Synthesis, In Vitro Anticancer, Anti-Inflammatory and DNA Binding Activity of Thiazolidinedione Derivatives

Author(s): Nadine Uwabagira, Balladka K. Sarojini*, Ashwini Prabhu

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 14 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Cancer is the second leading cause of mortality worldwide. Despite several advances made in the treatment strategies, the cure for cancer remains still a challenge. Currently used treatment modalities pose several side effects and remain ineffective in the later stages. Thiazolidinediones (TZDs) have been shown to possess anti-cancer activity in several in vitro models.

Objectives: The objective of this study was to assess the effect of novel synthesized thiazolidinedione derivatives on three selected cancer cell lines viz., human breast adenocarcinoma cell line (MCF-7), lung adenocarcinoma (A549) and colorectal carcinoma (HT29). This study also aimed to evaluate the anti-inflammatory and DNA binding activity of the synthesized derivatives.

Methods: The synthesized thiazolidinedione derivatives were screened for their in vitro anti-cancer activity on the human breast adenocarcinoma cell line (MCF-7), lung adenocarcinoma (A549) and colorectal carcinoma (HT29) using the Methyl Thaizolyl Tetrazolium (MTT) Assay. They were also evaluated for in vitro antiinflammatory activity using albumin denaturation method, DNA binding activity and hemocompatibility.

Results: Compounds 5a, 5b, 5d, 6c and 6d showed IC50 of 30.19, 41.56, 65.97, 60.16 and 50.41μM respectively on breast adenocarcinoma (MCF-7), IC50 of 49.75, 51.42, 65.43, 61.94 and 56.80μM on lung adenocarcinoma (A549) and 38.11, 45.58, 71.24, 53.15 and 51.25μM on colorectal carcinoma (HT29). In the hemolysis assay, compounds 5a and 5b were found to be nontoxic and nonhemolytic to human erythrocytes. Five compounds possessed significant anticancer and anti-inflammatory activity. Three of them are Mannich bases, whereas the remaining two are aryl acyl derivatives.

Conclusion: The in vitro results (anticancer and anti-inflammatory) showed that the 4-chloro anilinomethyl substitution at third position and thiophenoethenyl at the fifth position of thiozolidinedione (5a) emerged as the most effective derivative on all the tested cancer cell lines. A higher DNA binding affinity of the test compounds was also found.

Keywords: Thiazolidinedione, IC50, breast cancer, lung adenocarcinoma, colorectal carcinoma, anti-inflammatory, Hemolysis assay, DNA binding.

[1]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.M.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A.; Ashraf, S.S.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.; Bishayee, A.; Blain, S.W.; Block, P.B.; Boosani, C.S.; Carey, T.E.; Carnero, A.; Carotenuto, M.; Casey, S.C.; Chakrabarti, M.; Chaturvedi, R.; Chen, G.Z.; Chen, H.; Chen, H.; Chen, S.; Chen, Y.C.; Choi, B.K.; Ciriolo, M.R.; Coley, H.M.; Collins, A.R.; Connell, M.; Crawford, S.; Curran, C.S.; Dabrosin, C.; Damia, G.; Dasgupta, S.; DeBerardinis, R.J.; Decker, W.K.; Dhawan, P.; Diehl, A.M.; Dong, J.T.; Dou, Q.P.; Drew, J.E.; Elkord, E.; El-Rayes, B.; Feitelson, M.A.; Felsher, D.W.; Ferguson, L.R.; Fimognari, C.; Firestone, G.L.; Frezza