Animal Models for the Evaluation of Theranostic Radiopharmaceuticals

Author(s): Selin Soyluoglu*, Gulay Durmus-Altun

Journal Name: Current Radiopharmaceuticals

Volume 14 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Theranostic is a new field of medicine that combines diagnosis and patient- specific targeted treatment. In the theranostic approach, it is aimed to detect diseased cells by using targeted molecules using disease-specific biological pathways and then destroy them by cellular irradiation without damaging other tissues. Diagnostic tests guide the use of specific therapeutic agents by demonstrating the presence of the receptor/molecule on the target tissue. As the therapeutic agent is administered to patients who have a positive diagnostic test, the efficacy of treatment in these patients is largely guaranteed. As therapeutic efficacy can be predicted by therapeutic agents, it is also possible to monitor the response to treatment. Many diagnostic and therapeutic procedures in nuclear medicine are classified as theranostic. 131I treatment and scintigraphy are the best examples of the theranostic application. Likewise, 177Lu / 90Y octreotate for neuroendocrine tumors, 177Lu PSMA for metastatic or treatment-resistant prostate cancer, 90Y SIRT for metastatic liver cancer, and 223Ra for bone metastasis of prostate cancer are widely used. Moreover, nanoparticles are one of the most rapidly developing subjects of theranostics. Diagnostic and therapeutic agents that show fluorescent, ultrasonic, magnetic, radioactive, contrast, pharmacological drug or antibody properties are loaded into the nanoparticle to provide theranostic use.

Methods: This article reviewed general aspects of preclinical models for theranostic research, and presented examples from the literature.

Conclusion: To achieve successful results in rapidly accelerating personalized treatment research of today, the first step is to conduct appropriate preclinical studies.

Keywords: Preclinical models, tumor models, animal study, theranostics, pharmacological drug, lung cancer.

