Chronic Pancreatitis and the Development of Pancreatic Cancer

Author(s): Hemanth K. Kandikattu, Sathisha U. Venkateshaiah, Anil Mishra*

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders

Volume 20 , Issue 8 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Pancreatitis is a fibro-inflammatory disorder of the pancreas that can occur acutely or chronically as a result of the activation of digestive enzymes that damage pancreatic cells, which promotes inflammation. Chronic pancreatitis with persistent fibro-inflammation of the pancreas progresses to pancreatic cancer, which is the fourth leading cause of cancer deaths across the globe. Pancreatic cancer involves cross-talk of inflammatory, proliferative, migratory, and fibrotic mechanisms. In this review, we discuss the role of cytokines in the inflammatory cell storm in pancreatitis and pancreatic cancer and their role in the activation of SDF1α/CXCR4, SOCS3, inflammasome, and NF-κB signaling. The aberrant immune reactions contribute to pathological damage of acinar and ductal cells, and the activation of pancreatic stellate cells to a myofibroblast-like phenotype. We summarize several aspects involved in the promotion of pancreatic cancer by inflammation and include a number of regulatory molecules that inhibit that process.

Keywords: Pancreatitis, pancreatic cancer, cytokines, chemokines, immune cell infiltration, inflammation signaling.

[1]
Waddell, N.; Pajic, M.; Patch, A.M.; Chang, D.K.; Kassahn, K.S.; Bailey, P.; Johns, A.L.; Miller, D.; Nones, K.; Quek, K.; Quinn, M.C.; Robertson, A.J.; Fadlullah, M.Z.; Bruxner, T.J.; Christ, A.N.; Harliwong, I.; Idrisoglu, S.; Manning, S.; Nourse, C.; Nourbakhsh, E.; Wani, S.; Wilson, P.J.; Markham, E.; Cloonan, N.; Anderson, M.J.; Fink, J.L.; Holmes, O.; Kazakoff, S.H.; Leonard, C.; Newell, F.; Poudel, B.; Song, S.; Taylor, D.; Waddell, N.; Wood, S.; Xu, Q.; Wu, J.; Pinese, M.; Cowley, M.J.; Lee, H.C.; Jones, M.D.; Nagrial, A.M.; Humphris, J.; Chantrill, L.A.; Chin, V.; Steinmann, A.M.; Mawson, A.; Humphrey, E.S.; Colvin, E.K.; Chou, A.; Scarlett, C.J.; Pinho, A.V.; Giry-Laterriere, M.; Rooman, I.; Samra, J.S.; Kench, J.G.; Pettitt, J.A.; Merrett, N.D.; Toon, C.; Epari, K.; Nguyen, N.Q.; Barbour, A.; Zeps, N.; Jamieson, N.B.; Graham, J.S.; Niclou, S.P.; Bjerkvig, R.; Grützmann, R.; Aust, D.; Hruban, R.H.; Maitra, A.; Iacobuzio-Donahue, C.A.; Wolfgang, C.L.; Morgan, R.A.; Lawlor, R.T.; Corbo, V.; Bassi, C.; Falconi, M.; Zamboni, G.; Tortora, G.; Tempero, M.A.; Gill, A.J.; Eshleman, J.R.; Pilarsky, C.; Scarpa, A.; Musgrove, E.A.; Pearson, J.V.; Biankin, A.V.; Grimmond, S.M. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 2015, 518(7540), 495-501.
[http://dx.doi.org/10.1038/nature14169] [PMID: 25719666]
[2]
Łukaszewicz-Zając, M.; Gryko, M.; Mroczko, B. The role of selected chemokines and their specific receptors in pancreatic cancer. Int. J. Biol. Markers, 2018, 33(2), 141-147.
[http://dx.doi.org/10.1177/1724600817753094] [PMID: 29799354]
[3]
Szatmary, P.; Gukovsky, I. The role of cytokines and inflammation in the genesis of experimental pancreatitis. Pancreapedia; Exocrine Pancreas Knowledge Base, 2016.
[4]
Kleeff, J.; Whitcomb, D.C.; Shimosegawa, T.; Esposito, I.; Lerch, M.M.; Gress, T.; Mayerle, J.; Drewes, A.M.; Rebours, V.; Akisik, F.; Muñoz, J.E.D.; Neoptolemos, J.P. Chronic pancreatitis. Nat. Rev. Dis. Primers, 2017, 3, 17060.