, C.; Fujii, H.; Fuster, M.M.; Generali, D.; Georgakilas, A.G.; Gieseler, F.; Gilbertson, M.; Green, M.F.; Grue, B.; Guha, G.; Halicka, D.; Helferich, W.G.; Heneberg, P.; Hentosh, P.; Hirschey, M.D.; Hofseth, L.J.; Holcombe, R.F.; Honoki, K.; Hsu, H.; Huang, G.S.; Jensen, L.D.; Jiang, W.G.; Jones, L.W.; Karpowicz, P.A.; Keith, W.N.; Kerkar, S.P.; Khan, G.N.; Khatami, M.; Ko, Y.H.; Kucuk, O.; Kulathinal, R.J.; Kumar, N.B.; Kumar, H.M.C.; Kwon, B.S.; Le, A.; Lea, M.A.; Lee, H.Y.; Lichtor, T.; Lin, L.T.; Locasale, J.W.; Lokeshwar, B.L.; Longo, V.D.; Lyssiotis, C.A.; MacKenzie, K.L.; Malhotra, M.; Marino, M.; Martinez-Chantar, M.L.; Matheu, A.; Maxwell, C.; McDonnell, E.; Meeker, A.K.; Mehrmohamadi, M.; Mehta, K.; Michelotti, G.A.; Mohammad, R.M.; Mohammed, S.I.; Morre, D.J.; Muqbil, I.; Muralidhar, V.; Murphy, M.P.; Nagaraju, G.P.; Nahta, R.; Niccolai, E.; Nowsheen, S.; Panis, C.; Pantano, F.; Parslow, V.R.; Pawelec, G.; Pedersen, P.L.; Poore, B.; Poudyal, D.; Prakash, S.; Prince, M.; Raffaghello, L.; Rathmell, J.C.; Rathmell, W.K.; Ray, S.K.; Reichrath, J.; Rezazadeh, S.; Ribatti, D.; Ricciardiello, L.; Robey, R.B.; Rodier, F.; Rpasinghe, V.H.P.; Russo, G.L.; Ryan, E.P.; Samadi, A.K.; Sanchez-Garcia, I.; Sanders, A.J.; Santini, D.; Sarkar, M.; Sasada, T.; Saxena, N.K.; Shackelford, R.E.; Sharma, D.; Shin, D.M.; Sidransky, D.; Siegelin, M.D.; Signori, E.; Singh, N.; Sivanand, S.; Sliva, D.; Smythe, C.; Spagnuolo, C.; Stafforini, D.M.; Stagg, J.; Subbarayan, P.R.; Sundin, T.; Talib, W.H.; Thompson, S.K.; Tran, P.T.; Ungefroren, H.; Vander, M.G.; Venkateswaran, V.; Dass, S. A broad-spectrum integrative design for cancer prevention and therapy. Semin. Cancer Biol., 2015, 35, 276-304.
[2]
Block Keith, I. Life over cancer: The Block Cancer Program for Integrative Cancer Treatment; Bantam: USA, 2009.
[3]
Wei, J.Y.; Huang, W.H.; Du, C.W.; Qui, S.Q.; Wei, X.L.; Liu, J.; Zhang, G.J. Clinicopathological features and prognostic factors of young breast cancers in Eastern Guangdong of China. Sci. Rep., 2014, 4, 5360.
[4]
AlZaman, A.S.; Mughal, S.A.; AlZaman, Y.S.; AlZaman, E.S. Correlation between hormone receptor status and age and its prognostic implications in breast cancer patients in Bahrain. Saudi Med. J., 2016, 37(1), 37-42.
[http://dx.doi.org/10.15537/smj.2016.1.13016]
[5]
Shen, C.C.; Hu, M.D.L.; Hu, W.Y.; Chang, W.H.; Tang, P.; Chen, P.L.; Chen, P.M.; Chen, M.T.; Su, T.P. The risk of cancer patients with obsessive compulsive disorder. Medicine , 2016, 95(9), 2989.
[http://dx.doi.org/10.1097/MD.0000000000002989]
[6]
Heikkila, K.; Nyberg, S.T.; Madsen, I.E.; DeVroom, E.; Alfredssons, L.; Bjorner, J.J.; Borritz, M.; Burr, H.; Erbel, R.; Ferrie, J.E.; Fransson, E.I.; Geuskens, G.A.; Hooftman, W.E.; Houtman, I.L.; Ckel, K.J.; Knutsson, A.; Koskenvuo, M.; Lunau, T.; Nielsen, M.L.; Nordin, M.; Oksanen, T.; Pejtersen, J.H.; Pentti, J.; Shipley, M.J.; Steptoe, A.; Suominen, M.; Oksanen, T.; Pejtersen, J.H.; Pentti, J.; Shipley, M.J.; Steptoe, A.; Suominen, S.B.; Theorell, T.; Vahtera, J.; Westerholm, P.J.M.; Westerlund, H.; Dragano, N.; Rugulies, R.; Kawachi, I.; Batty, G.D.; Manoux, A.S.; Virtanen, M.; Kivima, M. Long working hours and cancer risk: A multi-cohort study. Br. J. Cancer, 2016, 114, 813-818.