[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[2]
Xie, J.; Lee, S.; Chen, X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev., 2010, 62(11), 1064-1079.
[http://dx.doi.org/10.1016/j.addr.2010.07.009] [PMID: 20691229]
[3]
Alexander, N.; Vali, R.; Ahmadzadehfar, H.; Shammas, A.; Baruchel, S. Review: The Role of Radiolabeled DOTA-Conjugated Peptides for Imaging and Treatment of Childhood Neuroblastoma. Curr. Radiopharm., 2018, 11(1), 14-21.
[http://dx.doi.org/10.2174/1874471011666171215093112] [PMID: 29243585]
[4]
Jurcic, J.G. Clinical Studies with Bismuth-213 and Actinium-225 for Hematologic Malignancies. Curr. Radiopharm., 2018, 11(3), 192-199.
[http://dx.doi.org/10.2174/1874471011666180525102814] [PMID: 29793418]
[5]
Follacchio, G.A.; De Feo, M.S.; De Vincentis, G.; Monteleone, F.; Liberatore, M. Radiopharmaceuticals Labelled with Copper Radionuclides: Clinical Results in Human Beings. Curr. Radiopharm., 2018, 11(1), 22-33.
[http://dx.doi.org/10.2174/1874471011666171211161851] [PMID: 29231149]
[6]
Soyluoglu Demir, S. Görüntüleme ProtokolleriNobel Tıp Kitabevleri. V: İstanbul; Durmus-Altun, G.; Ustun, F., Eds.; . , 2015, pp. 251-262.
[7]
Steiner, P.; Joynes, C.; Bassi, R.; Wang, S.; Tonra, J.R.; Hadari, Y.R.; Hicklin, D.J. Tumor growth inhibition with cetuximab and chemotherapy in non-small cell lung cancer xenografts expressing wild-type and mutated epidermal growth factor receptor. Clin. Cancer Res., 2007, 13(5), 1540-1551.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1887] [PMID: 17332300]
[8]
Sakuma, Y.; Matsukuma, S.; Nakamura, Y.; Yoshihara, M.; Koizume, S.; Sekiguchi, H.; Saito, H.; Nakayama, H.; Kameda, Y.; Yokose, T.; Oguni, S.; Niki, T.; Miyagi, Y. Enhanced autophagy is required for survival in EGFR-independent EGFR-mutant lung adenocarcinoma cells. Lab. Invest., 2013, 93(10), 1137-1146.
[http://dx.doi.org/10.1038/labinvest.2013.102] [PMID: 23938604]
[9]
McLemore, T.L.; Liu, M.C.; Blacker, P.C.; Gregg, M.; Alley, M.C.; Abbott, B.J.; Shoemaker, R.H.; Bohlman, M.E.; Litterst, C.C.; Hubbard, W.C.; Brennan, R.H.; McMahon, J.B.; Fine, D.L.; Eggleston, J.C.; Mayo, J.G.; Boyd, M.R. Novel intrapulmonary model for orthotopic propagation of human lung cancers in athymic nude mice. Cancer Res., 1987, 47(19), 5132-5140.
[PMID: 3621199]
[10]
Feng, Z.; Zhao, G.; Yu, L.; Gough, D.; Howell, S.B. Preclinical efficacy studies of a novel nanoparticle-based formulation of paclitaxel that out-performs Abraxane. Cancer Chemother. Pharmacol., 2010, 65(5), 923-930.
[http://dx.doi.org/10.1007/s00280-009-1099-1] [PMID: 19685054]
[11]
Üstüner, C.; Entok, E. Experimental Animal Models for Lung Cancer. Nucl. Med. Semin., 2019, 5, 40-48.
[http://dx.doi.org/10.4274/nts.galenos.2019.0006]
[12]
Sakai, Y.; Sasahira, T.; Ohmori, H.; Yoshida, K.; Kuniyasu, H. Conjugated linoleic acid reduced metastasized LL2 tumors in mouse peritoneum. Virchows Arch., 2006, 449(3), 341-347.
[http://dx.doi.org/10.1007/s00428-006-0249-7] [PMID: 16896890]
[13]
Pezzuto, F.; Fortarezza, F.; Lunardi, F.; Calabrese, F. Are there any theranostic biomarkers in small cell lung carcinoma? J. Thorac. Dis., 2019, 11(Suppl. 1), S102-S112.
[http://dx.doi.org/10.21037/jtd.2018.12.14] [PMID: 30775033]
[14]
Chi, Y.H.; Hsiao, J.K.; Lin, M.H.; Chang, C.; Lan, C.H.; Wu, H.C. Lung Cancer-Targeting Peptides with Multi-subtype Indication for Combinational Drug Delivery and Molecular Imaging. Theranostics, 2017, 7(6), 1612-1632.
[http://dx.doi.org/10.7150/thno.17573] [PMID: 28529640]
[15]
Wang, T.; Peng, Y.; Li, X.; Li, D.; Zuo, C. Preliminary study of 177Lu-labeled Herceptin as theranostic agent of HER2-positive human lung adenocarcinoma xenografts in mice. J. Nucl. Med., 2019, 60, 1055.
[16]
