Elimination of the Causes of Poor Sleep Underlying Delirium is a Basic Strategy to Prevent Delirium

Author(s): Riyo Enomoto, Eibai Lee-Hiraiwa*

Journal Name: Current Molecular Pharmacology

Volume 14 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Delirium is a very common but annoying clinical state that interferes with the treatment of background disease and delays recovery. Delirium is a troublesome condition that exhausts not only the patient but also his/her family and healthcare professionals. Since aging is a risk factor for delirium, how to control delirium is an extremely important issue in an aging society. Phenotype of delirium is so diverse that it is difficult to elucidate the mechanism of individual symptoms, but it is clinically well known that maintaining sleep quality is important in preventing and improving delirium. Drugs and factors that are known to disrupt the sleep-wake cycle also overlap with the risk factors for delirium, indicating the close connection between delirium and sleep. Although the sleep-wake cycle is tightly regulated by many neurotransmitters and hormones, the role of each substance in this cycle is being elucidated in detail. It is well known that acetylcholine is one of the most important neurotransmitters involved in wakefulness, and anticholinergic drugs reduce rapid eye movement sleep. Anticholinergic drugs are also the major drug causing drug-induced delirium. Several clinical studies have reported that melatonin receptor agonists reduce delirium. Some clinical studies have examined the relationship between delirium and environmental factors that interfere with sleep, such as noise and brightness. The purpose of this review is to organize the cause of poor sleep underlying delirium and propose strategies to prevent delirium, based on rich neurological and pharmacological findings of sleep. We consider that elimination of causes of sleep deprivation underlying delirium is one of the most effective prevention strategies for delirium.

Keywords: Acetylcholine, adenosine, delirium, histamine, melatonin, poor sleep.

