80.
[http://dx.doi.org/10.1073/pnas.1602419113] [PMID: 27462105]
[64]
Hakimi M, Peters A, Becker A, Böckler D, Dihlmann S. Inflammation-related induction of absent in melanoma 2 (AIM2) in vascular cells and atherosclerotic lesions suggests a role in vascular pathogenesis. J Vascular Surgery 2014; 59: 794-803.e2.
[65]
Lugrin J, Martinon F. The AIM2 inflammasome: Sensor of pathogens and cellular perturbations. Immunol Rev 2018; 281(1): 99-114.
[http://dx.doi.org/10.1111/imr.12618] [PMID: 29247998]
[66]
Gaidt MM, Ebert TS, Chauhan D, et al. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell 2017; 171: 1110-24.e18.
[67]
Dang EV, McDonald JG, Russell DW, Cyster JG. Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation. Cell 2017; 171: 1057-71.e11.
[http://dx.doi.org/10.1016/j.cell.2017.09.029]
[68]
Fann DY-W, Lim Y-A, Cheng Y-L, et al. Evidence that NF-κB and MAPK signaling promotes NLRP inflammasome activation in neurons following ischemic stroke. Mol Neurobiol 2018; 55(2): 1082-96.
[http://dx.doi.org/10.1007/s12035-017-0394-9] [PMID: 28092085]
[69]
Awad F, Assrawi E, Jumeau C, et al. Impact of human monocyte and macrophage polarization on NLR expression and NLRP3 inflammasome activation. PLoS One 2017; 12(4): e0175336.
[http://dx.doi.org/10.1371/journal.pone.0175336] [PMID: 28403163]
[70]
Gao L, Dong Q, Song Z, Shen F, Shi J, Li Y. NLRP3 inflammasome: a promising target in ischemic stroke. Inflamm Res 2017; 66(1): 17-24.
[http://dx.doi.org/10.1007/s00011-016-0981-7] [PMID: 27576327]
[71]
Walsh JG, Muruve DA, Power C. Inflammasomes in the CNS. Nat Rev Neurosci 2014; 15(2): 84-97.
[http://dx.doi.org/10.1038/nrn3638] [PMID: 24399084]
[72]
van de Veerdonk FL, Netea MG, Dinarello CA, Joosten LA. Inflammasome activation and IL-1β and IL-18 processing during infection. Trends Immunol 2011; 32(3): 110-6.
[http://dx.doi.org/10.1016/j.it.2011.01.003] [PMID: 21333600]
[73]
Liao K-C, Mogridge J. Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP. Infect Immun 2013; 81(2): 570-9.
[http://dx.doi.org/10.1128/IAI.01003-12] [PMID: 23230290]
[74]
Brouns R, Sheorajpanday R, Wauters A, De Surgeloose D, Mariën P, De Deyn PP. Evaluation of lactate as a marker of metabolic stress and cause of secondary damage in acute ischemic stroke or TIA. Clin Chim Acta 2008; 397(1-2): 27-31.
[http://dx.doi.org/10.1016/j.cca.2008.07.016] [PMID: 18692033]
[75]
Jancic CC, Cabrini M, Gabelloni ML, et al. Low extracellular pH stimulates the production of IL-1β by human monocytes. Cytokine 2012; 57(2): 258-68.
[http://dx.doi.org/10.1016/j.cyto.2011.11.013] [PMID: 22154780]
[76]
Hornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 2008; 9(8): 847-56.
[http://dx.doi.org/10.1038/ni.1631] [PMID: 18604214]
[77]
Wang Y-C, Li W-Z, Wu Y, et al. Acid-sensing ion channel 1a contributes to the effect of extracellular acidosis on NLRP1 inflammasome activation in cortical neurons. J Neuroinflammation 2015; 12: 246.
[http://dx.doi.org/10.1186/s12974-015-0465-7] [PMID: 26715049]
[78]
Barrington J, Lemarchand E, Allan SM. A brain in flame; do inflammasomes and pyroptosis influence stroke pathology? Brain Pathol 2017; 27(2): 205-12.
[http://dx.doi.org/10.1111/bpa.12476] [PMID: 27997059]
[79]
Fu Y, Liu Q, Anrather J, Shi F-D. Immune interventions in stroke. Nat Rev Neurol 2015; 11(9): 524-35.
[http://dx.doi.org/10.1038/nrneurol.2015.144] [PMID: 26303850]
[80]
Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012; 36(3): 401-14.