Wu, X.; Gong, S.; Roy-Burman, P.; Lee, P.; Culig, Z. Current mouse and cell models in prostate cancer research. Endocr. Relat. Cancer, 2013, 20(4), R155-R170.
[http://dx.doi.org/10.1530/ERC-12-0285] [PMID: 23580590]
[17]
Lin, D.; Wyatt, A.W.; Xue, H.; Wang, Y.; Dong, X.; Haegert, A.; Wu, R.; Brahmbhatt, S.; Mo, F.; Jong, L.; Bell, R.H.; Anderson, S.; Hurtado-Coll, A.; Fazli, L.; Sharma, M.; Beltran, H.; Rubin, M.; Cox, M.; Gout, P.W.; Morris, J.; Goldenberg, L.; Volik, S.V.; Gleave, M.E.; Collins, C.C.; Wang, Y. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res., 2014, 74(4), 1272-1283.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2921-T] [PMID: 24356420]
[18]
Garber, K. From human to mouse and back: ‘tumorgraft’ models surge in popularity. J. Natl. Cancer Inst., 2009, 101(1), 6-8.
[http://dx.doi.org/10.1093/jnci/djn481] [PMID: 19116380]
[19]
Giovacchini, G.; Giovannini, E.; Riondato, M.; Ciarmiello, A. PET/CT With 68Ga-PSMA in Prostate Cancer: Radiopharmaceutical Background and Clinical Implications. Curr. Radiopharm., 2018, 11(1), 4-13.
[http://dx.doi.org/10.2174/1874471010666171101121803] [PMID: 29090673]
[20]
Lückerath, K.; Wei, L.; Fendler, W.P.; Evans-Axelsson, S.; Stuparu, A.D.; Slavik, R.; Mona, C.E.; Calais, J.; Rettig, M.; Reiter, R.E.; Herrmann, K.; Radu, C.G.; Czernin, J.; Eiber, M. Preclinical evaluation of PSMA expression in response to androgen receptor blockade for theranostics in prostate cancer. EJNMMI Res., 2018, 8(1), 96.
[http://dx.doi.org/10.1186/s13550-018-0451-z] [PMID: 30374743]
[21]
Shi, S.J.; Wang, L.J.; Han, D.H.; Wu, J.H.; Jiao, D.; Zhang, K.L.; Chen, J.W.; Li, Y.; Yang, F.; Zhang, J.L.; Zheng, G.X.; Yang, A.G.; Zhao, A.Z.; Qin, W.J.; Wen, W.H. Therapeutic effects of human monoclonal PSMA antibody-mediated TRIM24 siRNA delivery in PSMA-positive castration-resistant prostate cancer. Theranostics, 2019, 9(5), 1247-1263.
[http://dx.doi.org/10.7150/thno.29884] [PMID: 30867828]
[22]
Voskoglou-Nomikos, T.; Pater, J.L.; Seymour, L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin. Cancer Res., 2003, 9(11), 4227-4239.
[PMID: 14519650]
[23]
Özgur Karaçalıoğlu, A. Preclinical Models and Imaging Techniques for Studing Prostate and Colorectal Cancers. Nucl. Med. Semin, 2019, 5, 49-58.
[http://dx.doi.org/10.4274/nts.galenos.2019.0007]
[24]
Hidalgo, M.; Bruckheimer, E.; Rajeshkumar, N.V.; Garrido-Laguna, I.; De Oliveira, E.; Rubio-Viqueira, B.; Strawn, S.; Wick, M.J.; Martell, J.; Sidransky, D. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol. Cancer Ther., 2011, 10(8), 1311-1316.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0233] [PMID: 21673092]
[25]
Okumura, M.; Ichihara, H.; Matsumoto, Y. Hybrid liposomes showing enhanced accumulation in tumors as theranostic agents in the orthotopic graft model mouse of colorectal cancer. Drug Deliv., 2018, 25(1), 1192-1199.
[http://dx.doi.org/10.1080/10717544.2018.1475517] [PMID: 29790374]
[26]
Persson, M.; Rasmussen, P.; Madsen, J.; Ploug, M.; Kjaer, A. New peptide receptor radionuclide therapy of invasive cancer cells: in vivo studies using 177Lu-DOTA-AE105 targeting uPAR in human colorectal cancer xenografts. Nucl. Med. Biol., 2012, 39(7), 962-969.
[http://dx.doi.org/10.1016/j.nucmedbio.2012.05.007] [PMID: 22739362]
[27]
Kruse, C.A.; Molleston, M.C.; Parks, E.P.; Schiltz, P.M.; Kleinschmidt-DeMasters, B.K.; Hickey, W.F. A rat glioma model, CNS-1, with invasive characteristics similar to those of human gliomas: a comparison to 9L gliosarcoma. J. Neurooncol., 1994, 22(3), 191-200.
[http://dx.doi.org/10.1007/BF01052919] [PMID: 7760095]
[28]
Ali, S.; Curtin, J.F.; Zirger, J.M.; Xiong, W.; King, G.D.; Barcia, C.; Liu, C.; Puntel, M.; Goverdhana, S.; Lowenstein, P.R.; Castro, M.G. Inflammatory and anti-glioma effects of an adenovirus expressing human soluble Fms-like tyrosine kinase 3 ligand (hsFlt3L): treatment with hsFlt3L inhibits intracranial glioma progression. Mol. Ther., 2004, 10(6), 1071-1084.