[1]
Marcantonio, E. R. the clinic. Delirium. Annals of internal medicine, 2011, 154(11) ITC6-1, ITC6-2, ITC6-3, ITC6-4, ITC6-5, ITC6-6, ITC6-7, ITC6-8, ITC6-9, ITC6-10, ITC6-11, ITC6-12, ITC6-13, ITC6-14, ITC6-15; quiz ITC6-16.
[2]
Marcantonio, E.R. Delirium in Hospitalized Older Adults. N. Engl. J. Med., 2017, 377(15), 1456-1466.
[http://dx.doi.org/10.1056/NEJMcp1605501] [PMID: 29020579]
[3]
Davis, D.H.; Muniz Terrera, G.; Keage, H.; Rahkonen, T.; Oinas, M.; Matthews, F.E.; Cunningham, C.; Polvikoski, T.; Sulkava, R.; MacLullich, A.M.; Brayne, C. Delirium is a strong risk factor for dementia in the oldest-old: a population-based cohort study. Brain, 2012, 135(Pt 9), 2809-2816.
[http://dx.doi.org/10.1093/brain/aws190] [PMID: 22879644]
[4]
Lipowski, Z.J. Delirium (acute confusional states). JAMA, 1987, 258(13), 1789-1792.
[http://dx.doi.org/10.1001/jama.1987.03400130103041] [PMID: 3625989]
[5]
Ganai, S.; Lee, K. F.; Merrill, A.; Lee, M. H.; Bellantonio, S.; Brennan, M.; Lindenauer, P. Adverse outcomes of geriatric patients undergoing abdominal surgery who are at high risk for delirium. Archives of surgery (Chicago, Ill. : 1960), 2007, 142(11), 1072-8.
[http://dx.doi.org/10.1001/archsurg.142.11.1072]
[6]
Inouye, S.K.; Bogardus, S.T., Jr; Baker, D.I.; Leo-Summers, L.; Cooney, L.M., Jr The Hospital Elder Life Program: a model of care to prevent cognitive and functional decline in older hospitalized patients. J. Am. Geriatr. Soc., 2000, 48(12), 1697-1706.
[http://dx.doi.org/10.1111/j.1532-5415.2000.tb03885.x] [PMID: 11129764]
[7]
Rubin, F.H.; Neal, K.; Fenlon, K.; Hassan, S.; Inouye, S.K. Sustainability and scalability of the hospital elder life program at a community hospital. J. Am. Geriatr. Soc., 2011, 59(2), 359-365.
[http://dx.doi.org/10.1111/j.1532-5415.2010.03243.x] [PMID: 21314654]
[8]
Inouye, S.K.; Bogardus, S.T., Jr; Charpentier, P.A.; Leo-Summers, L.; Acampora, D.; Holford, T.R.; Cooney, L.M., Jr A multicomponent intervention to prevent delirium in hospitalized older patients. N. Engl. J. Med., 1999, 340(9), 669-676.
[http://dx.doi.org/10.1056/NEJM199903043400901] [PMID: 10053175]
[9]
Chakraborti, D.; Tampi, D.J.; Tampi, R.R. Melatonin and melatonin agonist for delirium in the elderly patients. Am. J. Alzheimers Dis. Other Demen., 2015, 30(2), 119-129.
[http://dx.doi.org/10.1177/1533317514539379] [PMID: 24946785]
[10]
Roffwarg, H.P.; Muzio, J.N.; Dement, W.C. Ontogenetic development of the human sleep-dream cycle. Science, 1966, 152(3722), 604-619.
[http://dx.doi.org/10.1126/science.152.3722.604] [PMID: 17779492]
[11]
Mander, B.A.; Winer, J.R.; Walker, M.P. Sleep and Human Aging. Neuron, 2017, 94(1), 19-36.
[http://dx.doi.org/10.1016/j.neuron.2017.02.004] [PMID: 28384471]
[12]
a) Ancoli-Israel, S.; Parker, L.; Sinaee, R.; Fell, R.L.; Kripke, D.F. Sleep fragmentation in patients from a nursing home. J. Gerontol., 1989, 44(1), M18-M21.
b) Mishima, K.; Tozawa, T.; Satoh, K.; Matsumoto, Y.; Hishikawa, Y.; Okawa, M. Melatonin secretion rhythm disorders in patients with senile dementia of Alzheimer’s type with disturbed sleep-waking. Biol. Psychiatry, 1999, 45(4), 417-421.
[http://dx.doi.org/10.1093/geronj/44.1.M18] [PMID: 2910988] [http://dx.doi.org/10.1016/S0006-3223(97)00510-6] [PMID: 10071710]
[13]
Pisani, M.A.; Friese, R.S.; Gehlbach, B.K.; Schwab, R.J.; Weinhouse, G.L.; Jones, S.F. Sleep in the intensive care unit. Am. J. Respir. Crit. Care Med., 2015, 191(7), 731-738.
[http://dx.doi.org/10.1164/rccm.201411-2099CI] [PMID: 25594808]
[14]
Park, M.; Kohlrausch, A.; de Bruijn, W.; de Jager, P.; Simons, K. Analysis of the soundscape in an intensive care unit based on the annotation of an audio recording. J. Acoust. Soc. Am., 2014, 135(4), 1875-1886.
[http://dx.doi.org/10.1121/1.4868367] [PMID: 25234986]
[15]
Simons, K.S.; Verweij, E.; Lemmens, P.M.C.; Jelfs, S.; Park, M.; Spronk, P.E.; Sonneveld, J.P.C.; Feijen, H.M.; van der Steen, M.S.; Kohlrausch, A.G.; van den Boogaard, M.; de Jager, C.P.C. Noise in the intensive care unit and its influence on sleep quality: a multicenter observational study in Dutch intensive care units. Crit. Care, 2018, 22(1), 250.
