Prader-Willi Syndrome: Molecular Mechanism and Epigenetic Therapy

Author(s): Zhong Mian-Ling, Chao Yun-Qi, Zou Chao-Chun*

Journal Name: Current Gene Therapy

Volume 20 , Issue 1 , 2020


  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Prader-Willi syndrome (PWS) is an imprinted neurodevelopmental disease characterized by cognitive impairments, developmental delay, hyperphagia, obesity, and sleep abnormalities. It is caused by a lack of expression of the paternally active genes in the PWS imprinting center on chromosome 15 (15q11.2-q13). Owing to the imprinted gene regulation, the same genes in the maternal chromosome, 15q11-q13, are intact in structure but repressed at the transcriptional level because of the epigenetic mechanism. The specific molecular defect underlying PWS provides an opportunity to explore epigenetic therapy to reactivate the expression of repressed PWS genes inherited from the maternal chromosome. The purpose of this review is to summarize the main advances in the molecular study of PWS and discuss current and future perspectives on the development of CRISPR/Cas9- mediated epigenome editing in the epigenetic therapy of PWS. Twelve studies on the molecular mechanism or epigenetic therapy of PWS were included in the review. Although our understanding of the molecular basis of PWS has changed fundamentally, there has been a little progress in the epigenetic therapy of PWS that targets its underlying genetic defects.

Keywords: Prader-willi syndrome, molecular mechanism, genetic basis, epigenetic therapy, CRISPR/Cas9, epigenome editing.

[1]
Cassidy SB, Dykens E, Williams CA. Prader-Willi and Angelman syndromes: sister imprinted disorders. Am J Med Genet 2000; 97(2): 136-46.
[http://dx.doi.org/10.1002/1096-8628(200022)97:2<136:AID-AJMG5>3.0.CO;2-V] [PMID: 11180221]
[2]
Butler MG. Prader-Willi Syndrome: Obesity due to Genomic Imprinting. Curr Genomics 2011; 12(3): 204-15.
[http://dx.doi.org/10.2174/138920211795677877] [PMID: 22043168]
[3]
Yang L, Zhou Q, Ma B, et al. Perinatal features of Prader-Willi syndrome: a Chinese cohort of 134 patients. Orphanet J Rare Dis 2020; 15(1): 24.
[http://dx.doi.org/10.1186/s13023-020-1306-z] [PMID: 31964399]
[4]
Emerick JE, Vogt KS. Endocrine manifestations and management of Prader-Willi syndrome. Int J Pediatr Endocrinol 2013; 2013(1): 14.
[http://dx.doi.org/10.1186/1687-9856-2013-14] [PMID: 23962041]
[5]
Yang-Li D, Ke H, Chao-Chun Z, Guan-Ping D. Chinese siblings with Prader-Willi syndrome inherited from their paternal grandmother. Indian Pediatr 2019; 56(9): 789-91.
[http://dx.doi.org/10.1007/s13312-019-1626-z] [PMID: 31638013]
[6]
Down JL. Lettsomian lectures on some of the mental affections of childhood and youth. BMJ 1887; 1(1362): 256-9.
[http://dx.doi.org/10.1136/bmj.1.1362.256] [PMID: 20751780]
[7]
Ledbetter DH, Riccardi VM, Airhart SD, Strobel RJ, Keenan BS, Crawford JD. Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. N Engl J Med 1981; 304(6): 325-9.
[http://dx.doi.org/10.1056/NEJM198102053040604] [PMID: 7442771]
[8]
Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader-Willi syndrome. Genet Med 2012; 14(1): 10-26.
[http://dx.doi.org/10.1038/gim.0b013e31822bead0]
[9]
Goldstone AP, Holland AJ, Hauffa BP, Hokken-Koelega AC, Tauber M. speakers contributors at the Second Expert Meeting of the Comprehensive Care of Patients with PWS. Recommendations for the diagnosis and management of Prader-Willi syndrome. J Clin Endocrinol Metab 2008; 93(11): 4183-97.
[http://dx.doi.org/10.1210/jc.2008-0649] [PMID: 18697869]
[10]
Bakker NE, Siemensma EP, van Rijn M, Festen DA, Hokken-Koelega AC. Beneficial effect of growth hormone treatment on health-related quality of life in children with Prader-Willi Syndrome: A randomized controlled trial and longitudinal study. Horm Res Paediatr 2015; 84(4): 231-9.