[http://dx.doi.org/10.1038/nrdp.2017.60] [PMID: 28880010]
[5]
Evans, A.C.; Papachristou, G.I.; Whitcomb, D.C. Obesity and the risk of severe acute pancreatitis. Minerva Gastroenterol. Dietol., 2010, 56(2), 169-179.
[PMID: 20485254]
[6]
Noel, R.A.; Braun, D.K.; Patterson, R.E.; Bloomgren, G.L. Increased risk of acute pancreatitis and biliary disease observed in patients with type 2 diabetes: a retrospective cohort study. Diabetes Care, 2009, 32(5), 834-838.
[http://dx.doi.org/10.2337/dc08-1755] [PMID: 19208917]
[7]
Papachristou, G.I.; Papachristou, D.J.; Avula, H.; Slivka, A.; Whitcomb, D.C. Obesity increases the severity of acute pancreatitis: performance of APACHE-O score and correlation with the inflammatory response. Pancreatology, 2006, 6(4), 279-285.
[http://dx.doi.org/10.1159/000092689] [PMID: 16636600]
[8]
Taniguchi, T.; Seko, S.; Okamoto, M.; Hamasaki, A.; Ueno, H.; Inoue, F.; Nishida, O.; Miyake, N.; Mizumoto, T. Association of autoimmune pancreatitis and type 1 diabetes: Autoimmune exocrinopathy and endocrinopathy of the pancreas. Diabetes Care, 2000, 23(10), 1592-1594.
[http://dx.doi.org/10.2337/diacare.23.10.1592] [PMID: 11023157]
[9]
Finn, O.J. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer., Ann Oncol, 2012, 23(Suppl 8), viii6-9.,
[http://dx.doi.org/10.1093/annonc/mds256]
[10]
LaRusch, J.; Solomon, S.; Whitcomb, D.C. Pancreatitis Overview.GeneReviews; Adam, M.P.; Ardinger, H.H.; Pagon, R.A.; Wallace, S.E.; Bean, L.J.H.; Stephens, K.; Amemiya, A., Eds.; Seattle, University of Washington, WA, , 1993.
[11]
Banks, P.A.; Bollen, T.L.; Dervenis, C.; Gooszen, H.G.; Johnson, C.D.; Sarr, M.G.; Tsiotos, G.G.; Vege, S.S. Classification of acute pancreatitis--2012: revision of the Atlanta classification and definitions by international consensus. Gut, 2013, 62(1), 102-111.
[http://dx.doi.org/10.1136/gutjnl-2012-302779] [PMID: 23100216]
[12]
Wu, B.U.; Banks, P.A. Clinical management of patients with acute pancreatitis. Gastroenterology, 2013, 144(6), 1272-1281.
[http://dx.doi.org/10.1053/j.gastro.2013.01.075] [PMID: 23622137]
[13]
Ahmed Ali, U.; Issa, Y.; Hagenaars, J.C.; Bakker, O.J.; van Goor, H.; Nieuwenhuijs, V.B.; Bollen, T.L.; van Ramshorst, B.; Witteman, B.J.; Brink, M.A.; Schaapherder, A.F.; Dejong, C.H.; Spanier, B.W.; Heisterkamp, J.; van der Harst, E.; van Eijck, C.H.; Besselink, M.G.; Gooszen, H.G.; van Santvoort, H.C.; Boermeester, M.A. Risk of recurrent pancreatitis and progression to chronic pancreatitis after a first episode of acute pancreatitis. Clin. Gastroenterol. Hepatol., 2016, 14(5), 738-746.
[http://dx.doi.org/10.1016/j.cgh.2015.12.040] [PMID: 26772149]
[14]
Braganza, J.M.; Lee, S.H.; McCloy, R.F.; McMahon, M.J. Chronic pancreatitis. Lancet, 2011, 377(9772), 1184-1197.
[http://dx.doi.org/10.1016/S0140-6736(10)61852-1] [PMID: 21397320]
[15]
Braganza, J.M. Evolution of pancreatitis JM Braganza. In: The pathogenesis of pancreatitis; Manchester University Press: Manchester, 1991; pp. 19-33.
[16]
Cook, L.J.; Musa, O.A.; Case, R.M. Intracellular transport of pancreatic enzymes. Scand. J. Gastroenterol. Suppl., 1996, 219, 1-5.