[http://dx.doi.org/10.1186/s13054-018-2182-y] [PMID: 30290829]
[16]
Mishima, K.; Okawa, M.; Shimizu, T.; Hishikawa, Y. Diminished melatonin secretion in the elderly caused by insufficient environmental illumination. J. Clin. Endocrinol. Metab., 2001, 86(1), 129-134.
[http://dx.doi.org/10.1210/jc.86.1.129] [PMID: 11231989]
[17]
Potharajaroen, S.; Tangwongchai, S.; Tayjasanant, T.; Thawitsri, T.; Anderson, G.; Maes, M. Bright light and oxygen therapies decrease delirium risk in critically ill surgical patients by targeting sleep and acid-base disturbances. Psychiatry Res., 2018, 261, 21-27.
[http://dx.doi.org/10.1016/j.psychres.2017.12.046] [PMID: 29276990]
[18]
Alagiakrishnan, K. Melatonin based therapies for delirium and dementia. Discov. Med., 2016, 21(117), 363-371.
[PMID: 27355332]
[19]
Walker, C.K.; Gales, M.A. Melatonin Receptor Agonists for Delirium Prevention. Ann. Pharmacother., 2017, 51(1), 72-78.
[http://dx.doi.org/10.1177/1060028016665863] [PMID: 27539735]
[20]
Panula, P.; Chazot, P.L.; Cowart, M.; Gutzmer, R.; Leurs, R.; Liu, W.L.; Stark, H.; Thurmond, R.L.; Haas, H.L. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol. Rev., 2015, 67(3), 601-655.
[http://dx.doi.org/10.1124/pr.114.010249] [PMID: 26084539]
[21]
Khateb, A.; Fort, P.; Pegna, A.; Jones, B.E.; Mühlethaler, M. Cholinergic nucleus basalis neurons are excited by histamine in vitro. Neuroscience, 1995, 69(2), 495-506.
[http://dx.doi.org/10.1016/0306-4522(95)00264-J] [PMID: 8552244]
[22]
Brown, R.E.; Stevens, D.R.; Haas, H.L. The physiology of brain histamine. Prog. Neurobiol., 2001, 63(6), 637-672.
[http://dx.doi.org/10.1016/S0301-0082(00)00039-3] [PMID: 11164999]
[23]
Zhang, D.; Tashiro, M.; Shibuya, K.; Okamura, N.; Funaki, Y.; Yoshikawa, T.; Kato, M.; Yanai, K. Next-day residual sedative effect after nighttime administration of an over-the-counter antihistamine sleep aid, diphenhydramine, measured by positron emission tomography. J. Clin. Psychopharmacol., 2010, 30(6), 694-701.
[http://dx.doi.org/10.1097/JCP.0b013e3181fa8526] [PMID: 21105284]
[24]
Katayose, Y.; Aritake, S.; Kitamura, S.; Enomoto, M.; Hida, A.; Takahashi, K.; Mishima, K. Carryover effect on next-day sleepiness and psychomotor performance of nighttime administered antihistaminic drugs: a randomized controlled trial. Hum. Psychopharmacol., 2012, 27(4), 428-436.
[http://dx.doi.org/10.1002/hup.2244] [PMID: 22806823]
[25]
Wang, Y.Q.; Takata, Y.; Li, R.; Zhang, Z.; Zhang, M.Q.; Urade, Y.; Qu, W.M.; Huang, Z.L. Doxepin and diphenhydramine increased non-rapid eye movement sleep through blockade of histamine H1 receptors. Pharmacol. Biochem. Behav., 2015, 129, 56-64.
[http://dx.doi.org/10.1016/j.pbb.2014.12.002] [PMID: 25498564]
[26]
Yanai, K.; Yoshikawa, T.; Yanai, A.; Nakamura, T.; Iida, T.; Leurs, R.; Tashiro, M. The clinical pharmacology of non-sedating antihistamines. Pharmacol. Ther., 2017, 178, 148-156.
[http://dx.doi.org/10.1016/j.pharmthera.2017.04.004] [PMID: 28457804]
[27]
Woolf, N.J. Cholinergic systems in mammalian brain and spinal cord. Prog. Neurobiol., 1991, 37(6), 475-524.
[http://dx.doi.org/10.1016/0301-0082(91)90006-M] [PMID: 1763188]
[28]
Vanderwolf, C.H. The electrocorticogram in relation to physiology and behavior: a new analysis. Electroencephalogr. Clin. Neurophysiol., 1992, 82(3), 165-175.
[http://dx.doi.org/10.1016/0013-4694(92)90164-D] [PMID: 1371436]
[29]
Marrosu, F.; Portas, C.; Mascia, M.S.; Casu, M.A.; Fà, M.; Giagheddu, M.; Imperato, A.; Gessa, G.L. Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats. Brain Res., 1995, 671(2), 329-332.
[http://dx.doi.org/10.1016/0006-8993(94)01399-3] [PMID: 7743225]
[30]
Salin-Pascual, R.J.; Grandos-Fuentes, D.; Galicia-Polo, L.; Nieves, E.; Roehrs, T.A.; Roth, T. Biperiden administration during REM sleep deprivation diminished the frequency of REM sleep attempts. Sleep, 1992, 15(3), 252-256.
[http://dx.doi.org/10.1093/sleep/15.3.252] [PMID: 1621026]
[31]