[http://dx.doi.org/10.1016/j.immuni.2012.01.009] [PMID: 22342844]
[81]
Huang H, Hu X, Eno CO, Zhao G, Li C, White C. An interaction between Bcl-xL and the voltage-dependent anion channel (VDAC) promotes mitochondrial Ca2+ uptake. J Biol Chem 2013; 288(27): 19870-81.
[http://dx.doi.org/10.1074/jbc.M112.448290] [PMID: 23720737]
[82]
Yamasaki K, Muto J, Taylor KR, et al. NLRP3/cryopyrin is necessary for interleukin-1β (IL-1β) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem 2009; 284(19): 12762-71.
[http://dx.doi.org/10.1074/jbc.M806084200] [PMID: 19258328]
[83]
Tong Y, Ding Z-H, Zhan F-X, et al. The NLRP3 inflammasome and stroke. Int J Clin Exp Med 2015; 8(4): 4787-94.
[PMID: 26131053]
[84]
Wang Z, Li Z, Feng D, et al. Autophagy induction ameliorates inflammatory responses in intestinal ischemia-reperfusion through inhibiting NLRP3 inflammasome activation. Shock 2019; 52(3): 387-95.
[http://dx.doi.org/10.1097/SHK.0000000000001259] [PMID: 30216227]
[85]
Wang R, Yin YX, Mahmood Q, et al. Calmodulin inhibitor ameliorates cognitive dysfunction via inhibiting nitrosative stress and NLRP3 signaling in mice with bilateral carotid artery stenosis 2017; 23: 818-26.
[http://dx.doi.org/10.1111/cns.12726]
[86]
Bellezza I, Grottelli S, Costanzi E, et al. Peroxynitrite activates the NLRP3 inflammasome cascade in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Mol Neurobiol 2018; 55(3): 2350-61.
[http://dx.doi.org/10.1007/s12035-017-0502-x] [PMID: 28357805]
[87]
Peng H, Chang B, Lu C, et al. Nlrp2, a maternal effect gene required for early embryonic development in the mouse. PLoS One 2012; 7(1): e30344.
[http://dx.doi.org/10.1371/journal.pone.0030344] [PMID: 22295082]
[88]
Sun X, Song X, Zhang L, et al. NLRP2 is highly expressed in a mouse model of ischemic stroke. Biochem Biophys Res Commun 2016; 479(4): 656-62.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.157] [PMID: 27693696]
[89]
Minkiewicz J, de Rivero Vaccari JP, Keane RW. Human astrocytes express a novel NLRP2 inflammasome. Glia 2013; 61(7): 1113-21.
[http://dx.doi.org/10.1002/glia.22499] [PMID: 23625868]
[90]
Denes A, Coutts G, Lénárt N, et al. AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc Natl Acad Sci USA 2015; 112(13): 4050-5.
[http://dx.doi.org/10.1073/pnas.1419090112] [PMID: 25775556]
[91]
Poh L, Kang S-W, Baik S-H, et al. Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke. Brain Behav Immun 2019; 75: 34-47.
[http://dx.doi.org/10.1016/j.bbi.2018.09.001] [PMID: 30195027]
[92]
Koizumi S, Yamamoto S, Hayasaka T, et al. Imaging mass spectrometry revealed the production of lyso-phosphatidylcholine in the injured ischemic rat brain. Neuroscience 2010; 168(1): 219-25.
[http://dx.doi.org/10.1016/j.neuroscience.2010.03.056] [PMID: 20362643]
[93]
Ghayur T, Banerjee S, Hugunin M, et al. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature 1997; 386(6625): 619-23.
[http://dx.doi.org/10.1038/386619a0] [PMID: 9121587]
[94]
Im S-S, Yousef L, Blaschitz C, et al. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab 2011; 13(5): 540-9.
[http://dx.doi.org/10.1016/j.cmet.2011.04.001] [PMID: 21531336]
[95]
Martinon F, Tschopp J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 2007; 14(1): 10-22.
[http://dx.doi.org/10.1038/sj.cdd.4402038] [PMID: 16977329]
[96]
Sborgi L, Rühl S, Mulvihill E, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 2016; 35(16): 1766-78.
[http://dx.doi.org/10.15252/embj.201694696] [PMID: 27418190]
[97]
Duncan JA, Canna SW. The NLRC4 inflammasome. Immunol Rev 2018; 281(1): 115-23.
[http://dx.doi.org/10.1111/imr.12607] [PMID: 29247997]
[98]
Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 2016; 535(7610): 153-8.
[http://dx.doi.org/10.1038/nature18629] [PMID: 27383986]
[99]
Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 2017; 42(4): 245-54.