[http://dx.doi.org/10.1136/oemed-2016-103951.358]
[7]
Herbst, R.S.; Morrgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553, 446-454.
[http://dx.doi.org/10.1038/nature25183]
[8]
Fennell, D.A.; Summers, Y.; Cadranel, J.; Benepal, T.; Christoph, D.C.; Lal, R.; Das, M.; Maxwell, F.; Visseren-Grul, C.; Ferry, D. Cisplatin in the modern era: The backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat. Rev., 2016, 44, 42-50.
[http://dx.doi.org/10.1016/j.ctrv.2016.01.003] [PMID: 26866673]
[9]
Koga, H.; Sakisaka, S.; Harada, M.; Takagi, T.; Hanada, S.; Taniguchi, E.; Kawaguchi, T.; Sasatomi, K.; Kimura, R.; Hashimoto, O.; Uena, T.; Yano, H.; Kojiro, M.; Sata, M. Involvement of p21WAF1/Cip1, p27Kip1and p18INK4c in troglitazone-induced cell cycle arrest in human hepatoma cell lines. Hepatology, 2001, 33(5), 1087-1097.
[10]
Fan, Y.H.; Chen, A.; Natarajan, Y.; Guo, F.; Harbinski, J.; Iyasere, W.; Christ, H.; Aktas, J.A. Structure activity requirements for the antiproliferative effect of troglitazone derivatives mediated by depletion of intracellular calcium. Bioorg. Chem. Med. Lett., 2004, 14, 2547-2550.
[11]
Aapro, M.S. In: Supportive Care in Cancer Patients II. Recent Results in Cancer Research, Senn, H.J.; Glaus, A. (Eds). Springer: Berlin, Heidelberg; 121 , 1991.
[http://dx.doi.org/10.1007/978-3-642-84138-5_11]
[12]
Reiser, M.; Schnell, R.; Straub, G.; Borchmann, P.; Wilhelm, M.; Übelacker, R.; Wörmann, B.; Münch, R.; Diehl, V.; Engert, A. Dize (Dexamethasone, idarubicin and contious infusion of ifosfamide and etoposide): An effective and well-tolerated new regimen for patients with relapsed lymphoma. Leuk. Lymphoma, 1998, 31, 359-366.
[13]
The Italian Group for Antiemetic Research. Dexamethasone alone or in combination with ondansetron for the prevention of delayed nausea and vomiting induced by chemotherapy. N. Engl. J. Med., 2000, 342(21), 1554-1559.
[http://dx.doi.org/10.1056/NEJM200005253422102] [PMID: 10824073]
[14]
Rayburn, E.R.; Ezell, S.; Zhang, R. Anti-inflammatory agents for cancer therapy. Mol. Cell. Pharmacol., 2009, 1(1), 29-43.
[http://dx.doi.org/10.4255/mcpharmacol.09.05]
[15]
Panigrahy, D.; Singer, S.; Shen, Q.L.; Butterfield, C.E.; Freedman, D.A.; Chen, E.J.; Moses, M.A.; Kilroy, S.; Duensing, S.; Fletcher, C.; Fletcher, J.A.; Hlatky, L.; Hahnfeldt, P.; Folkman, J.; Kaipainen, A. PPARᵧ ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J. Clin. Invest., 2002, 110(7), 923-932.
[16]
Kar, K.; Krithika, U.; Basu, P.; Kumar, S.S.; Reji, A.; Kumar, B.P. Design, synthesis and glucose uptake of some novel glitazones. Bioorg. Chem., 2014, 56, 27-33.
[http://dx.doi.org/10.1016/j.bioorg.2014.05.006]
[17]
Patil, V.; Tilekar, K.; Mehendale, M.S.; Mohan, R.; Ramaa, C.S. Synthesis and primary cytotoxicity of new 5- benzylidene-2, 4-thiazolidinedione derivatives. Eur. J. Med. Chem., 2010, 45, 4539-4544.