[http://dx.doi.org/10.3109/00365529609104990] [PMID: 8865462]
[17]
Gaisano, H.Y.; Gorelick, F.S. New insights into the mechanisms of pancreatitis. Gastroenterology, 2009, 136(7), 2040-2044.
[http://dx.doi.org/10.1053/j.gastro.2009.04.023] [PMID: 19379751]
[18]
Park, D.H.; Kim, M.H.; Chari, S.T. Recent advances in autoimmune pancreatitis. Gut, 2009, 58(12), 1680-1689.
[http://dx.doi.org/10.1136/gut.2008.155853] [PMID: 19240063]
[19]
Valdivielso, P.; Ramírez-Bueno, A.; Ewald, N. Current knowledge of hypertriglyceridemic pancreatitis. Eur. J. Intern. Med., 2014, 25(8), 689-694.
[http://dx.doi.org/10.1016/j.ejim.2014.08.008] [PMID: 25269432]
[20]
Crisan, L.S.; Steidl, E.T.; Rivera-Alsina, M.E. Acute hyperlipidemic pancreatitis in pregnancy. Am. J. Obstet. Gynecol., 2008, 198(5), e57-e59.
[http://dx.doi.org/10.1016/j.ajog.2008.01.003] [PMID: 18359475]
[21]
Ye, C.; Liu, L.; Ma, X.; Tong, H.; Gao, J.; Tai, Y.; Huang, L.; Tang, C.; Wang, R. Obesity aggravates acute pancreatitis via damaging intestinal mucosal barrier and changing microbiota composition in rats. Sci. Rep., 2019, 9(1), 69.
[http://dx.doi.org/10.1038/s41598-018-36266-7] [PMID: 30635594]
[22]
Gukovsky, I.; Li, N.; Todoric, J.; Gukovskaya, A.; Karin, M. Inflammation, autophagy, and obesity: Common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology, 2013.144(6), 1199-209 e4..
[http://dx.doi.org/10.1053/j.gastro.2013.02.007]
[23]
Kobayashi, T.; Aida, K.; Fukui, T.; Jimbo, E.; Shimada, A.; Mori, Y.; Fujii, T.; Yagihashi, S. Pancreatic ductal hyperplasia/dysplasia with obstructive chronic pancreatitis: An association with reduced pancreatic weight in type 1 diabetes. Diabetologia, 2016, 59(4), 865-867.
[http://dx.doi.org/10.1007/s00125-016-3867-x] [PMID: 26820736]
[24]
Zechner, D.; Spitzner, M.; Bobrowski, A.; Knapp, N.; Kuhla, A.; Vollmar, B. Diabetes aggravates acute pancreatitis and inhibits pancreas regeneration in mice. Diabetologia, 2012, 55(5), 1526-1534.
[http://dx.doi.org/10.1007/s00125-012-2479-3] [PMID: 22327285]
[25]
Girman, C.J.; Kou, T.D.; Cai, B.; Alexander, C.M.; O’Neill, E.A.; Williams-Herman, D.E.; Katz, L. Patients with type 2 diabetes mellitus have higher risk for acute pancreatitis compared with those without diabetes. Diabetes Obes. Metab., 2010, 12(9), 766-771.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01231.x] [PMID: 20649628]
[26]
Ewald, N.; Hardt, P.D. Diagnosis and treatment of diabetes mellitus in chronic pancreatitis. World J. Gastroenterol., 2013, 19(42), 7276-7281.
[http://dx.doi.org/10.3748/wjg.v19.i42.7276] [PMID: 24259958]
[27]
Shiratori, K. Management of pancreatic diabetes secondary to chronic pancreatitis. An Integrated Textbook of Basic Science. Medicine, and Surgery, 2018, 495-502.
[http://dx.doi.org/10.1002/9781119188421.ch62]
[28]
Raimondi, S.; Lowenfels, A.B.; Morselli-Labate, A.M.; Maisonneuve, P.; Pezzilli, R. Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection. Best Pract. Res. Clin. Gastroenterol., 2010, 24(3), 349-358.
[http://dx.doi.org/10.1016/j.bpg.2010.02.007] [PMID: 20510834]
[29]
Pinho, A.V.; Chantrill, L.; Rooman, I. Chronic pancreatitis: A path to pancreatic cancer. Cancer Lett., 2014, 345(2), 203-209.