[http://dx.doi.org/10.1016/j.tibs.2016.10.004] [PMID: 27932073]
[100]
Franklin BS, Bossaller L, De Nardo D, et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol 2014; 15(8): 727-37.
[http://dx.doi.org/10.1038/ni.2913] [PMID: 24952505]
[101]
Adamczak SE, de Rivero Vaccari JP, Dale G, et al. Pyroptotic neuronal cell death mediated by the AIM2 inflammasome. J Cereb Blood Flow Metab 2014; 34(4): 621-9.
[http://dx.doi.org/10.1038/jcbfm.2013.236] [PMID: 24398937]
[102]
Sun J, Chi L, He Z, et al. NLRP3 inflammasome contributes to neurovascular unit damage in stroke. J Drug Target 2019; 27(8): 866-75.
[http://dx.doi.org/10.1080/1061186X.2018.1564925] [PMID: 30601069]
[103]
Netto JP, Iliff J, Stanimirovic D, et al. Neurovascular unit: basic and clinical imaging with emphasis on advantages of ferumoxytol. Neurosurgery 2018; 82(6): 770-80.
[http://dx.doi.org/10.1093/neuros/nyx357] [PMID: 28973554]
[104]
Mohamed IN, Ishrat T, Fagan SC, El-Remessy AB. Role of inflammasome activation in the pathophysiology of vascular diseases of the neurovascular unit. Antioxidant Redox Signaling 2015; 22: 1188-206.
[http://dx.doi.org/10.1089/ars.2014.6126]
[105]
Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 2006; 100(1): 328-35.
[http://dx.doi.org/10.1152/japplphysiol.00966.2005] [PMID: 16357086]
[106]
Wilhelm I, Nyúl-Tóth Á, Kozma M, Farkas AE, Krizbai IA. Role of pattern recognition receptors of the neurovascular unit in inflammaging. Am J Physiol Heart Circ Physiol 2017; 313(5): H1000-12.
[http://dx.doi.org/10.1152/ajpheart.00106.2017] [PMID: 28801521]
[107]
Hong P, Gu R-N, Li F-X, et al. NLRP3 inflammasome as a potential treatment in ischemic stroke concomitant with diabetes. J Neuroinflammation 2019; 16(1): 121.
[http://dx.doi.org/10.1186/s12974-019-1498-0] [PMID: 31174550]
[108]
Cai W, Zhang K, Li P, et al. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: An aging effect. Ageing Res Rev 2017; 34: 77-87.
[http://dx.doi.org/10.1016/j.arr.2016.09.006] [PMID: 27697546]
[109]
Savage CD, Lopez-Castejon G, Denes A, Brough D. NLRP3-inflammasome activating DAMPs stimulate an inflammatory response in glia in the absence of priming which contributes to brain inflammation after injury. Front Immunol 2012; 3: 288.
[http://dx.doi.org/10.3389/fimmu.2012.00288] [PMID: 23024646]
[110]
Cao G, Jiang N, Hu Y, et al. Ruscogenin attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Int J Mol Sci 2016; 17(9): 1418.
[http://dx.doi.org/10.3390/ijms17091418] [PMID: 27589720]
[111]
Nagyőszi P, Wilhelm I, Farkas AE, et al. Expression and regulation of toll-like receptors in cerebral endothelial cells. Neurochem Int 2010; 57(5): 556-64.
[http://dx.doi.org/10.1016/j.neuint.2010.07.002] [PMID: 20637248]
[112]
Ye X, Zuo D, Yu L, et al. ROS/TXNIP pathway contributes to thrombin induced NLRP3 inflammasome activation and cell apoptosis in microglia. Biochem Biophys Res Commun 2017; 485(2): 499-505.
[http://dx.doi.org/10.1016/j.bbrc.2017.02.019] [PMID: 28202418]
[113]
Zhang L, Chopp M, Liu X, et al. Combination therapy with VELCADE and tissue plasminogen activator is neuroprotective in aged rats after stroke and targets microRNA-146a and the toll-like receptor signaling pathway. Arterioscler Thromb Vasc Biol 2012; 32(8): 1856-64.
[http://dx.doi.org/10.1161/ATVBAHA.112.252619] [PMID: 22723435]
[114]
Kono S, Kurata T, Sato K, et al. Neurovascular protection by telmisartan via reducing neuroinflammation in stroke-resistant spontaneously hypertensive rat brain after ischemic stroke. J Stroke Cerebrovasc Dis 2015; 24(3): 537-47.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.09.037] [PMID: 25534368]
[115]
Qiu J, Wang M, Zhang J, et al. The neuroprotection of Sinomenine against ischemic stroke in mice by suppressing NLRP3 inflammasome via AMPK signaling. Int Immunopharmacol 2016; 40: 492-500.
