Synthesis, In Vitro Antitumor Activity and Molecular Mechanism of Novel Furan Derivatives and their Precursors

Author(s): Dan Lu, Ya Zhou, Qin Li, Juan Luo, Qihua Jiang, Baicheng He*, Qiang Tang*

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 12 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Compounds featuring furan nucleus exhibit diverse biological properties. Lots of furan derivatives have been explored as pharmaceutical compounds. Hence it is of great interest to explore furan derivatives and their precursors as antitumor agents.

Objective: A series of novel furan derivatives and their precursors (1-36) were synthesized from α-haloketones and β-dicarbonyl compounds.

Methods: The reactions between β-dicarbonyl compounds and α-haloketones under basic conditions produced tricarbonyls or dihydrofurans, which were then condensed into their corresponding furan products. Their potential antiproliferative activity in vitro against two human tumor cell lines-cervical (HeLa) and colorectal (SW620) was evaluated using CCK-8 assay. Compounds 1 and 24 were selected for Western blot analysis.

Results: Pronounced anti-proliferative effect in the micromolar level was observed for compounds (1, 4, 17, 20, 21, 24, 27, 31 and 32) in HeLa cells, with their IC50 values ranging from 0.08 to 8.79μM. Additionally, furan compounds (24, 26, 32 and 35) had moderate to potent anti-proliferative activity against the SW620 cell line. Furthermore, the possible targets of these compounds were explored by Western blot analysis. The results indicated that the candidates (compounds 1 and 24) exhibited excellent antiproliferative activity, which may be mediated by promoting the activity of PTEN to suppress PI3K/Akt and Wnt/β-catenin signaling.

Conclusion: Most of the furan derivatives and their precursors reported herein exhibited moderate to excellent anti-proliferative activity against HeLa cell line and/or SW620 cell line. Compounds 1 and 24, as well as their analogues may be developed as promising anti-cancer agents.

Keywords: Furan, antitumor activity, anti-proliferation, PI3K/Akt, Wnt/β-catenin, HeLa cell line, SW620 cell line.

