Glycine-acyl Surfactants Prepared from Black Soldier Fly Fat, Coconut Oil and Palm Kernel Oil

Author(s): Geert R. Verheyen*, Mart Theunis, Steven Vreysen, Tania Naessens, Isabelle Noyens, Tom Ooms, Sarah Goossens, Luc Pieters, Kenn Foubert, Sabine Van Miert

Journal Name: Current Green Chemistry

Volume 7 , Issue 2 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Black soldier fly (Hermetia illucens) larvae are a new source of high-quality bio-based materials that can be implemented for technical applications. Black soldier fly larvae can be bred in high numbers in small areas and organic waste streams, making large scale industrial breeding possible. Fats from the black soldier fly are very rich in lauric acid, and the fatty acid profile resembles that of palm kernel and coconut oil. Therefore, black soldier fly fats could be envisaged to have similar applications to these plant-derived oils.

The aims of this work were (1) to use black soldier fly fat, palm kernel and coconut oil to synthesize a glycine-acyl surfactant by means of a Schotten-Baumann reaction; (2) to determine the yield and purity of the reaction products; and (3) to determine solubility, foaming capacity, surface tension and critical micelle concentration of the surfactants in comparison to a commercially-available glycinecoconut oil surfactant, Amilite GCS-11®.

The average yield of each reaction was satisfactory (70% or higher). The in-house synthesized surfactants had a fatty acid profile similar to the fatty acid profile of the initial fat/oil. All in-house synthesized surfactants showed similar properties, regardless of the source of the fat/oil, but they performed slightly less well regarding foaming capacity compared to the commercial surfactant.

It is concluded that black soldier fly fats are a suitable alternative to coconut or palm kernel oil for the preparation of glycine-acyl surfactants.

Keywords: Black soldier fly fats, Hermetia illucens, glycine-acyl surfactant, surface tension, Critical Micelle Concentration (CMC), foaming.