[18]
Palakurthi, S.S.; Aktas, H.; Grubissich, L.M.; Mortensen, R.M.; Halperin, J.A. Anticancer effects of thiazolidinediones are independent of peroxisome proliferator-activated receptor gamma and mediated by inhibition of translation initiation. Cancer Res., 2001, 61(16), 6213-6218.
[PMID: 11507074]
[19]
Madhuri, M.; Prasad, C.; Avupati, V.R. In silico protein-ligand docking studies on thiazolidinediones as potential anticancer agents. Int. J. Comput. Appl., 2014, 95, 975-8887.
[20]
Yan, K.; Yao, C.; Chang, H.; Lai, G.; Cheng, A.; Chuang, S. The synergistic anticancer effect of troglitazone combined with asprin causes cell cycle arrest and apoptosis in human lung cancer cells. Mol. Carcinog., 2010, 49, 235-246.
[21]
Chinthala, Y.; Domatti, A.K.; Sarfaraz, A.; Singh, S.P.; Arigari, N.K.; Gupta, N.; Satya, K.V.N.; Kumar, J.K.; Khan, F.; Tiwari, A.K.; Paramjit, G. Synthesis, biological evaluation and molecular docking studies of some novel thiazolidinediones with triazole ring. Eur. J. Med. Chem., 2013, 70, 308-314.
[22]
Asati, V.; Mahapatra, D.K.; Bharti, S.K. Thiazolidine-2,4-diones as multi-targeted scaffold in medicinal chemistry: Potential anticancer agents. Eur. J. Med. Chem., 2014, 87, 814-833.
[23]
Sharma, P.; Reddy, T.S.; Thummuri, D.; Senwar, K.R.; Kumar, N.P.; Naidu, V.G.M.; Bhargava, S.K.; Shankaraiah, N. Synthesis and biological evaluation of new benzimidazole-thiazoldinedione hybrids as potential cytotoxic and apoptosis inducing agents. Eur. J. Med. Chem., 2016, 124, 608-621.
[24]
Barreto, M.J.; Galdino, M.L.; Pereira, D.T.M.; Cruz, J.; Rabello, M.M.; Alves, M.C.; Hernandes, M.Z.; Pitta, I.R.; Galdino, S.L.; Galdino, M. Synthesis, in vitro anticancer activity and in silico study of new disubstituted thiazolidinedione derivatives. Med. Chem. Res., 2014, 23, 3220-3226.
[25]
Bahare, R.S.; Ganguly, S.; Choowongkomon, K.; Seetaha, S. Synthesis, HIV-1 RT inhibitory, antibacterial, antifungal and binding mode studies of some novel N-substituted –benzylidine-2,4-thiazolidinediones. DARU. J. Pharm. Sci, 2015, 23(6), 1-15.
[26]
Youssef, A.M.; White, M.S.; Villanueva, E.B.; El-Ashmawy, I.M.; Klegeris, A. Synthesis and biological evaluation of novel pyrazolyl-2,4-thiazolidinediones as anti-inflammatory and neuroprotective agents. Bioorg. Med. Chem., 2010, 18, 2019-2028.
[27]
Hu, B.; Ellingboe, J.; Gunawan, I.; Han, S.; Largis, E.; Li, Z.; Malamas, M.; Mulvey, R.; Oliphant, A.; Sum, F.W.; Tillett, J.; Wong, V. 2,4-Thiazolidinediones as potent and selective human β3 agonists. Bioorg. Med. Chem. Lett., 2001, 11(6), 757-760.
[http://dx.doi.org/10.1016/S0960-894X(01)00063-4] [PMID: 11277513]
[28]
Darwish, K.M.; Salama, I.; Mostafa, S.M.; Gomaa, M.S.; Helal, M.A. Design, synthsis and biological evaluation of novel thiazolidinediones as PPARᵧ-FFAR1 dual agonists. Eur. J. Med. Chem., 2016, 109, 157-172.
[29]
Costa, V.; Paonessa, F.; Chiefari, E.; Palaia, L.; Brunetti, G.; Gulletta, E.; Fusco, A.; Brunetti, A. The insulin receptor: A new anticancer target for peroxisome proliferator-activated receptor-ᵧ (PPARᵧ) and thiazolidinedione- PPARᵧ agonists. Endocr. Relat. Cancer, 2008, 15, 325-335.