[http://dx.doi.org/10.1016/j.canlet.2013.08.015] [PMID: 23981573]
[30]
Verma, A.K.; Kandikattu, H.K.; Manohar, M.; Shukla, A.; Upparahalli Venkateshaiah, S.; Zhu, X.; Mishra, A. Intestinal overexpression of IL-18 promotes eosinophils-mediated allergic disorders. Immunology, 2019, 157(2), 110-121.
[http://dx.doi.org/10.1111/imm.13051] [PMID: 30779114]
[31]
Xue, R.; Jia, K.; Wang, J.; Yang, L.; Wang, Y.; Gao, L.; Hao, J. A rising star in pancreatic diseases: Pancreatic stellate cells. Front. Physiol., 2018, 9, 754.
[http://dx.doi.org/10.3389/fphys.2018.00754] [PMID: 29967585]
[32]
Higuera, O.; Ghanem, I.; Nasimi, R.; Prieto, I.; Koren, L.; Feliu, J. Management of pancreatic cancer in the elderly. World J. Gastroenterol., 2016, 22(2), 764-775.
[http://dx.doi.org/10.3748/wjg.v22.i2.764] [PMID: 26811623]
[33]
Paszkowski, A.S.; Rau, B.; Mayer, J.M.; Möller, P.; Beger, H.G. Therapeutic application of caspase 1/interleukin-1beta-converting enzyme inhibitor decreases the death rate in severe acute experimental pancreatitis. Ann. Surg., 2002, 235(1), 68-76.
[http://dx.doi.org/10.1097/00000658-200201000-00009] [PMID: 11753044]
[34]
Xue, J.; Sharma, V.; Hsieh, M.H.; Chawla, A.; Murali, R.; Pandol, S.J.; Habtezion, A. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat. Commun., 2015, 6, 7158.
[http://dx.doi.org/10.1038/ncomms8158] [PMID: 25981357]
[35]
Osman, M.O.; Kristensen, J.U.; Jacobsen, N.O.; Lausten, S.B.; Deleuran, B.; Deleuran, M.; Gesser, B.; Matsushima, K.; Larsen, C.G.; Jensen, S.L. A monoclonal anti-interleukin 8 antibody (WS-4) inhibits cytokine response and acute lung injury in experimental severe acute necrotising pancreatitis in rabbits. Gut, 1998, 43(2), 232-239.
[http://dx.doi.org/10.1136/gut.43.2.232] [PMID: 10189850]
[36]
Van Laethem, J.L.; Marchant, A.; Delvaux, A.; Goldman, M.; Robberecht, P.; Velu, T.; Devière, J. Interleukin 10 prevents necrosis in murine experimental acute pancreatitis. Gastroenterology, 1995, 108(6), 1917-1922.
[http://dx.doi.org/10.1016/0016-5085(95)90158-2] [PMID: 7539389]
[37]
Rongione, A.J.; Kusske, A.M.; Kwan, K.; Ashley, S.W.; Reber, H.A.; McFadden, D.W. Interleukin 10 reduces the severity of acute pancreatitis in rats. Gastroenterology, 1997, 112(3), 960-967.
[http://dx.doi.org/10.1053/gast.1997.v112.pm9041259] [PMID: 9041259]
[38]
Shimizu, T.; Shiratori, K.; Sawada, T.; Kobayashi, M.; Hayashi, N.; Saotome, H.; Keith, J.C. Recombinant human interleukin-11 decreases severity of acute necrotizing pancreatitis in mice. Pancreas, 2000, 21(2), 134-140.
[http://dx.doi.org/10.1097/00006676-200008000-00005] [PMID: 10975706]
[39]
Manohar, M.; Verma, A.K.; Venkateshaiah, S.U.; Mishra, A. Mechanistic role of eosinophils in the initiation and progression of pancreatitis pathogenesis. J. Immunol., 2017, 198(1)
[40]
Feng, D.; Park, O.; Radaeva, S.; Wang, H.; Yin, S.; Kong, X.; Zheng, M.; Zakhari, S.; Kolls, J.K.; Gao, B. Interleukin-22 ameliorates cerulein-induced pancreatitis in mice by inhibiting the autophagic pathway. Int. J. Biol. Sci., 2012, 8(2), 249-257.