[http://dx.doi.org/10.1159/000437141] [PMID: 26279206]
[11]
Carrel AL, Moerchen V, Myers SE, Bekx MT, Whitman BY, Allen DB. Growth hormone improves mobility and body composition in infants and toddlers with Prader-Willi syndrome. J Pediatr 2004; 145(6): 744-9.
[http://dx.doi.org/10.1016/j.jpeds.2004.08.002] [PMID: 15580194]
[12]
Festen DA, Wevers M, Lindgren AC, et al. Mental and motor development before and during growth hormone treatment in infants and toddlers with Prader-Willi syndrome. Clin Endocrinol (Oxf) 2008; 68(6): 919-25.
[http://dx.doi.org/10.1111/j.1365-2265.2007.03126.x] [PMID: 18031326]
[13]
Corripio R, Tubau C, Calvo L, et al. Safety and effectiveness of growth hormone therapy in infants with Prader-Willi syndrome younger than 2 years: a prospective study. J Pediatr Endocrinol Metab 2019; 32(8): 879-84.
[http://dx.doi.org/10.1515/jpem-2018-0539] [PMID: 31271556]
[14]
Moix Gil E, Giménez-Palop O, Caixàs A. Treatment with growth hormone in the prader-willi syndrome. Endocrinol Diabetes Nutr 2018; 65(4): 229-36.
[http://dx.doi.org/10.1016/j.endinu.2018.01.006] [PMID: 29510967]
[15]
Tauber M, Diene G, Molinas C. Growth hormone treatment for Prader-Willi syndrome. Pediatr Endocrinol Rev 2018; 16(Suppl. 1): 91-9.
[PMID: 30378786]
[16]
Yang A, Choi JH, Sohn YB, et al. Effects of recombinant human growth hormone treatment on growth, body composition, and safety in infants or toddlers with Prader-Willi syndrome: a randomized, active-controlled trial. Orphanet J Rare Dis 2019; 14(1): 216.
[http://dx.doi.org/10.1186/s13023-019-1195-1] [PMID: 31511031]
[17]
Kim Y, Wang SE, Jiang YH. Epigenetic therapy of Prader-Willi syndrome. Transl Res 2019; 208: 105-18.
[http://dx.doi.org/10.1016/j.trsl.2019.02.012] [PMID: 30904443]
[18]
Hou Z, Zhang Y, Propson NE, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA 2013; 110(39): 15644-9.
[http://dx.doi.org/10.1073/pnas.1313587110] [PMID: 23940360]
[19]
Wang Y, Wang D, Wang X, et al. Highly efficient genome engineering in Bacillus anthracis and Bacillus cereus using the CRISPR/Cas9 System. Front Microbiol 2019; 10: 1932.
[http://dx.doi.org/10.3389/fmicb.2019.01932] [PMID: 31551942]
[20]
Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep 2014; 4: 5400.
[http://dx.doi.org/10.1038/srep05400] [PMID: 24954249]
[21]
Cong L, Zhang F. Genome engineering using CRISPR-Cas9 system. Methods Mol Biol 2015; 1239: 197-217.
[http://dx.doi.org/10.1007/978-1-4939-1862-1_10] [PMID: 25408407]
[22]
Adhikari A, Copping NA, Onaga B, et al. Cognitive deficits in the Snord116 deletion mouse model for Prader-Willi syndrome. Neurobiol Learn Mem 2019; 165: 106874
[PMID: 29800646]
[23]
Brant JO, Riva A, Resnick JL, Yang TP. Influence of the Prader-Willi syndrome imprinting center on the DNA methylation landscape in the mouse brain. Epigenetics 2014; 9(11): 1540-56.
[http://dx.doi.org/10.4161/15592294.2014.969667] [PMID: 25482058]
[24]
Yazdi PG, Su H, Ghimbovschi S, et al. Differential gene expression reveals mitochondrial dysfunction in an imprinting center deletion mouse model of Prader-Willi syndrome. Clin Transl Sci 2013; 6(5): 347-55.