[http://dx.doi.org/10.1016/j.intimp.2016.09.024] [PMID: 27769021]
[116]
Fann DY-W, Lee SY, Manzanero S, et al. Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis 2013; 4: e790.
[http://dx.doi.org/10.1038/cddis.2013.326] [PMID: 24008734]
[117]
Widiapradja A, Vegh V, Lok KZ, et al. Intravenous immunoglobulin protects neurons against amyloid beta-peptide toxicity and ischemic stroke by attenuating multiple cell death pathways. J Neurochem 2012; 122(2): 321-32.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07754.x] [PMID: 22494053]
[118]
Herrera AF, Jacobsen ED. Ibrutinib for the treatment of mantle cell lymphoma. Clin Cancer Res 2014; 20(21): 5365-71.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0010] [PMID: 25361916]
[119]
Li Y, Li J, Li S, et al. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK. Toxicol Appl Pharmacol 2015; 286(1): 53-63.
[http://dx.doi.org/10.1016/j.taap.2015.03.010] [PMID: 25791922]
[120]
Lammerding L, Slowik A, Johann S, Beyer C, Zendedel A. Poststroke inflammasome expression and regulation in the peri-infarct area by gonadal steroids after transient focal ischemia in the rat brain. Neuroendocrinology 2016; 103(5): 460-75.
[http://dx.doi.org/10.1159/000439435] [PMID: 26337121]
[121]
Liu L, Cen J, Man Y, et al. Transplantation of human umbilical cord blood mononuclear cells attenuated ischemic injury in MCAO rats via inhibition of NF-κB and NLRP3 inflammasome. Neuroscience 2018; 369: 314-24.
[http://dx.doi.org/10.1016/j.neuroscience.2017.11.027] [PMID: 29175152]
[122]
Vats K, Sarmah D, Datta A, et al. Intra-arterial stem cell therapy diminishes inflammasome activation after ischemic stroke: a possible role of acid sensing ion channel 1a. J Mol Neurosci 2019; 1-8.
[http://dx.doi.org/10.1007/s12031-019-01460-3] [PMID: 31820348]
[123]
Rim HK, Moon PD, Choi IH, Lee EH, Kim HM, Jeong HJ. SoSoSo or its active ingredient chrysophanol regulates production of inflammatory cytokines & adipokine in both macrophages & adipocytes. Indian J Med Res 2013; 137(1): 142-50.
[PMID: 23481064]
[124]
Chen S, Ma Q, Krafft PR, et al. P2X7R/cryopyrin inflammasome axis inhibition reduces neuroinflammation after SAH. Neurobiol Dis 2013; 58: 296-307.
[http://dx.doi.org/10.1016/j.nbd.2013.06.011] [PMID: 23816751]
[125]
Feng L, Chen Y, Ding R, et al. P2X7R blockade prevents NLRP3 inflammasome activation and brain injury in a rat model of intracerebral hemorrhage: involvement of peroxynitrite. J Neuroinflammation 2015; 12: 190.
[http://dx.doi.org/10.1186/s12974-015-0409-2] [PMID: 26475134]
[126]
Ito M, Shichita T, Okada M, et al. Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun 2015; 6: 7360.
[http://dx.doi.org/10.1038/ncomms8360] [PMID: 26059659]
[127]
Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 2009; 7(2): 99-109.
[http://dx.doi.org/10.1038/nrmicro2070] [PMID: 19148178]
[128]
Zhou K, Shi L, Wang Z, et al. RIP1-RIP3-DRP1 pathway regulates NLRP3 inflammasome activation following subarachnoid hemorrhage. Exp Neurol 2017; 295: 116-24.
[http://dx.doi.org/10.1016/j.expneurol.2017.06.003] [PMID: 28579326]
[129]
Kong F, Ye B, Lin L, Cai X, Huang W, Huang Z. Atorvastatin suppresses NLRP3 inflammasome activation via TLR4/MyD88/NF-κB signaling in PMA-stimulated THP-1 monocytes. Biomed Pharmacother 2016; 82: 167-72.
[http://dx.doi.org/10.1016/j.biopha.2016.04.043] [PMID: 27470352]
[130]
Abderrazak A, Couchie D, Mahmood DFD, et al. Antiinflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2.Ki mice fed a high-fat diet. Circulation 2015; 131(12): 1061-70.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013730] [PMID: 25613820]
[131]
Ahn H, Kim J, Lee M-J, Kim YJ, Cho Y-W, Lee G-S. Methylsulfonylmethane inhibits NLRP3 inflammasome activation. Cytokine 2015; 71(2): 223-31.