[http://dx.doi.org/10.7150/ijbs.3967] [PMID: 22253568]
[41]
Denham, W.; Fink, G.; Yang, J.; Ulrich, P.; Tracey, K.; Norman, J. Small molecule inhibition of tumor necrosis factor gene processing during acute pancreatitis prevents cytokine cascade progression and attenuates pancreatitis severity. Am. Surg., 1997, 63(12), 1045-1049.
[PMID: 9393251]
[42]
Wagner, K.; Schulz, P.; Scholz, A.; Wiedenmann, B.; Menrad, A. The targeted immunocytokine L19-IL2 efficiently inhibits the growth of orthotopic pancreatic cancer. Clin. Cancer Res., 2008, 14(15), 4951-4960.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0157] [PMID: 18676770]
[43]
Liu, A.; Liu, Y.; Li, P.K.; Li, C.; Lin, J. LLL12 inhibits endogenous and exogenous interleukin-6-induced STAT3 phosphorylation in human pancreatic cancer cells. Anticancer Res., 2011, 31(6), 2029-2035.
[PMID: 21737619]
[44]
Goumas, F.A.; Holmer, R.; Egberts, J.H.; Gontarewicz, A.; Heneweer, C.; Geisen, U.; Hauser, C.; Mende, M.M.; Legler, K.; Röcken, C.; Becker, T.; Waetzig, G.H.; Rose-John, S.; Kalthoff, H. Inhibition of IL-6 signaling significantly reduces primary tumor growth and recurrencies in orthotopic xenograft models of pancreatic cancer. Int. J. Cancer, 2015, 137(5), 1035-1046.
[http://dx.doi.org/10.1002/ijc.29445] [PMID: 25604508]
[45]
Yoshida, Y.; Tasaki, K.; Miyauchi, M.; Narita, M.; Takenaga, K.; Yamamoto, H.; Yaaguchi, T.; Saisho, H.; Sakiyama, S.; Tagawa, M. Impaired tumorigenicity of human pancreatic cancer cells retrovirally transduced with interleukin-12 or interleukin-15 gene. Cancer Gene Ther., 2000, 7(2), 324-331.
[http://dx.doi.org/10.1038/sj.cgt.7700118] [PMID: 10770643]
[46]
Fujisawa, T.; Nakashima, H.; Nakajima, A.; Joshi, B.H.; Puri, R.K. Targeting IL-13Rα2 in human pancreatic ductal adenocarcinoma with combination therapy of IL-13-PE and gemcitabine. Int. J. Cancer, 2011, 128(5), 1221-1231.
[http://dx.doi.org/10.1002/ijc.25437] [PMID: 20473925]
[47]
Van Audenaerde, J.R.M.; De Waele, J.; Marcq, E.; Van Loenhout, J.; Lion, E.; Van den Bergh, J.M.J.; Jesenofsky, R.; Masamune, A.; Roeyen, G.; Pauwels, P.; Lardon, F.; Peeters, M.; Smits, E.L.J. Interleukin-15 stimulates natural killer cell-mediated killing of both human pancreatic cancer and stellate cells. Oncotarget, 2017, 8(34), 56968-56979.
[http://dx.doi.org/10.18632/oncotarget.18185] [PMID: 28915646]
[48]
Wu, H.H.; Hwang-Verslues, W.W.; Lee, W.H.; Huang, C.K.; Wei, P.C.; Chen, C.L.; Shew, J.Y.; Lee, E.Y.; Jeng, Y.M.; Tien, Y.W.; Ma, C.; Lee, W.H. Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. J. Exp. Med., 2015, 212(3), 333-349.
[http://dx.doi.org/10.1084/jem.20141702] [PMID: 25732306]
[49]
McMichael, E.L.; Jaime-Ramirez, A.C.; Guenterberg, K.D.; Luedke, E.; Atwal, L.S.; Campbell, A.R.; Hu, Z.; Tatum, A.S.; Kondadasula, S.V.; Mo, X.; Tridandapani, S.; Bloomston, M.; Ellison, E.C.; Williams, T.M.; Bekaii-Saab, T.; Carson, W.E., III IL-21 enhances natural killer cell response to cetuximab-coated pancreatic tumor cells. Clin. Cancer Res., 2017, 23(2), 489-502.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0004] [PMID: 27435400]
[50]
Tang, Z.H.; Qiu, W.H.; Wu, G.S.; Yang, X.P.; Zou, S.Q.; Qiu, F.Z. The immunotherapeutic effect of dendritic cells vaccine modified with interleukin-18 gene and tumor cell lysate on mice with pancreatic carcinoma. World J. Gastroenterol., 2002, 8(5), 908-912.