[http://dx.doi.org/10.1111/cts.12083] [PMID: 24127921]
[25]
Bittel DC, Kibiryeva N, McNulty SG, Driscoll DJ, Butler MG, White RA. Whole genome microarray analysis of gene expression in an imprinting center deletion mouse model of Prader-Willi syndrome. Am J Med Genet A 2007; 143A(5): 422-9.
[http://dx.doi.org/10.1002/ajmg.a.31504] [PMID: 17036336]
[26]
Butler MG, Bittel DC, Kibiryeva N, Talebizadeh Z, Thompson T. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics 2004; 113(3 Pt 1): 565-73.
[http://dx.doi.org/10.1542/peds.113.3.565] [PMID: 14993551]
[27]
Butler MG. Prader-Willi syndrome: current understanding of cause and diagnosis. Am J Med Genet 1990; 35(3): 319-32.
[http://dx.doi.org/10.1002/ajmg.1320350306] [PMID: 2309779]
[28]
Bittel DC, Butler MG. Prader-Willi syndrome: clinical genetics, cytogenetics and molecular biology. Expert Rev Mol Med 2005; 7(14): 1-20.
[http://dx.doi.org/10.1017/S1462399405009531] [PMID: 16038620]
[29]
Cheon CK. Genetics of Prader-Willi syndrome and Prader-Will-Like syndrome. Ann Pediatr Endocrinol Metab 2016; 21(3): 126-35.
[http://dx.doi.org/10.6065/apem.2016.21.3.126] [PMID: 27777904]
[30]
Angulo MA, Butler MG, Cataletto ME. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Invest 2015; 38(12): 1249-63.
[http://dx.doi.org/10.1007/s40618-015-0312-9] [PMID: 26062517]
[31]
Butler MG, Hartin SN, Hossain WA, et al. Molecular genetic classification in Prader-Willi syndrome: a multisite cohort study. J Med Genet 2019; 56(3): 149-53.
[http://dx.doi.org/10.1136/jmedgenet-2018-105301] [PMID: 29730598]
[32]
Kim SJ, Miller JL, Kuipers PJ, et al. Unique and atypical deletions in Prader-Willi syndrome reveal distinct phenotypes. Eur J Hum Genet 2012; 20(3): 283-90.
[http://dx.doi.org/10.1038/ejhg.2011.187] [PMID: 22045295]
[33]
Torrado M, Araoz V, Baialardo E, et al. Clinical-etiologic correlation in children with Prader-Willi syndrome (PWS): an interdisciplinary study. Am J Med Genet A 2007; 143A(5): 460-8.
[http://dx.doi.org/10.1002/ajmg.a.31520] [PMID: 17163531]
[34]
Hartley SL, Maclean WE Jr, Butler MG, Zarcone J, Thompson T. Maladaptive behaviors and risk factors among the genetic subtypes of Prader-Willi syndrome. Am J Med Genet A 2005; 136(2): 140-5.
[http://dx.doi.org/10.1002/ajmg.a.30771] [PMID: 15940679]
[35]
Dykens EM, Cassidy SB, King BH. Maladaptive behavior differences in Prader-Willi syndrome due to paternal deletion versus maternal uniparental disomy. Am J Ment Retard 1999; 104(1): 67-77.
[http://dx.doi.org/10.1352/0895-8017(1999)104<0067:MBDIPS>2.0.CO;2] [PMID: 9972835]
[36]
Holland AJ, Whittington JE, Butler J, Webb T, Boer H, Clarke D. Behavioural phenotypes associated with specific genetic disorders: evidence from a population-based study of people with Prader-Willi syndrome. Psychol Med 2003; 33(1): 141-53.
[http://dx.doi.org/10.1017/S0033291702006736] [PMID: 12537045]
[37]
Yang L, Zhan GD, Ding JJ, et al. Psychiatric illness and intellectual disability in the Prader-Willi syndrome with different molecular defects--a meta analysis. PLoS One 2013; 8(8)e72640
[http://dx.doi.org/10.1371/journal.pone.0072640] [PMID: 23967326]
[38]
Veltman MW, Craig EE, Bolton PF. Autism spectrum disorders in Prader-Willi and Angelman syndromes: a systematic review. Psychiatr Genet 2005; 15(4): 243-54.