[1]
Benassi, R. Furans and their Benzo Derivatives: Structure. In: Comprehensive Heterocyclic Chemistry II; Scriven, A.R.; Eds;. Pergamon: Oxford, 1996; Vol 2, pp. 259-295.
[2]
Radi, S.; Tighadouini, S.; Feron, O.; Riant, O.; Bouakka, M.; Benabbes, R.; Mabkhot, Y.N. Synthesis of novel β-keto-enol derivatives tethered pyrazole, pyridine and furan as new potential antifungal and anti-breast cancer agents. Molecules, 2015, 20(11), 20186-20194.
[http://dx.doi.org/10.3390/molecules201119684] [PMID: 26569202]
[3]
Yadav, P.; Singh, P.; Tewari, A.K. Design, synthesis, docking and anti-inflammatory evaluation of novel series of benzofuran based prodrugs. Bioorg. Med. Chem. Lett., 2014, 24(10), 2251-2255.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.087] [PMID: 24745964]
[4]
Kadayat, T.M.; Banskota, S.; Gurung, P.; Bist, G.; Thapa Magar, T.B.; Shrestha, A.; Kim, J-A.; Lee, E-S. Discovery and structure-activity relationship studies of 2-benzylidene-2,3-dihydro-1Hinden-1-one and benzofuran-3(2H)-one derivatives as a novel class of potential therapeutics for inflammatory bowel disease. Eur. J. Med. Chem., 2017, 137, 575-597.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.018] [PMID: 28646757]
[5]
Vasamsetty, L.; Khan, F.A.; Mehta, G. A model approach towards the polycyclic framework present in cembranoid natural products dissectolide A, plumarellide and mandapamate. Tetrahedron Lett., 2014, 55(51), 7068-7071.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.141]
[6]
Shinonaga, H.; Kawamura, Y.; Ikeda, A.; Aoki, M.; Sakai, N.; Fujimoto, N.; Kawashima, A. The search for a hair-growth stimulant: new radicicol analogues as WNT-5A expression inhibitors from Pochonia chlamydosporia var. chlamydosporia. Tetrahedron Lett., 2009, 50(1), 108-110.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.099]
[7]
Ladurner, A.; Atanasov, A.G.; Heiss, E.H.; Baumgartner, L.; Schwaiger, S.; Rollinger, J.M.; Stuppner, H.; Dirsch, V.M. 2-(2,4-dihydroxyphenyl)-5-(E)-propenylbenzofuran promotes endothelial nitric oxide synthase activity in human endothelial cells. Biochem. Pharmacol., 2012, 84(6), 804-812.
[http://dx.doi.org/10.1016/j.bcp.2012.06.029] [PMID: 22771373]
[8]
Banerjee, R. Medicinal significance of furan derivatives: A review. Int. J. Rev. Life Sci., 2012, 2(1), 7-16.
[9]
Baldisserotto, A.; Demurtas, M.; Lampronti, I.; Moi, D.; Balboni, G.; Vertuani, S.; Manfredini, S.; Onnis, V. Benzofuran hydrazones as potential scaffold in the development of multifunctional drugs: Synthesis and evaluation of antioxidant, photoprotective and antiproliferative activity. Eur. J. Med. Chem., 2018, 156, 118-125.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.001] [PMID: 30006157]
[10]
Emami, S.; Gespach, C. Pharmacology of histamine H2 receptor antagonists in the human gastric cancer cell line HGT-1. Structure activity relationship of isocytosine-furan and imidazole derivatives related to cimetidine. Biochem. Pharmacol., 1986, 35(11), 1825-1834.
[http://dx.doi.org/10.1016/0006-2952(86)90299-6] [PMID: 2872895]
[11]
Singh, S.; Prasad, N.R.; Chufan, E.E.; Patel, B.A.; Wang, Y-J.; Chen, Z-S.; Ambudkar, S.V.; Talele, T.T. Design and synthesis of human ABCB1 (P-glycoprotein) inhibitors by peptide coupling of diverse chemical scaffolds on carboxyl and amino termini of (S)-valine-derived thiazole amino acid. J. Med. Chem., 2014, 57(10), 4058-4072.
[http://dx.doi.org/10.1021/jm401966m] [PMID: 24773054]
[12]
Zorzi, R.R.; Jorge, S.D.; Palace-Berl, F.; Pasqualoto, K.F.M.; Bortolozzo, L.S.; de Castro Siqueira, A.M.; Tavares, L.C. Exploring 5-nitrofuran derivatives against nosocomial pathogens: Synthesis, antimicrobial activity and chemometric analysis. Bioorg. Med. Chem., 2014, 22(10), 2844-2854.
[http://dx.doi.org/10.1016/j.bmc.2014.03.044] [PMID: 24751553]
[13]
Kammire, L.D.; Donofrio, P.D. Nitrofurantoin neuropathy: A forgotten adverse effect. Obstet. Gynecol., 2007, 110(2 Pt 2), 510-512.