[http://dx.doi.org/10.3748/wjg.v8.i5.908] [PMID: 12378640]
[51]
Pan, X.; Sheng, W.; Zhu, Q.; Xie, Y.; Ye, Z.; Xiang, J.; Li, D.; Yang, J. Inhibition of pancreatic carcinoma growth by adenovirus-mediated human interleukin-24 expression in animal model. Cancer Biother. Radiopharm., 2008, 23(4), 425-434.
[http://dx.doi.org/10.1089/cbr.2008.0461] [PMID: 18771346]
[52]
Yao, L.; Wang, M.; Niu, Z.; Liu, Q.; Gao, X.; Zhou, L.; Liao, Q.; Zhao, Y. Interleukin-27 inhibits malignant behaviors of pancreatic cancer cells by targeting M2 polarized tumor associated macrophages. Cytokine, 2017, 89, 194-200.
[http://dx.doi.org/10.1016/j.cyto.2015.12.003] [PMID: 26868086]
[53]
Detjen, K.M.; Farwig, K.; Welzel, M.; Wiedenmann, B.; Rosewicz, S. Interferon gamma inhibits growth of human pancreatic carcinoma cells via caspase-1 dependent induction of apoptosis. Gut, 2001, 49(2), 251-262.
[http://dx.doi.org/10.1136/gut.49.2.251] [PMID: 11454803]
[54]
Amruta, N.; Kandikattu, H.K. Apoptosis of inflammatory cells in Asthma. Int. J Cell Biol. Physiol., 2018, 1(1-2), 1-6.
[55]
Luzina, I.G.; Keegan, A.D.; Heller, N.M.; Rook, G.A.; Shea-Donohue, T.; Atamas, S.P. Regulation of inflammation by interleukin-4: A review of “alternatives”. J. Leukoc. Biol., 2012, 92(4), 753-764.
[http://dx.doi.org/10.1189/jlb.0412214] [PMID: 22782966]
[56]
Prokopchuk, O.; Liu, Y.; Henne-Bruns, D.; Kornmann, M. Interleukin-4 enhances proliferation of human pancreatic cancer cells: Evidence for autocrine and paracrine actions. Br. J. Cancer, 2005, 92(5), 921-928.
[http://dx.doi.org/10.1038/sj.bjc.6602416] [PMID: 15714203]
[57]
Kawakami, K.; Kawakami, M.; Husain, S.R.; Puri, R.K. Targeting interleukin-4 receptors for effective pancreatic cancer therapy. Cancer Res., 2002, 62(13), 3575-3580.
[PMID: 12097255]
[58]
Mishra, A.; Wang, M.; Pemmaraju, V.R.; Collins, M.H.; Fulkerson, P.C.; Abonia, J.P.; Blanchard, C.; Putnam, P.E.; Rothenberg, M.E. Esophageal remodeling develops as a consequence of tissue specific IL-5-induced eosinophilia. Gastroenterology, 2008, 134(1), 204-214.
[http://dx.doi.org/10.1053/j.gastro.2007.10.002] [PMID: 18166354]
[59]
Manohar, M.; Kandikattu, H.K.; Verma, A.K.; Mishra, A. IL-15 regulates fibrosis and inflammation in a mouse model of chronic pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2018, 315(6), G954-G965.
[http://dx.doi.org/10.1152/ajpgi.00139.2018] [PMID: 30212254]
[60]
Lee, E.J.; Lee, S.J.; Kim, S.; Cho, S.C.; Choi, Y.H.; Kim, W.J.; Moon, S.K. Interleukin-5 enhances the migration and invasion of bladder cancer cells via ERK1/2-mediated MMP-9/NF-κB/AP-1 pathway: involvement of the p21WAF1 expression. Cell. Signal., 2013, 25(10), 2025-2038.
[http://dx.doi.org/10.1016/j.cellsig.2013.06.004] [PMID: 23770289]
[61]
Simson, L.; Ellyard, J.I.; Dent, L.A.; Matthaei, K.I.; Rothenberg, M.E.; Foster, P.S.; Smyth, M.J.; Parish, C.R. Regulation of carcinogenesis by IL-5 and CCL11: A potential role for eosinophils in tumor immune surveillance. J. Immunol., 2007, 178(7), 4222-4229.