[1]
Shortall, O.K.; Raman, S.; Millar, K. Are plants the new oil? Responsible innovation, biorefining and multipurpose agriculture. Energy Policy, 2015, 86, 360-368.
[http://dx.doi.org/10.1016/j.enpol.2015.07.011]
[2]
Fitzherbert, E.B.; Struebig, M.J.; Morel, A.; Danielsen, F.; Brühl, C.A.; Donald, P.F.; Phalan, B. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. (Amst.), 2008, 23(10), 538-545.
[http://dx.doi.org/10.1016/j.tree.2008.06.012] [PMID: 18775582]
[3]
Fayle, T.M.; Turner, E.C.; Snaddon, J.L. Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic Appl. Ecol., 2010, 11, 337-345.
[http://dx.doi.org/10.1016/j.baae.2009.12.009]
[4]
Senior, M.J.M.; Hamer, K.C.; Bottrell, S. Trait-dependent declines of species following conversion of tropical forest to oil palm plantations. Biodivers. Conserv., 2013, 184, 414-423.
[5]
Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; Balzer, C.; Bennett, E.M.; Carpenter, S.R.; Hill, J.; Monfreda, C.; Polasky, S.; Rockström, J.; Sheehan, J.; Siebert, S.; Tilman, D.; Zaks, D.P.M. Solutions for a cultivated planet. Nature, 2011, 478(7369), 337-342.
[http://dx.doi.org/10.1038/nature10452] [PMID: 21993620]
[6]
Pimentel, D.; Marklein, A.; Toth, M.A.; Karpoff, M.N.; Paul, G.S.; McCormack, R.; Kyriazis, J.; Krueger, T. Food versus biofuels: environmental and economic costs. Hum. Ecol., 2009, 37(1), 1-12.
[http://dx.doi.org/10.1007/s10745-009-9215-8]
[7]
van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible insects: future prospects for food and feed security. FAO For. Pap., 2013, •••, 171.
[8]
Diener, S.; Zurbrügg, C.; Gutiérrez, F.R.; Nguyen, D.H.; Morel, A.; Koottatep, T.; Tockner, K. Black soldier fly larvae for organic waste treatment – prospects and constraints. Proceedings of the WasteSafe 2011 – 2nd International Conference on Solid Waste Management in the Developing Countries., 978-984-33-2705- 52011
[9]
Lenaerts, M.; Meersman, F.; Verheyen, G.R.; Van Miert, S. Consumer perception of insects in non-food products. J. Insects Food Feed, 2019, 5(4), 321-331.
[http://dx.doi.org/10.3920/JIFF2019.0010]
[10]
Čičková, H.; Newton, G.L.; Lacy, R.C.; Kozánek, M. The use of fly larvae for organic waste treatment. Waste Manag., 2015, 35, 68-80.
[http://dx.doi.org/10.1016/j.wasman.2014.09.026] [PMID: 25453313]
[11]
Li, Q.; Zheng, L.; Hou, Y.; Yang, S.; Yu, Z. Insect fat, a promising resource for biodiesel J. Pet. Environ. Biotechnol., 2011.S2, 001.
[12]
Zheng, L.; Li, Q.; Zhang, J.; Yu, Z. Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renew. Energy, 2012, 41, 75-79.
[http://dx.doi.org/10.1016/j.renene.2011.10.004]
[13]
Delicato, C.; Schouteten, J.J.; Dewettinck, K.; Gellynk, X.; Tzompa-Sosa, D. Consumers’ perception of bakery products with insect fat as partial butter replacement. Food Qual. Prefer., 2020, 79103755
[http://dx.doi.org/10.1016/j.foodqual.2019.103755]]
[14]
Tzompa-Sosa, D.A.; Fogliano, V. Potential of insect-derived ingredients for food applications. Insect Physiol. Ecology; Shields, V.D.C., Ed.; IntechOpen, 2017.
[http://dx.doi.org/10.5772/67318]
[15]
Verheyen, G.R.; Ooms, T.; Vogels, L.; Vreysen, S.; Bovy, A.; Van Miert, S.; Meersman, F. Insects as an alternative source for the production of fats for cosmetics. J. Cosmet. Sci., 2018, 69(3), 187-202.
[PMID: 30052193]
[16]
Green, P.G.; Guy, R.H.; Hadgraft, J. In vitro and in vivo enhancement of skin permeation with oleic and lauric acids. Int. J. Pharm., 1988, 48, 103-111.
[http://dx.doi.org/10.1016/0378-5173(88)90252-9]
[17]
Tripathy, D.; Mishra, A.; Clark, J.H.; Farmer, T. Synthesis, chemistry, physicochemical properties and industrial applications of amino acid surfactants: A review. C. R. Chim., 2018, 21, 112-130.
[http://dx.doi.org/10.1016/j.crci.2017.11.005]
[18]
Zhang, G.; Xu, B.; Han, F.; Zhou, Y.; Liu, H.; Li, Y.; Cui, L.; Tan, T.; Wang, N. Green synthesis, composition analysis and surface active properties of sodium cocoel glycinate. Am. J. Anal. Chem., 2013, 4, 445-450.
[http://dx.doi.org/10.4236/ajac.2013.49056]
[19]
Liu, C.; Wang, Y.; Chai, C.; Ullah, S.; Zhang, G.; Xu, B.; Liu, H.; Zhao, L. Interfacial activities and aggregation behaviors of N-acyl amino acid surfactants derived from vegetable oils. Colloids Surf. A Physicochem. Eng. Asp., 2018, 559, 54-59.
[http://dx.doi.org/10.1016/j.colsurfa.2018.09.042]
[20]
Sheppard, D.C.; Tomberlin, J.K.; Joyce, J.A.; Kiser, B.C.; Sumner, S.M. Rearing methods for the black soldier fly (Diptera: Stratiomyidae). J. Med. Entomol., 2002, 39(4), 695-698.
[http://dx.doi.org/10.1603/0022-2585-39.4.695] [PMID: 12144307]
[21]
Jungermann, E.; Gerecht, J.; Krems, I. The preparation of long chain N-acylamino acids. J. Am. Chem. Soc., 1956, 78, 172-174.
[http://dx.doi.org/10.1021/ja01582a049]
[22]
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria., Available from: http://www.R-project.org/2019
[23]
RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA, Available from: http://www.rstudio.com/2019


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 7
ISSUE: 2
Year: 2020
Published on: 23 April, 2020
Page: [239 - 248]
Pages: 10
DOI: 10.2174/2213346107999200424084626

Article Metrics

PDF: 23
HTML: 1