[http://dx.doi.org/10.1097/00041444-200512000-00006] [PMID: 16314754]
[39]
Veltman MW, Thompson RJ, Roberts SE, Thomas NS, Whittington J, Bolton PF. Prader-Willi syndrome--a study comparing deletion and uniparental disomy cases with reference to autism spectrum disorders. Eur Child Adolesc Psychiatry 2004; 13(1): 42-50.
[http://dx.doi.org/10.1007/s00787-004-0354-6] [PMID: 14991431]
[40]
Soni S, Whittington J, Holland AJ, et al. The course and outcome of psychiatric illness in people with Prader-Willi syndrome: implications for management and treatment. J Intellect Disabil Res 2007; 51(Pt 1): 32-42.
[http://dx.doi.org/10.1111/j.1365-2788.2006.00895.x] [PMID: 17181601]
[41]
Runte M, Hüttenhofer A, Gross S, Kiefmann M, Horsthemke B, Buiting K. The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet 2001; 10(23): 2687-700.
[http://dx.doi.org/10.1093/hmg/10.23.2687] [PMID: 11726556]
[42]
Glenn CC, Saitoh S, Jong MT, et al. Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene. Am J Hum Genet 1996; 58(2): 335-46.
[PMID: 8571960]
[43]
McAllister G, Amara SG, Lerner MR. Tissue-specific expression and cDNA cloning of small nuclear ribonucleoprotein-associated polypeptide N. Proc Natl Acad Sci USA 1988; 85(14): 5296-300.
[http://dx.doi.org/10.1073/pnas.85.14.5296] [PMID: 2969109]
[44]
Gray TA, Saitoh S, Nicholls RD. An imprinted, mammalian bicistronic transcript encodes two independent proteins. Proc Natl Acad Sci USA 1999; 96(10): 5616-21.
[http://dx.doi.org/10.1073/pnas.96.10.5616] [PMID: 10318933]
[45]
Yang T, Adamson TE, Resnick JL, et al. A mouse model for Prader-Willi syndrome imprinting-centre mutations. Nat Genet 1998; 19(1): 25-31.
[http://dx.doi.org/10.1038/ng0598-25] [PMID: 9590284]
[46]
Bervini S, Herzog H. Mouse models of Prader-Willi Syndrome: a systematic review. Front Neuroendocrinol 2013; 34(2): 107-19.
[http://dx.doi.org/10.1016/j.yfrne.2013.01.002] [PMID: 23391702]
[47]
Wang SE, Jiang YH. Potential of epigenetic therapy for prader-Willi syndrome. Trends Pharmacol Sci 2019; 40(9): 605-8.
[http://dx.doi.org/10.1016/j.tips.2019.07.002] [PMID: 31353046]
[48]
Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 2017; 547(7664): 419-24.
[http://dx.doi.org/10.1038/nature23262] [PMID: 28723896]
[49]
Saitoh S, Wada T. Parent-of-origin specific histone acetylation and reactivation of a key imprinted gene locus in Prader-Willi syndrome. Am J Hum Genet 2000; 66(6): 1958-62.
[http://dx.doi.org/10.1086/302917] [PMID: 10775525]
[50]
Relkovic D, Doe CM, Humby T, et al. Behavioural and cognitive abnormalities in an imprinting centre deletion mouse model for Prader-Willi syndrome. Eur J Neurosci 2010; 31(1): 156-64.
[http://dx.doi.org/10.1111/j.1460-9568.2009.07048.x] [PMID: 20092561]
[51]
Golding DM, Rees DJ, Davies JR, et al. Paradoxical leanness in the imprinting-centre deletion mouse model for Prader-Willi syndrome. J Endocrinol 2017; 232(1): 123-35.
[http://dx.doi.org/10.1530/JOE-16-0367] [PMID: 27799465]
[52]
Andrieu D, Meziane H, Marly F, Angelats C, Fernandez PA, Muscatelli F. Sensory defects in Necdin deficient mice result from a loss of sensory neurons correlated within an increase of developmental programmed cell death. BMC Dev Biol 2006; 6: 56.
[http://dx.doi.org/10.1186/1471-213X-6-56] [PMID: 17116257]
[53]
Taniguchi N, Taniura H, Niinobe M, et al. The postmitotic growth suppressor necdin interacts with a calcium-binding protein (NEFA) in neuronal cytoplasm. J Biol Chem 2000; 275(41): 31674-81.