[http://dx.doi.org/10.1097/01.AOG.0000267134.21517.41] [PMID: 17666646]
[14]
Gupta, K.; Hooton, T.M.; Roberts, P.L.; Stamm, W.E. Short-course nitrofurantoin for the treatment of acute uncomplicated cystitis in women. Arch. Intern. Med., 2007, 167(20), 2207-2212.
[http://dx.doi.org/10.1001/archinte.167.20.2207] [PMID: 17998493]
[15]
Hofnung, M.; Quillardet, P.; Michel, V.; Touati, E. Genotoxicity of 2-nitro-7-methoxy-naphtho[2,1-b]furan (R7000): A case study with some considerations on nitrofurantoin and nifuroxazide. Res. Microbiol., 2002, 153(7), 427-434.
[http://dx.doi.org/10.1016/S0923-2508(02)01354-2] [PMID: 12405349]
[16]
Lewkowski, J.; Rzeszotarska, E.; Matusiak, A.; Morawska, M.; Gajek, G.; Nowak, K.; Kontek, R. Cytotoxic action of N-aryl, furan-derived aminophosphonates against HT29 and HCT116 cancer cell lines. Anti-Cancer. Agents Med. Chem., 2019, 19(4), 453-462.
[17]
Bhat, M.A.; Al-Dhfyan, A.; Khan, A.A.; Al-Harbi, N.; Manogaran, P.S.; Alanazi, A.M.; Fun, H-K.; Al-Omar, M.A. Targeting HER-2 over expressed breast cancer cells with 2-cyclohexyl-N-[(Z)-(substituted phenyl/furan-2-yl/thiophene-2-yl)methylidene]hydrazinecarbothioamide. Bioorg. Med. Chem. Lett., 2015, 25(1), 83-87.
[http://dx.doi.org/10.1016/j.bmcl.2014.11.009] [PMID: 25466196]
[18]
Wang, F.; Lin, J.; Hou, W.; Huang, M-Y.; Sun, P-H.; Chen, W-M. 5-Benzylidene-3,4-dihalo-furan-2-one derivatives inhibit human leukemia cancer cells through suppression of NF-KB and GSK-3β. Anti-Cancer. Agents Med. Chem., 2015, 15(6), 744-754.
[19]
Chen, X.; Shi, Y-M.; Huang, C.; Xia, S.; Yang, L-J.; Yang, X-D. Novel dibenzo[b,d]furan-1H-1,2,4-triazole derivatives: Synthesis and antitumor activity. Anti-Cancer Agents Medi. Chem, 2016, 16(3), 377-386.
[20]
Królewska-Golińska, K.; Cieślak, M.J.; Sobczak, M.; Dolot, R.; Radzikowska-Cieciura, E.; Napiórkowska, M.; Wybrańska, I.; Nawrot, B. Novel benzo[b]furans with anti-microtubule activity upregulate expression of apoptotic genes and arrest leukemia cells in G2/M phase. Anti-Cancer. Agents Med. Chem., 2019, 19(3), 375-388.
[21]
Ahsan, M.J.; Choupra, A.; Sharma, R.K.; Jadav, S.S.; Padmaja, P.; Hassan, M.Z.; Al-Tamimi, A.B.S.; Geesi, M.H.; Bakht, M.A. Rationale design, synthesis, cytotoxicity evaluation, and molecular docking studies of 1,3,4-oxadiazole analogues. Anticancer. Agents Med. Chem., 2018, 18(1), 121-138.
[http://dx.doi.org/10.2174/1871520617666170419124702] [PMID: 28425854]
[22]
Gwang, J.H. Induction of rat hepatic cytochrome P4501A and P4502B by the methoxsalen. Cancer Lett., 1996, 109(1-2), 115-120.
[http://dx.doi.org/10.1016/S0304-3835(97)82727-9] [PMID: 9020910]
[23]
Fang, H.; Ji, H.; Furanocoumarin, A. A novel anticancer agent on human lung cancer A549 Cells from Fructus liquidambaris. Anti-Cancer. Agents Med. Chem., 2019, 19(17), 2091-2096.
[http://dx.doi.org/10.2174/1871520619666191010102526] [PMID: 31782355]
[24]
Bischoff, J.; Barinoff, J.; Mundhenke, C.; Bauerschlag, D.O.; Costa, S-D.; Herr, D.; Lübbe, K.; Marmé, F.; Maass, N.; von Minckwitz, G.; Grischke, E.M.; Müller, V.; Schmidt, M.; Gerber, B.; Kümmel, S.; Schumacher, C.; Krabisch, P.; Seiler, S.; Thill, M.; Nekljudova, V.; Loibl, S. A randomized phase II study to determine the efficacy and tolerability of two doses of eribulin plus lapatinib in trastuzumab-pretreated patients with HER-2-positive metastatic breast cancer (E-VITA). Anticancer Drugs, 2019, 30(4), 394-401.
[http://dx.doi.org/10.1097/CAD.0000000000000722] [PMID: 30875348]
[25]
Alnabulsi, S.; Santina, E.; Russo, I.; Hussein, B.; Kadirvel, M.; Chadwick, A.; Bichenkova, E.V.; Bryce, R.A.; Nolan, K.; Demonacos, C.; Stratford, I.J.; Freeman, S. Non-symmetrical furan amidines as novel leads for the treatment of cancer and malaria. Eur. J. Med. Chem., 2016, 111(Suppl. C), 33-45.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.022] [PMID: 26854376]
[26]
