Determination of Mancozeb, a Pesticide Used Worldwide in Agriculture: Comparison among GC, LC, and CE

Author(s): Giulia Simonetti, Federica Castellani, Patrizia Di Filippo, Carmela Riccardi, Donatella Pomata, Roberta Risoluti, Francesca Buiarelli*, Elisa Sonego

Journal Name: Current Analytical Chemistry

Volume 16 , Issue 8 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: The determination of mancozeb, a fungicide extensively used in agriculture, is a challenge, due to the nature of the compound, a manganese and zinc complex of ethylenebis dithiocarbamate and because of the general instability of the dithiocarbamates.

Methods: Mancozeb was analyzed in a GC-EI-MS system after derivatization by CE-UV with detection at 280 nm and in LC-ESI-MS-MS in MRM mode.

Results: A comparative study of the performance of three different techniques for the detection of mancozeb was explored, highlighting the advantages and drawbacks of them. The limits of detection and quantification of the techniques were determined; the repeatability was assessed, showing values of relative standard deviation. Gas chromatography, although very sensitive, was not reproducible enough due to fast degradation of the derivatization product, whereas capillary electrophoresis-UV showed problems in run-to-run reproducibility which had the worst limit of detection. LC coupled with tandem mass spectrometry was the most reliable and precise technique and was able to determine the main degradation product of Mancozeb, at the same time. The proposed LC procedure was verified by applying it to a commercial formulation, a fungicide of known concentration, and to Italian white grapes treated with the formulation sprayed during cultivation.

Conclusion: Thanks to the simplified sample handling, the proposed method resulted to be simple, fast, green, economic, and suitable for residue analysis in grapes and other fruits. Finally, the method was compared with other similar investigations.

Keywords: Capillary electrophoresis, ethylenebisdithiocarbamates, gas chromatography, liquid chromatography, mancozeb, pesticide.