[http://dx.doi.org/10.1074/jbc.M005103200] [PMID: 10915798]
[54]
Pagliardini S, Ren J, Wevrick R, Greer JJ. Developmental abnormalities of neuronal structure and function in prenatal mice lacking the prader-willi syndrome gene necdin. Am J Pathol 2005; 167(1): 175-91.
[http://dx.doi.org/10.1016/S0002-9440(10)62964-1] [PMID: 15972963]
[55]
Irizarry KA, Miller M, Freemark M, Haqq AM. Prader Willi Syndrome: Genetics, metabolomics, hormonal function, and new approaches to therapy. Adv Pediatr 2016; 63(1): 47-77.
[http://dx.doi.org/10.1016/j.yapd.2016.04.005] [PMID: 27426895]
[56]
Lee S, Kozlov S, Hernandez L, et al. Expression and imprinting of MAGEL2 suggest a role in Prader-willi syndrome and the homologous murine imprinting phenotype. Hum Mol Genet 2000; 9(12): 1813-9.
[http://dx.doi.org/10.1093/hmg/9.12.1813] [PMID: 10915770]
[57]
Boccaccio I, Glatt-Deeley H, Watrin F, Roëckel N, Lalande M, Muscatelli F. The human MAGEL2 gene and its mouse homologue are paternally expressed and mapped to the Prader-Willi region. Hum Mol Genet 1999; 8(13): 2497-505.
[http://dx.doi.org/10.1093/hmg/8.13.2497] [PMID: 10556298]
[58]
Lee S, Wevrick R. Identification of novel imprinted transcripts in the Prader-Willi syndrome and Angelman syndrome deletion region: further evidence for regional imprinting control. Am J Hum Genet 2000; 66(3): 848-58.
[http://dx.doi.org/10.1086/302817] [PMID: 10712201]
[59]
Tennese AA, Wevrick R. Impaired hypothalamic regulation of endocrine function and delayed counterregulatory response to hypoglycemia in Magel2-null mice. Endocrinology 2011; 152(3): 967-78.
[http://dx.doi.org/10.1210/en.2010-0709] [PMID: 21248145]
[60]
Mercer RE, Wevrick R. Loss of magel2, a candidate gene for features of Prader-Willi syndrome, impairs reproductive function in mice. PLoS One 2009; 4(1): e4291
[http://dx.doi.org/10.1371/journal.pone.0004291] [PMID: 19172181]
[61]
Bischof JM, Stewart CL, Wevrick R. Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader-Willi syndrome. Hum Mol Genet 2007; 16(22): 2713-9.
[http://dx.doi.org/10.1093/hmg/ddm225] [PMID: 17728320]
[62]
Schaaf CP, Gonzalez-Garay ML, Xia F, et al. Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nat Genet 2013; 45(11): 1405-8.
[http://dx.doi.org/10.1038/ng.2776] [PMID: 24076603]
[63]
Fountain MD, Aten E, Cho MT, et al. The phenotypic spectrum of Schaaf-Yang syndrome: 18 new affected individuals from 14 families. Genet Med 2017; 19(1): 45-52.
[64]
Murrell A. Cross-talk between imprinted loci in Prader-Willi syndrome. Nat Genet 2014; 46(6): 528-30.
[http://dx.doi.org/10.1038/ng.2994] [PMID: 24866188]
[65]
Stelzer Y, Sagi I, Yanuka O, Eiges R, Benvenisty N. The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome. Nat Genet 2014; 46(6): 551-7.
[http://dx.doi.org/10.1038/ng.2968] [PMID: 24816254]
[66]
Anderlid BM, Lundin J, Malmgren H, Lehtihet M, Nordgren A. Small mosaic deletion encompassing the snoRNAs and SNURF-SNRPN results in an atypical Prader-Willi syndrome phenotype. Am J Med Genet A 2014; 164A(2): 425-31.
[http://dx.doi.org/10.1002/ajmg.a.36307] [PMID: 24311433]
[67]
de los Santos T, Schweizer J, Rees CA, Francke U. Small evolutionarily conserved RNA, resembling C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader-Willi deletion region, which Is highly expressed in brain. Am J Hum Genet 2000; 67(5): 1067-82.