[http://dx.doi.org/10.4049/jimmunol.178.7.4222] [PMID: 17371978]
[62]
Zhang, H.; Neuhöfer, P.; Song, L.; Rabe, B.; Lesina, M.; Kurkowski, M.U.; Treiber, M.; Wartmann, T.; Regnér, S.; Thorlacius, H.; Saur, D.; Weirich, G.; Yoshimura, A.; Halangk, W.; Mizgerd, J.P.; Schmid, R.M.; Rose-John, S.; Algül, H. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. J. Clin. Invest., 2013, 123(3), 1019-1031.
[http://dx.doi.org/10.1172/JCI64931] [PMID: 23426178]
[63]
Mace, T.A.; Shakya, R.; Pitarresi, J.R.; Swanson, B.; McQuinn, C.W.; Loftus, S.; Nordquist, E.; Cruz-Monserrate, Z.; Yu, L.; Young, G.; Zhong, X.; Zimmers, T.A.; Ostrowski, M.C.; Ludwig, T.; Bloomston, M.; Bekaii-Saab, T.; Lesinski, G.B. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut, 2018, 67(2), 320-332.
[http://dx.doi.org/10.1136/gutjnl-2016-311585] [PMID: 27797936]
[64]
Mishra, A.; Rothenberg, M.E. Intratracheal IL-13 induces eosinophilic esophagitis by an IL-5, eotaxin-1, and STAT6-dependent mechanism. Gastroenterology, 2003, 125(5), 1419-1427.
[http://dx.doi.org/10.1016/j.gastro.2003.07.007] [PMID: 14598258]
[65]
Upparahalli Venkateshaiah, S.; Niranjan, R.; Manohar, M.; Verma, A.K.; Kandikattu, H.K.; Lasky, J.A.; Mishra, A. Attenuation of allergen, IL-13- and TGF-alpha-induced lung fibrosis following the treatment of IL-15 in mice. Am. J. Respir. Cell Mol. Biol., 2019.
[http://dx.doi.org/10.1165/rcmb.2018-0254OC]
[66]
Liou, G.Y.; Bastea, L.; Fleming, A.; Döppler, H.; Edenfield, B.H.; Dawson, D.W.; Zhang, L.; Bardeesy, N.; Storz, P. The presence of interleukin-13 at pancreatic ADM/PanIN lesions alters macrophage populations and mediates pancreatic tumorigenesis. Cell Rep., 2017, 19(7), 1322-1333.
[http://dx.doi.org/10.1016/j.celrep.2017.04.052] [PMID: 28514653]
[67]
Venkateshaiah, S.U.; Manohar, M.; Verma, A.K.; Blecker, U.; Mishra, A. Possible noninvasive biomarker of eosinophilic esophagitis: Clinical and experimental evidence. Case Rep. Gastroenterol., 2016, 10(3), 685-692.
[http://dx.doi.org/10.1159/000452654] [PMID: 27920662]
[68]
Murdock, B.J.; Falkowski, N.R.; Shreiner, A.B.; Sadighi Akha, A.A.; McDonald, R.A.; White, E.S.; Toews, G.B.; Huffnagle, G.B. Interleukin-17 drives pulmonary eosinophilia following repeated exposure to Aspergillus fumigatus conidia. Infect. Immun., 2012, 80(4), 1424-1436.
[http://dx.doi.org/10.1128/IAI.05529-11] [PMID: 22252873]
[69]
Zhao, Q.; Manohar, M.; Wei, Y.; Pandol, S.J.; Habtezion, A. STING signalling protects against chronic pancreatitis by modulating Th17 response. Gut, 2019, 68(10), 1827-1837.
[http://dx.doi.org/10.1136/gutjnl-2018-317098] [PMID: 30705050]
[70]
Zhang, Y.; Zoltan, M.; Riquelme, E.; Xu, H.; Sahin, I.; Castro-Pando, S.; Montiel, M.F.; Chang, K.; Jiang, Z.; Ling, J.; Gupta, S.; Horne, W.; Pruski, M.; Wang, H.; Sun, S.C.; Lozano, G.; Chiao, P.; Maitra, A.; Leach, S.D.; Kolls, J.K.; Vilar, E.; Wang, T.C.; Bailey, J.M.; McAllister, F. Immune Cell Production of Interleukin 17 Induces Stem Cell Features of Pancreatic Intraepithelial Neoplasia Cells. Gastroenterology, 2018, 155(1), 210-223.e3.