[http://dx.doi.org/10.1016/j.ymthe.2004.08.025] [PMID: 15564139]
[29]
Candolfi, M.; Curtin, J.F.; Nichols, W.S.; Muhammad, A.G.; King, G.D.; Pluhar, G.E.; McNiel, E.A.; Ohlfest, J.R.; Freese, A.B.; Moore, P.F.; Lerner, J.; Lowenstein, P.R.; Castro, M.G. Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J. Neurooncol., 2007, 85(2), 133-148.
[http://dx.doi.org/10.1007/s11060-007-9400-9] [PMID: 17874037]
[30]
Mannucci, S.; Tambalo, S.; Conti, G.; Ghin, L.; Milanese, A.; Carboncino, A.; Nicolato, E.; Marinozzi, M.R.; Benati, D.; Bassi, R.; Marzola, P.; Sbarbati, A. Magnetosomes Extracted from Magnetospirillum gryphiswaldense as Theranostic Agents in an Experimental Model of Glioblastoma. Contrast Media Mol. Imaging, 2018, 20182198703
[http://dx.doi.org/10.1155/2018/2198703] [PMID: 30116160]
[31]
Zhang, L.; Shan, X.; Meng, X.; Gu, T.; Guo, L.; An, X.; Jiang, Q.; Ge, H.; Ning, X. Novel Integrin αvβ3-Specific Ligand for the Sensitive Diagnosis of Glioblastoma. Mol. Pharm., 2019, 29.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00602]
[32]
Heindryckx, F.; Colle, I.; Van Vlierberghe, H. Experimental mouse models for hepatocellular carcinoma research. Int. J. Exp. Pathol., 2009, 90(4), 367-386.
[http://dx.doi.org/10.1111/j.1365-2613.2009.00656.x] [PMID: 19659896]
[33]
Santos, N.P.; Colaço, A.A.; Oliveira, P.A. Animal models as a tool in hepatocellular carcinoma research: A Review. Tumour Biol., 2017, 39(3)1010428317695923
[http://dx.doi.org/10.1177/1010428317695923] [PMID: 28347231]
[34]
Colvin, E.K.; Weir, C.; Ikin, R.J.; Hudson, A.L. SV40 TAg mouse models of cancer. Semin. Cell Dev. Biol., 2014, 27, 61-73.
[http://dx.doi.org/10.1016/j.semcdb.2014.02.004] [PMID: 24583142]
[35]
Bakiri, L.; Wagner, E.F. Mouse models for liver cancer. Mol. Oncol., 2013, 7(2), 206-223.
[http://dx.doi.org/10.1016/j.molonc.2013.01.005] [PMID: 23428636]
[36]
van Breugel, J.M.M.; Geschwind, J.F.; Mirpour, S.; Savic, L.J.; Zhang, X.; Duran, R.; Lin, M.; Miszczuk, M.; Liapi, E.; Chapiro, J. Theranostic application of lipiodol for transarterial chemoembolization in a VX2 rabbit liver tumor model. Theranostics, 2019, 9(13), 3674-3686.
[http://dx.doi.org/10.7150/thno.32943] [PMID: 31281506]
[37]
White, S.B.; Procissi, D.; Chen, J.; Gogineni, V.R.; Tyler, P.; Yang, Y.; Omary, R.A.; Larson, A.C. Characterization of CC-531 as a Rat Model of Colorectal Liver Metastases. PLoS One, 2016, 11(5)e0155334
[http://dx.doi.org/10.1371/journal.pone.0155334] [PMID: 27171151]
[38]
Arguello, F.; Baggs, R.B.; Frantz, C.N. A murine model of experimental metastasis to bone and bone marrow. Cancer Res., 1988, 48(23), 6876-6881.
[PMID: 3180096]
[39]
Rbah-Vidal, L.; Vidal, A.; Billaud, E.M.; Besse, S.; Ranchon-Cole, I.; Mishellany, F.; Perrot, Y.; Maigne, L.; Moins, N.; Guerquin-Kern, J.L.; Degoul, F.; Chezal, J.M.; Auzeloux, P.; Miot-Noirault, E. Theranostic Approach for Metastatic Pigmented Melanoma Using ICF15002, a Multimodal Radiotracer for Both PET Imaging and Targeted Radionuclide Therapy. Neoplasia, 2017, 19(1), 17-27.
[http://dx.doi.org/10.1016/j.neo.2016.11.001] [PMID: 27987437]
[40]
Dho, S.H.; Kim, S.Y.; Chung, C.; Cho, E.H.; Lee, S.Y.; Kim, J.Y.; Kim, L.K.; Min, S.W.; Lee, J.; Jung, S.H.; Lim, J.C. Development of a radionuclide-labeled monoclonal anti-CD55 antibody with theranostic potential in pleural metastatic lung cancer. Sci. Rep., 2018, 8(1), 8960.
[http://dx.doi.org/10.1038/s41598-018-27355-8] [PMID: 29895866]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 1
Year: 2021
Published on: 25 April, 2020
Page: [15 - 22]
Pages: 8
DOI: 10.2174/1874471013666200425223428
Price: $65

Article Metrics

PDF: 29
HTML: 2