[http://dx.doi.org/10.1016/j.cyto.2014.11.001] [PMID: 25461402]
[132]
Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol 2013; 61(4): 404-10.
[http://dx.doi.org/10.1016/j.jacc.2012.10.027] [PMID: 23265346]
[133]
Dalbeth N, Lauterio TJ, Wolfe HR. Mechanism of action of colchicine in the treatment of gout. Clin Ther 2014; 36(10): 1465-79.
[http://dx.doi.org/10.1016/j.clinthera.2014.07.017] [PMID: 25151572]
[134]
Misawa T, Takahama M, Kozaki T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol 2013; 14(5): 454-60.
[http://dx.doi.org/10.1038/ni.2550] [PMID: 23502856]
[135]
Martínez GJ, Robertson S, Barraclough J, et al. Colchicine acutely suppresses local cardiac production of inflammatory cytokines in patients with an acute coronary syndrome. J Am Heart Assoc 2015; 4(8): e002128.
[http://dx.doi.org/10.1161/JAHA.115.002128] [PMID: 26304941]
[136]
Coll RC, Robertson AA, Chae JJ, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 2015; 21(3): 248-55.
[http://dx.doi.org/10.1038/nm.3806] [PMID: 25686105]
[137]
Zimmer S, Grebe A, Bakke SS, et al. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming Science translational medicine 2016; 8 : 333ra50-0.
[http://dx.doi.org/10.1126/scitranslmed.aad6100]
[138]
Bode N, Grebe A, Kerksiek A, et al. Ursodeoxycholic acid impairs atherogenesis and promotes plaque regression by cholesterol crystal dissolution in mice. Biochem Biophys Res Commun 2016; 478(1): 356-62.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.047] [PMID: 27416761]
[139]
Nurmi K, Virkanen J, Rajamäki K, Niemi K, Kovanen PT, Eklund KK. Ethanol inhibits activation of NLRP3 and AIM2 inflammasomes in human macrophages--a novel anti-inflammatory action of alcohol. PLoS One 2013; 8(11): e78537.
[http://dx.doi.org/10.1371/journal.pone.0078537] [PMID: 24244322]
[140]
Nomura J, Busso N, Ives A, et al. Xanthine oxidase inhibition by febuxostat attenuates experimental atherosclerosis in mice. Sci Rep 2014; 4: 4554.
[http://dx.doi.org/10.1038/srep04554] [PMID: 24686534]
[141]
Thacker SG, Zarzour A, Chen Y, et al. High-density lipoprotein reduces inflammation from cholesterol crystals by inhibiting inflammasome activation. Immunology 2016; 149(3): 306-19.
[http://dx.doi.org/10.1111/imm.12638] [PMID: 27329564]
[142]
Guo C, Xie S, Chi Z, et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 2016; 45(4): 802-16.
[http://dx.doi.org/10.1016/j.immuni.2016.09.008] [PMID: 27692610]
[143]
Pols TW, Nomura M, Harach T, et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab 2011; 14(6): 747-57.
[http://dx.doi.org/10.1016/j.cmet.2011.11.006] [PMID: 22152303]
[144]
Elhage R, Maret A, Pieraggi M-T, Thiers JC, Arnal JF, Bayard F. Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice. Circulation 1998; 97(3): 242-4.
[http://dx.doi.org/10.1161/01.CIR.97.3.242] [PMID: 9462524]
[145]
Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V. NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol 2012; 189(8): 4175-81.
[http://dx.doi.org/10.4049/jimmunol.1201516] [PMID: 22984082]
[146]
Vickers KC, Landstreet SR, Levin MG, et al. MicroRNA-223 coordinates cholesterol homeostasis. Proc Natl Acad Sci USA 2014; 111(40): 14518-23.
[http://dx.doi.org/10.1073/pnas.1215767111] [PMID: 25246565]
[147]
Zheng F, Xing S, Gong Z, Mu W, Xing Q. Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein Edeficient mice. Mediators of inflammation 2014: 2014.
[148]
Rathinam VA, Vanaja SK, Fitzgerald KA. Regulation of inflammasome signaling. Nat Immunol 2012; 13(4): 333-42.
[http://dx.doi.org/10.1038/ni.2237] [PMID: 22430786]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 34
Year: 2020
Published on: 12 October, 2020
Page: [4234 - 4245]
Pages: 12
DOI: 10.2174/1381612826666200427084949
Price: $65

Article Metrics

PDF: 25
HTML: 2