[30]
Jain, V.S.; Vora, D.K.; Ramaa, C.S. Thiazolidine-2,4-diones: Progress towards multifarious applications. Bioorg. Med. Chem., 2013, 21, 1599-1620.
[31]
Hiatt, W.R.; Kaul, S.; Smith, R.J. The cardiovascular safety of diabetes drugs-insights from the rosiglitazone experience. N. Engl. J. Med., 2013, 369, 1285-1287.
[32]
Zong, J.; Liao, X.; Ren, B.; Wang, D. The antidepressant effects of rosiglitazone on rats with depression induced by neuropathic pain. Life Sci., 2018, 203, 315-322.
[http://dx.doi.org/10.1016/j.lfs.2018.04.057]
[33]
Hossain, S.U.; Bhattacharya, S. Synthesis of O-plenylated derivatives of 5-benzylidene-2,4-thiazolidinediones and evaluation of their free radical scavenging activity as well as effect on some phase II antioxidant/detoxifying enzymes. Bioorg. Med. Chem., 2007, 17, 1149-1154.
[34]
Min, G.; Lee, S.; Kim, H.; Han, Y.; Lee, R.; Jeong, D.G.; Han, D.C.; Kwon, B. Rhodamine-based PL3-inhibitors blocked the migration and invasion of metastatic cancer cells. Bioorg. Med. Chem. Lett., 2013, 23, 3769-3774.
[35]
Chen, H.; Fan, Y.; Natarajan, A.; Guo, Y.; Iyasere, J.; Harbinski, F.; Luus, L.; Christ, W.; Aktas, H.; Halperin, J.A. Synthesis and biological evaluation of thiazolidine-2,4-dione and 2,4-thione derivatives as inhibitors of translation initiation. Bioorg. Med. Chem. Lett., 2004, 14, 5401-5405.
[36]
Geetha, B.; Swarnalatha, G.; Subba, R.G. Biological evaluation of synthesized thiazolidinedione derivatives for antidiabetic activity on STZ caused diabetes in rat. Int. J. Res. Sci., 2019, 10, 1042-1048.
[37]
Kumar, H.; Deep, A.; Marwaha, R.K. Chemical synthesis, mechanism of action and anticancer potential of medicinally important thiazolidin-2,4-dione derivatives: A review. Mini Rev. Med. Chem., 2019, 19(18), 1474-1516.
[http://dx.doi.org/10.2174/1389557519666190513093618] [PMID: 31092179]
[38]
Sucheta, S.T.; Verma, P.K. Biological potential of thiazolidinedione derivatives of synthetic origin. Chem. Cent. J., 2017, 11, 130.
[http://dx.doi.org/10.1186/s13065-017-0357-2]
[39]
Christopher, M.L.; Donna, M.K.; Kieu, C.D.; Marcie, J.G.; Cindy, L.T.; Leah, A.D.; Thomas, H.M.; Christine, A.S.; Steven, A.B. Rotiglitazone prevents the progression of preinvasive lung cancer in a murine model. Carcinogenesis, 2009, 30, 2095-2099.
[40]
Mazzone, P.J.; Rai, H.; Beukemann, M.; Xu, M.; Jain, A.; Sasidhar, M. The effect of metformin and thiazolidinedione use on lung cancer in diabetics. BMC Cancer, 2012, 12, 410.
[http://dx.doi.org/10.1186/1471-2407-12-410] [PMID: 22978440]
[41]
Govindarajan, R.; Ratnasinghe, L.; Simmons, D.L.; Siegel, E.R.; Midathada, M.V.; Kim, L.; Kim, P.J.; Owens, R.J.; Lang, N.P. Thiazolidinediones and the risk of lung, prostate and colon cancer in patients with diabetes. J. Clin. Oncol., 2007, 25, 1476-1481.