Chikamatsu, S.; Saijo, K.; Imai, H.; Narita, K.; Kawamura, Y.; Katoh, T.; Ishioka, C. In vitro and in vivo antitumor activity and the mechanism of siphonodictyal B in human colon cancer cells. Cancer Med., 2019, 8(12), 5662-5672.
[http://dx.doi.org/10.1002/cam4.2409] [PMID: 31364822]
[27]
Ali, M.S.; Hussein, R.M.; Gaber, Y.; Hammam, O.A.; Kandeil, M.A. Modulation of JNK-1/β-catenin signaling by Lactobacillus casei, inulin and their combination in 1,2-dimethylhydrazine induced colon cancer in mice. RSC Advances, 2019, 9(50), 29368-29383.
[http://dx.doi.org/10.1039/C9RA04388H]
[28]
Wu, M-F.; Guan, M-M.; Liu, C-H.; Wu, J-Y.; Rao, Q-X.; Li, J. The added value of fasting blood glucose to serum squamous cell carcinoma antigen for predicting oncological outcomes in cervical cancer patients receiving neoadjuvant chemotherapy followed by radical hysterectomy. Cancer Med., 2019, 8(11), 5068-5078.
[http://dx.doi.org/10.1002/cam4.2414] [PMID: 31310455]
[29]
Feng, S.; Liu, W.; Bai, X.; Pan, W.; Jia, Z.; Zhang, S.; Zhu, Y.; Tan, W. LncRNA-CTS promotes metastasis and epithelial to mesenchymal transition through regulating miR-505/ZEB2 axis in cervical cancer. Cancer Lett., 2019, 465, 105-117.
[http://dx.doi.org/10.1016/j.canlet.2019.09.002] [PMID: 31499118]
[30]
Ghosh, K.; Karmakar, R.; Mal, D. Total synthesis of neo tanshinlactones through a cascade benzannulation-lactonization as the key step. Eur. J. Org. Chem., 2013, 2013(19), 4037-4046.
[http://dx.doi.org/10.1002/ejoc.201300102]
[31]
Zhao, D.; Sun, B.; Ren, J.; Li, F.; Song, S.; Lv, X.; Hao, C.; Cheng, M. Synthesis and biological evaluation of 3-phenyl-3-aryl carboxamido propanoic acid derivatives as small molecule inhibitors of retinoic acid 4-hydroxylase (CYP26A1). Bioorg. Med. Chem., 2015, 23(6), 1356-1365.
[http://dx.doi.org/10.1016/j.bmc.2014.11.036] [PMID: 25684424]
[32]
Peng, Y.; Luo, J.; Feng, Q.; Tang, Q. Understanding the scope of Feist–Bénary furan synthesis: Chemoselectivity and diastereoselectivity of the reaction between α-halo ketones and β-dicarbonyl compounds. Eur. J. Org. Chem., 2016, 2016(30), 5169-5179.
[http://dx.doi.org/10.1002/ejoc.201600975]
[33]
Shimada, I.; Maeno, K.; Kazuta, K.; Kubota, H.; Kimizuka, T.; Kimura, Y.; Hatanaka, K.; Naitou, Y.; Wanibuchi, F.; Sakamoto, S.; Tsukamoto, S. Synthesis and structure-activity relationships of a series of substituted 2-(1H-furo[2,3-g]indazol-1-yl)ethylamine derivatives as 5-HT2C receptor agonists. Bioorg. Med. Chem., 2008, 16(4), 1966-1982.
[http://dx.doi.org/10.1016/j.bmc.2007.10.100] [PMID: 18035544]
[34]
Risitano, F.; Grassi, G.; Foti, F.; Bilardo, C. A convenient synthesis of furo[3,2-c]coumarins by a tandem alkylation/intramolecular aldolisation reaction. Tetrahedron Lett., 2001, 42(20), 3503-3505.
[http://dx.doi.org/10.1016/S0040-4039(01)00490-7]
[35]
Blagodatski, A.; Poteryaev, D.; Katanaev, V.L. Targeting the Wnt pathways for therapies. Mol. Cell. Ther., 2014, 2(1), 28.
[http://dx.doi.org/10.1186/2052-8426-2-28] [PMID: 26056595]
[36]
Ersahin, T.; Tuncbag, N.; Cetin-Atalay, R. The PI3K/AKT/mTOR interactive pathway. Mol. Biosyst., 2015, 11(7), 1946-1954.
[http://dx.doi.org/10.1039/C5MB00101C] [PMID: 25924008]
[37]
Zhang, L-L.; Mu, G-G.; Ding, Q-S.; Li, Y-X.; Shi, Y-B.; Dai, J-F.; Yu, H-G. PTEN represses colon cancer progression through inhibiting paxillin transcription via PI3K/AKT/NF-kB pathway. J. Biol. Chem., 2015, 290(24), 15018-15029.
[http://dx.doi.org/10.1074/jbc.M115.641407] [PMID: 25873394]
[38]
Wei, Y.; Guo, Y.; Zhou, J.; Dai, K.; Xu, Q.; Jin, X. Nicotinamide overcomes doxorubicin resistance of breast cancer cells through deregulating SIRT1/Akt pathway. Anticancer. Agents Med. Chem., 2019, 19(5), 687-696.
[http://dx.doi.org/10.2174/1871520619666190114160457] [PMID: 30648523]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 12
Year: 2020
Published on: 07 September, 2020
Page: [1475 - 1486]
Pages: 12
DOI: 10.2174/1871520620666200424130204
Price: $65

Article Metrics

PDF: 36
HTML: 2
EPUB: 1
PRC: 1