Vanni-Mercier, G.; Sakai, K.; Lin, J.S.; Jouvet, M. Mapping of cholinoceptive brainstem structures responsible for the generation of paradoxical sleep in the cat. Arch. Ital. Biol., 1989, 127(3), 133-164.
[PMID: 2774793]
[32]
Niwa, Y.; Kanda, G.N.; Yamada, R.G.; Shi, S.; Sunagawa, G.A.; Ukai-Tadenuma, M.; Fujishima, H.; Matsumoto, N.; Masumoto, K.H.; Nagano, M.; Kasukawa, T.; Galloway, J.; Perrin, D.; Shigeyoshi, Y.; Ukai, H.; Kiyonari, H.; Sumiyama, K.; Ueda, H.R. Muscarinic Acetylcholine Receptors Chrm1 and Chrm3 Are Essential for REM Sleep. Cell Rep., 2018, 24(9), 2231-2247.e7.
[http://dx.doi.org/10.1016/j.celrep.2018.07.082] [PMID: 30157420]
[33]
Hayashi, Y.; Kashiwagi, M.; Yasuda, K.; Ando, R.; Kanuka, M.; Sakai, K.; Itohara, S. Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice. Science, 2015, 350(6263), 957-961.
[http://dx.doi.org/10.1126/science.aad1023] [PMID: 26494173]
[34]
Satoh, S.; Matsumura, H.; Hayaishi, O. Involvement of adenosine A2A receptor in sleep promotion. Eur. J. Pharmacol., 1998, 351(2), 155-162.
[http://dx.doi.org/10.1016/S0014-2999(98)00302-1] [PMID: 9686998]
[35]
Kong, J.; Shepel, P.N.; Holden, C.P.; Mackiewicz, M.; Pack, A.I.; Geiger, J.D. Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J. Neurosci., 2002, 22(13), 5581-5587.
[http://dx.doi.org/10.1523/JNEUROSCI.22-13-05581.2002] [PMID: 12097509]
[36]
Wigren, H.K.; Schepens, M.; Matto, V.; Stenberg, D.; Porkka-Heiskanen, T. Glutamatergic stimulation of the basal forebrain elevates extracellular adenosine and increases the subsequent sleep. Neuroscience, 2007, 147(3), 811-823.
[http://dx.doi.org/10.1016/j.neuroscience.2007.04.046] [PMID: 17574765]
[37]
Porkka-Heiskanen, T.; Strecker, R.E.; McCarley, R.W. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience, 2000, 99(3), 507-517.
[http://dx.doi.org/10.1016/S0306-4522(00)00220-7] [PMID: 11029542]
[38]
Huang, Z.L.; Urade, Y.; Hayaishi, O. The role of adenosine in the regulation of sleep. Curr. Top. Med. Chem., 2011, 11(8), 1047-1057.
[http://dx.doi.org/10.2174/156802611795347654] [PMID: 21401496]
[39]
Huang, Z.L.; Qu, W.M.; Eguchi, N.; Chen, J.F.; Schwarzschild, M.A.; Fredholm, B.B.; Urade, Y.; Hayaishi, O. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat. Neurosci., 2005, 8(7), 858-859.
[http://dx.doi.org/10.1038/nn1491] [PMID: 15965471]
[40]
Mishina, M.; Kimura, Y.; Naganawa, M.; Ishii, K.; Oda, K.; Sakata, M.; Toyohara, J.; Kobayashi, S.; Katayama, Y.; Ishiwata, K. Differential effects of age on human striatal adenosine A₁ and A(2A) receptors. Synapse, 2012, 66(9), 832-839.
[http://dx.doi.org/10.1002/syn.21573] [PMID: 22623181]
[41]
Mishina, M.; Kimura, Y.; Sakata, M.; Ishii, K.; Oda, K.; Toyohara, J.; Kimura, K.; Ishiwata, K. Age-Related Decrease in Male Extra-Striatal Adenosine A1 Receptors Measured Using11C-MPDX PET. Front. Pharmacol., 2017, 8, 903.
[http://dx.doi.org/10.3389/fphar.2017.00903] [PMID: 29326588]
[42]
Scammell, T.E.; Gerashchenko, D.Y.; Mochizuki, T.; McCarthy, M.T.; Estabrooke, I.V.; Sears, C.A.; Saper, C.B.; Urade, Y.; Hayaishi, O. An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience, 2001, 107(4), 653-663.
[http://dx.doi.org/10.1016/S0306-4522(01)00383-9] [PMID: 11720788]
[43]
Li, R.; Wang, Y.Q.; Liu, W.Y.; Zhang, M.Q.; Li, L.; Cherasse, Y.; Schiffmann, S.N.; de Kerchove d’Exaerde, A.; Lazarus, M.; Qu, W.M.; Huang, Z.L. Activation of adenosine A2A receptors in the olfactory tubercle promotes sleep in rodents. Neuropharmacology, 2019, 168107923
[http://dx.doi.org/10.1016/j.neuropharm.2019.107923] [PMID: 31874169]
[44]
Korkutata, M.; Saitoh, T.; Cherasse, Y.; Ioka, S.; Duo, F.; Qin, R.; Murakoshi, N.; Fujii, S.; Zhou, X.; Sugiyama, F.; Chen, J.F.; Kumagai, H.; Nagase, H.; Lazarus, M. Enhancing endogenous adenosine A2A receptor signaling induces slow-wave sleep without affecting body temperature and cardiovascular function. Neuropharmacology, 2019, 144, 122-132.
[http://dx.doi.org/10.1016/j.neuropharm.2018.10.022] [PMID: 30336152]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 2
Year: 2021
Published on: 24 April, 2020
Page: [132 - 137]
Pages: 6
DOI: 10.2174/1874467213666200424150709

Article Metrics

PDF: 56
HTML: 3
EPUB: 1