[42]
Girnun, G.D.; Chen, L.; Silvaggi, J.; Drapkin, R.; Chirieac, L.R.; Padera, R.F.; Upadhyay, R.; Vafai, S.B.; Weissleder, R.; Mahmood, U.; Naseri, E.; Buckley, S.; Li, D.; Force, J.; McNamara, K.; Demetri, G.; Spiegelman, B.M.; Wong, K.K. Regression of drug-resistant lung cancer by the combination of rosiglitazone and carboplatin. Clin. Cancer Res., 2008, 14(20), 6478-6486.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1128] [PMID: 18927287]
[43]
Benson, A.B.; Venool, A.P.; Cederquist, L.; Chan, E.; Chen, Y.; Cooper, H.S.; Deming, D.; Engstrom, P.F.; Enziger, P.C.; Fichera, A.; Grem, J.L.; Grothey, A.; Hochster, H.S.; Hoffe, S.; Hunt, S.; Kamel, A.; Kirilcuk, N.; Krishnamurthi, S.; Messersmith, W.A.; Mulcahy, M.F.; Murphy, J.D.; Nurkin, S.; Saltz, L.; Sharma, S.; Shibata, D.; Skibber, J.M. Colon cancer 1, 2017. Clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw., 2017, 15(3), 370-398.
[44]
Raissa, K.C.; Jamerson, F.; Moreira, H.A.; Pinto, O.G.; Camargo, L.T.; Naves, P.L.; Camargo, A.J.; Ribeiro, L.; Ramos, L.M. Synthesis, antimicrobial activity and structure-activity relationship of some5-arylidene-thiazolidine-2,4-dione derivatives. J. Braz. Chem. Soc., 2019, 30(1), 164-172.
[http://dx.doi.org/10.21577/0103-5053.20180167]
[45]
Bozdağ-Dündar, O.; Ozgen, O.; Menteşe, A.; Altanlar, N.; Atli, O.; Kendi, E.; Ertan, R. Synthesis and antimicrobial activity of some new thiazolyl thiazolidine-2,4-dione derivatives. Bioorg. Med. Chem., 2007, 15(18), 6012-6017.
[http://dx.doi.org/10.1016/j.bmc.2007.06.049] [PMID: 17618124]
[46]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[47]
Sashidhara, K.V.; Rao, K.B.; Kushwaha, P.; Modukuri, R.K.; Singh, P.; Soni, I.; Shukla, P.K.; Chopra, S.; Pasupuleti, M. Novel chalcone-thiazole-hybrids as potent inhibitors of drug resistance Staphylococcus aureus. ACS Med. Chem. Lett., 2015, 6(7), 809-813.
[http://dx.doi.org/10.1021/acsmedchemlett.5b0016] [PMID: 26191371]
[48]
Mizushima, Y.; Kobayashi, M. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. J. Pharm. Pharmacol., 1968, 20(3), 169-173.
[http://dx.doi.org/10.1111/j.2042-7158.1968.tb09718.x] [PMID: 4385045]
[49]
Sakat, S.; Preeti, T.; Juvekar, A. In vitro anti-inflammatory activity of aqueous and methanol extracts of Erythrina indica Lam leave. Pharmacologyonline, 2009, 3, 221-229.
[50]
Pasternack, R.F.; Gibbs, E.J.; Villafranca, J.J. Interactions of porphyrins with nucleic acids. Biochemistry, 1983, 22(23), 5409-5417.
[http://dx.doi.org/10.1021/bi00292a024] [PMID: 6652071]
[51]
Barton, J.; Danishefisky, A.; Goldberg, J. Thris (phenanthroline) ruthenium (II): Streoselectivity in binding to DNA. J. Am. Chem. Soc., 1984, 106, 2172-2176.
[http://dx.doi.org/10.1021/ja00319a043]
[52]
Raman, N.; Sobba, S.; Thamaraichelvan, A. A novel bioactive derived Schiff base and its transition metal complexes as selective DNA binding agents. Spectrochim. Acta . Part A, 2011, 78, 888-898.
[http://dx.doi.org/10.1016/j.saa.2010.12.056] [PMID: 21215688]
[53]
Wolfe, A.; Shimer, G.; Meehan, T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry, 1987, 26, 6392-6396.
[http://dx.doi.org/10.1021/bi00394a013]
[54]
Hassan, M.F.; Rauf, A. Synthesis and the study on the binding of the thiazol-2(3H) ylidine derivative with human serum albumin using spectroscopic and molecular docking methods. Luminescence, 2017, 32, 602-612.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 14
Year: 2020
Published on: 13 October, 2020
Page: [1704 - 1713]
Pages: 10
DOI: 10.2174/1871520620666200424102615
Price: $65

Article Metrics

PDF: 26
HTML: 2