[http://dx.doi.org/10.1086/303106] [PMID: 11007541]
[68]
Wirth J, Back E, Hüttenhofer A, et al. A translocation breakpoint cluster disrupts the newly defined 3′ end of the SNURF-SNRPN transcription unit on chromosome 15. Hum Mol Genet 2001; 10(3): 201-10.
[http://dx.doi.org/10.1093/hmg/10.3.201] [PMID: 11159938]
[69]
Kuslich CD, Kobori JA, Mohapatra G, Gregorio-King C, Donlon TA. Prader-Willi syndrome is caused by disruption of the SNRPN gene. Am J Hum Genet 1999; 64(1): 70-6.
[http://dx.doi.org/10.1086/302177] [PMID: 9915945]
[70]
Schulze A, Hansen C, Skakkebaek NE, Brøndum-Nielsen K, Ledbeter DH, Tommerup N. Exclusion of SNRPN as a major determinant of Prader-Willi syndrome by a translocation breakpoint. Nat Genet 1996; 12(4): 452-4.
[http://dx.doi.org/10.1038/ng0496-452] [PMID: 8630505]
[71]
Rodriguez JA, Zigman JM. Hypothalamic loss of Snord116 and Prader-Willi syndrome hyperphagia: the buck stops here? J Clin Invest 2018; 128(3): 900-2.
[http://dx.doi.org/10.1172/JCI99725] [PMID: 29376891]
[72]
Adhikari A, Copping NA, Onaga B, et al. Cognitive deficits in the Snord116 deletion mouse model for Prader-Willi syndrome. Neurobiol Learn Mem 2019; 165: 106874
[http://dx.doi.org/10.1016/j.nlm.2018.05.011] [PMID: 29800646]
[73]
Bieth E, Eddiry S, Gaston V, et al. Highly restricted deletion of the SNORD116 region is implicated in Prader-Willi Syndrome. Eur J Hum Genet 2015; 23(2): 252-5.
[http://dx.doi.org/10.1038/ejhg.2014.103] [PMID: 24916642]
[74]
Longhi S, Grugni G, Gatti D, et al. Adults with Prader-Willi syndrome have weaker bones: effect of treatment with GH and sex steroids. Calcif Tissue Int 2015; 96(2): 160-6.
[http://dx.doi.org/10.1007/s00223-014-9949-1] [PMID: 25577526]
[75]
Einfeld SL, Smith E, McGregor IS, et al. A double-blind randomized controlled trial of oxytocin nasal spray in Prader Willi syndrome. Am J Med Genet A 2014; 164A(9): 2232-9.
[http://dx.doi.org/10.1002/ajmg.a.36653] [PMID: 24980612]
[76]
Tauber M, Mantoulan C, Copet P, et al. Oxytocin may be useful to increase trust in others and decrease disruptive behaviours in patients with Prader-Willi syndrome: a randomised placebo-controlled trial in 24 patients. Orphanet J Rare Dis 2011; 6: 47.
[http://dx.doi.org/10.1186/1750-1172-6-47] [PMID: 21702900]
[77]
Hoffman KL. Animal models of obsessive compulsive disorder: recent findings and future directions. Expert Opin Drug Discov 2011; 6(7): 725-37.
[http://dx.doi.org/10.1517/17460441.2011.577772] [PMID: 22650979]
[78]
Ramirez-Niño AM, D’Souza MS, Markou A. N-acetylcysteine decreased nicotine self-administration and cue-induced reinstatement of nicotine seeking in rats: comparison with the effects of N-acetylcysteine on food responding and food seeking. Psychopharmacology (Berl) 2013; 225(2): 473-82.
[http://dx.doi.org/10.1007/s00213-012-2837-3] [PMID: 22903390]
[79]
Miller JL, Angulo M. An open-label pilot study of N-acetylcysteine for skin-picking in Prader-Willi syndrome. Am J Med Genet A 2014; 164A(2): 421-4.
[http://dx.doi.org/10.1002/ajmg.a.36306] [PMID: 24311388]
[80]
De Cock VC, Diene G, Molinas C, et al. Efficacy of modafinil on excessive daytime sleepiness in Prader-Willi syndrome. Am J Med Genet A 2011; 155A(7): 1552-7.