Mancozeb Update.; October 12, 2019).
Mancozeb stewardship and registration.; October 12, 2019).
Jablonická, A.; Poláková, H.; Karelová, J.; Vargová, M. Analysis of chromosome aberrations and sister-chromatid exchanges in peripheral blood lymphocytes of workers with occupational exposure to the mancozeb-containing fungicide Novozir Mn80. Mutat. Res., 1989, 224(2), 143-146.
[] [PMID: 2797033]
Fortes, C.; Mastroeni, S.; Segatto, M.M.; Hohmann, C.; Miligi, L.; Bakos, L.; Bonamigo, R. Occupational exposure to pesticides with occupational sun exposure increases the risk for cutaneous melanoma. J. Occup. Environ. Med., 2016, 58(4), 370-375.
[] [PMID: 27058477]
Gatto, M.P.; Cabella, R.; Gherardi, M. Climate change: The potential impact on occupational exposure to pesticides. Ann. Ist. Super. Sanita, 2016, 52(3), 374-385.
[PMID: 27698296]
Gill, H.K.; Garg, H. Pesticides: Environmental impacts and management strategies. Pesticides-toxic aspects; Intech Open, 2014, pp. 188-230.
Colosio, C.; Fustinoni, S.; Birindelli, S.; Bonomi, I.; De Paschale, G.; Mammone, T.; Tiramani, M.; Vercelli, F.; Visentin, S.; Maroni, M. Ethylenethiourea in urine as an indicator of exposure to mancozeb in vineyard workers. Toxicol. Lett., 2002, 134(1-3), 133-140.
[] [PMID: 12191871]
Cecconi, S.; Paro, R.; Rossi, G.; Macchiarelli, G. The effects of the endocrine disruptors dithiocarbamates on the mammalian ovary with particular regard to mancozeb. Curr. Pharm. Des., 2007, 13(29), 2989-3004.
[] [PMID: 17979742]
Pirozzi, A.V.; Stellavato, A.; La Gatta, A.; Lamberti, M.; Schiraldi, C. Mancozeb, a fungicide routinely used in agriculture, worsens nonalcoholic fatty liver disease in the human HepG2 cell model. Toxicol. Lett., 2016, 249, 1-4.
[] [PMID: 27016407]
European Commission; Food Safety, (Accessed October 12, 2019).
Xu, S. Environmental fate of mancozeb.Environmental monitoring and pest management,
Biswas, S.K.; Banerjee, K.; Handa, S.K. Metabolic fate of mancozeb in tomato (Lycopersicon esculentum). Toxicol. Environ. Chem., 2003, 85, 33-38.
Lehotay, J.; Kisova, D. HPLC study of mancozeb degradation on leaves. J. Liq. Chromatogr. Relat. Technol., 1993, 16(5), 1015-1022.
Szolar, O.H.J. Environmental and pharmaceutical analysis of dithiocarbamates. Anal. Chim. Acta, 2007, 582(2), 191-200.
[] [PMID: 17386492]
Dithiocarbamates-Mancozeb; September 12, 2019).
Bohrer, D.; Cicero Do Nascimento, P.; Gomes, H.M. Improvement in the determination of mancozeb residues by the carbon disulfide evolution method using flow injection analysis. J. Agric. Food Chem., 1999, 47(1), 212-216.
[] [PMID: 10563874]
Mujawar, S.; Utture, S.C.; Fonseca, E.; Matarrita, J.; Banerjee, K. Validation of a GC-MS method for the estimation of dithiocarbamate fungicide residues and safety evaluation of mancozeb in fruits and vegetables. Food Chem., 2014, 150, 175-181.
[] [PMID: 24360436]
Rao, T.N.; Sreenivasulu, D.; Patrudu, T.B.; Sreenivas, K.M.S.; Botsa, P. A GC-MS method for the determination of Mancozeb and 71 Metiram (as CS2) residues in Aquatic Tox medium. S.A.J.P 2013, (2), 41-43.
Armenta, S.; Moros, J.; Garrigues, S.; de la Guardia, M. Direct determination of Mancozeb by photoacoustic spectrometry. Anal. Chim. Acta, 2006, 567(2), 255-261.
[] [PMID: 17723599]
Berrada, H.; Fernández, M.; Ruiz, M.J.; Moltó, J.C.; Mañes, J.; Font, G. Surveillance of pesticide residues in fruits from Valencia during twenty months (2004/05). Food Control, 2010, 21, 36-44.
Nakazawa, H.; Tsuda, Y.; Ito, K.; Yoshimura, Y.; Kubo, H.; Homma, H. Determination of dithiocarbamate fungicides by reversed‐phase ion‐pair liquid chromatography with chemiluminescence detection. J. Liq. Chromatogr. Relat. Technol., 2004, 27(4), 705-713.
Irth, H.; De Jong, G.J.; Frei, R.W.; Brinkman, U.T. Determination of dithiocarbamates in residues by liquid chromatography with selective precolumn or reaction-detection systems. Int. J. Environ. Anal. Chem., 1990, 39(2), 129-139.
Debbarh, I.; Titier, K.; Deridet, E.; Moore, N. Identification and quantitation by high-performance liquid chromatography of mancozeb following derivatization by 1,2-benzenedithiol. J. Anal. Toxicol., 2004, 28(1), 41-45.
[] [PMID: 14987423]
Kakitani, A.; Yoshioka, T.; Nagatomi, Y.; Harayama, K. A rapid and sensitive analysis of dithiocarbamate fungicides using modified QuEChERS method and liquid chromatography-tandem mass spectrometry. J. Pestic. Sci., 2017, 42(4), 145-150.
[] [PMID: 30363097]
Schmidt, B.; Christensen, H.B.; Petersen, A.; Sloth, J.J.; Poulsen, M.E. Method validation and analysis of nine dithiocarbamates in fruits and vegetables by LC-MS/MS. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2013, 30(7), 1287-1298.
[] [PMID: 23799268]
Malik, A.K.; Faubel, W. Capillary electrophoretic determination of dithiocarbamates and ethyl xanthate. Fresenius J. Anal. Chem., 2000, 367(2), 211-214.
[] [PMID: 11225887]
Amelin, V.; Bol’Shakov, D.S.; Tretyakov, A.V. Separation and quantification of polar pesticides in well, surface, and drinking water by capillary electrophoresis. J. Anal. Chem., 2012, 67(11), 904-924.
Lo, C.C.; Ho, M.H.; Hung, M.D. Use of high-performance liquid chromatographic and atomic absorption methods to distinguish propineb, zineb, maneb, and mancozeb fungicides. J. Agric. Food Chem., 1996, 44(9), 2720-2723.
Joint FAO/WHO Expert Committee on Food Additives. World Health Organization & Food and Agriculture Organization of the United Nations. Evaluation of certain food additives and contaminants: sixty-eighth report of the Joint FAO/WHO Expert Committee on Food Additives,
Gustafsson, K.H.; Thompson, R.A. High-pressure liquid chromatographic determination of fungicidal dithiocarbamates. J. Agric. Food Chem., 1981, 29(4), 729-732.
[] [PMID: 7276375]
Buiarelli, F.; Bernardini, F.; Simonetti, G.; Di Filippo, P.; Pomata, D.; Riccardi, C.; Risoluti, R. A rapid and accurate method for the determination of methylxanthines in different nervous system stimulant beverages. J. AOAC Int., 2019, 102(3), 865-871.
[] [PMID: 30704551]
Buiarelli, F.; Di Filippo, P.; Riccardi, C.; Pomata, D.; Marsiglia, R.; Console, C.; Puri, D. Hydrophilic interaction liquid chromatography-tandem mass spectrometry analysis of fosetyl-aluminum in airborne particulate matter. J. Anal. Methods Chem., 2018, 20188792085
[] [PMID: 29686933]
Buiarelli, F.; Di Filippo, P.; Pomata, D.; Riccardi, C.; Simonetti, G. A rapid method for the determination of levoglucosan in NIST standard reference material 1649a by HPLC-MS/MS. Atmos. Environ., 2018, 195, 24-29.
Crnogorac, G.; Schwack, W. Determination of dithiocarbamate fungicide residues by liquid chromatography/mass spectrometry and stable isotope dilution assay. Rapid Commun. Mass Spectrom., 2007, 21(24), 4009-4016.
[] [PMID: 18000839]
Crnogorac, G.; Schmauder, S.; Schwack, W. Trace analysis of dithiocarbamate fungicide residues on fruits and vegetables by hydrophilic interaction liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2008, 22(16), 2539-2546.
[] [PMID: 18649322]
Oellig, C.; Schwack, W. Comparison of HILIC columns for residue analysis of dithiocarbamate fungicides. J. Liq. Chromatogr. Relat. Technol., 2017, 40(8), 415-418.
Pomata, D.; Di Filippo, P.; Riccardi, C.; Buiarelli, F.; Gallo, V. Determination of non-certified levoglucosan, sugar polyols and ergosterol in NIST Standard Reference Material 1649a. Atmos. Environ., 2014, 84, 332-338.
Kundu, C.; Goon, A.; Bhattacharyya, A. Persistence behaviour of fungicide mixture (benalaxyl-M 4% + mancozeb 65%) WP in grapes. Bull. Environ. Contam. Toxicol., 2012, 89(6), 1253-1257.
[] [PMID: 23052585]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 26 October, 2020
Page: [1041 - 1053]
Pages: 13
DOI: 10.2174/1389203721666200426234827
Price: $65

Article Metrics

PDF: 16