[http://dx.doi.org/10.1002/ajmg.a.34047] [PMID: 21671379]
[81]
Fulmer-Smentek SB, Francke U. Association of acetylated histones with paternally expressed genes in the Prader--Willi deletion region. Hum Mol Genet 2001; 10(6): 645-52.
[http://dx.doi.org/10.1093/hmg/10.6.645] [PMID: 11230184]
[82]
Kim Y, Lee HM, Xiong Y, et al. Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader-Willi syndrome. Nat Med 2017; 23(2): 213-22.
[http://dx.doi.org/10.1038/nm.4257] [PMID: 28024084]
[83]
Cruvinel E, Budinetz T, Germain N, Chamberlain S, Lalande M, Martins-Taylor K. Reactivation of maternal SNORD116 cluster via SETDB1 knockdown in Prader-Willi syndrome iPSCs. Hum Mol Genet 2014; 23(17): 4674-85.
[http://dx.doi.org/10.1093/hmg/ddu187] [PMID: 24760766]
[84]
Lundstrom K. Viral vectors in gene therapy. Diseases 2018; 6(2): e1-e20.
[http://dx.doi.org/10.3390/diseases6020042] [PMID: 29883422]
[85]
Sato-Dahlman M, Miura Y, Huang JL, et al. CD133-targeted oncolytic adenovirus demonstrates anti-tumor effect in colorectal cancer. Oncotarget 2017; 8(44): 76044-56.
[http://dx.doi.org/10.18632/oncotarget.18340] [PMID: 29100290]
[86]
Chen J, Gao P, Yuan S, et al. Oncolytic adenovirus complexes coated with lipids and calcium phosphate for cancer gene therapy. ACS Nano 2016; 10(12): 11548-60.
[http://dx.doi.org/10.1021/acsnano.6b06182] [PMID: 27977128]
[87]
Liu Z, Yang Y, Zhang X, et al. An Oncolytic adenovirus encoding decorin and granulocyte macrophage colony stimulating factor inhibits tumor growth in a colorectal tumor model by targeting pro-tumorigenic signals and via immune activation. Hum Gene Ther 2017; 28(8): 667-80.
[http://dx.doi.org/10.1089/hum.2017.033] [PMID: 28530155]
[88]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[89]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[90]
Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121): 823-6.
[http://dx.doi.org/10.1126/science.1232033] [PMID: 23287722]
[91]
Chen B, Gilbert LA, Cimini BA, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 2013; 155(7): 1479-91.
[http://dx.doi.org/10.1016/j.cell.2013.12.001] [PMID: 24360272]
[92]
Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 2013; 152(5): 1173-83.
[http://dx.doi.org/10.1016/j.cell.2013.02.022] [PMID: 23452860]
[93]
Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013; 154(2): 442-51.
[http://dx.doi.org/10.1016/j.cell.2013.06.044] [PMID: 23849981]
[94]
Hilton IB, D’Ippolito AM, Vockley CM, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 2015; 33(5): 510-7.
[http://dx.doi.org/10.1038/nbt.3199] [PMID: 25849900]
[95]
Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 2015; 517(7536): 583-8.
[http://dx.doi.org/10.1038/nature14136] [PMID: 25494202]
[96]
Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 2014; 156(1-2): 45-68.
[http://dx.doi.org/10.1016/j.cell.2013.12.019] [PMID: 24439369]
[97]
Liu XS, Wu H, Ji X, et al. Editing DNA methylation in the mammalian genome. Cell 2016; 167(1): 233-47.
[http://dx.doi.org/10.1016/j.cell.2016.08.056] [PMID: 27662091]
[98]
Langouët M, Glatt-Deeley HR, Chung MS, et al. Zinc finger protein 274 regulates imprinted expression of transcripts in Prader-Willi syndrome neurons. Hum Mol Genet 2018; 27(3): 505-15.
[http://dx.doi.org/10.1093/hmg/ddx420] [PMID: 29228278]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 1
Year: 2020
Published on: 23 April, 2020
Page: [36 - 43]
Pages: 8
DOI: 10.2174/1566523220666200424085336
Price: $65

Article Metrics

PDF: 47
HTML: 19