[71]
Kandikattu, H.K.; Mishra, A. IL-18 overexpression promotes eosinophils-mediated peanut-induced intestinal allergy. J. Allergy Clin. Immunol., 2018, 143(2), AB254.
[http://dx.doi.org/10.1016/j.jaci.2018.12.776]
[72]
Sandersa, N. L.; Venkateshaiah, S.U.; Manohar, M.; Verma, A.K.; Kandikattu, H.K.; Mishra, A. Interleukin-18 has an important role in differentiation and maturation of mucosal mast cells.Journal of mucosal immunology research, 2018, 2(1), 109.,
[73]
Venkateshaiah, S.U.; Mishra, A.; Manohar, M.; Verma, A.K.; Rajavelu, P.; Niranjan, R.; Wild, L.G.; Parada, N.A.; Blecker, U.; Lasky, J.A.; Mishra, A. A critical role for IL-18 in transformation and maturation of naive eosinophils to pathogenic eosinophils. J. Allergy Clin. Immunol., 2018, 142(1), 301-305.
[http://dx.doi.org/10.1016/j.jaci.2018.02.011] [PMID: 29499224]
[74]
Janiak, A.; Leśniowski, B.; Jasińska, A.; Pietruczuk, M.; Małecka-Panas, E. Interleukin 18 as an early marker or prognostic factor in acute pancreatitis. Prz. Gastroenterol., 2015, 10(4), 203-207.
[http://dx.doi.org/10.5114/pg.2015.50993] [PMID: 26759626]
[75]
Vidal-Vanaclocha, F.; Mendoza, L.; Telleria, N.; Salado, C.; Valcárcel, M.; Gallot, N.; Carrascal, T.; Egilegor, E.; Beaskoetxea, J.; Dinarello, C.A. Clinical and experimental approaches to the pathophysiology of interleukin-18 in cancer progression. Cancer Metastasis Rev., 2006, 25(3), 417-434.
[http://dx.doi.org/10.1007/s10555-006-9013-3] [PMID: 17001512]
[76]
Zaidi, M.R.; Merlino, G. The two faces of interferon-γ in cancer. Clin. Cancer Res., 2011, 17(19), 6118-6124.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0482] [PMID: 21705455]
[77]
Hayashi, T.; Ishida, Y.; Kimura, A.; Iwakura, Y.; Mukaida, N.; Kondo, T. IFN-gamma protects cerulein-induced acute pancreatitis by repressing NF-kappa B activation. J. Immunol., 2007, 178(11), 7385-7394.
[http://dx.doi.org/10.4049/jimmunol.178.11.7385] [PMID: 17513789]
[78]
Kandikattu, H.K. Oxido-nitrosative stress and antioxidants in asthma. J. Basic Clin Immonol., 2018, 1, 9-12.
[79]
Zelová, H.; Hošek, J. TNF-α signalling and inflammation: Interactions between old acquaintances. Inflamm. Res., 2013, 62(7), 641-651.
[http://dx.doi.org/10.1007/s00011-013-0633-0] [PMID: 23685857]
[80]
Sendler, M.; Dummer, A.; Weiss, F.U.; Krüger, B.; Wartmann, T.; Scharffetter-Kochanek, K.; van Rooijen, N.; Malla, S.R.; Aghdassi, A.; Halangk, W.; Lerch, M.M.; Mayerle, J. Tumour necrosis factor α secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice. Gut, 2013, 62(3), 430-439.
[http://dx.doi.org/10.1136/gutjnl-2011-300771] [PMID: 22490516]
[81]
Zhao, X.; Fan, W.; Xu, Z.; Chen, H.; He, Y.; Yang, G.; Yang, G.; Hu, H.; Tang, S.; Wang, P.; Zhang, Z.; Xu, P.; Yu, M. Inhibiting tumor necrosis factor-alpha diminishes desmoplasia and inflammation to overcome chemoresistance in pancreatic ductal adenocarcinoma. Oncotarget, 2016, 7(49), 81110-81122.
[http://dx.doi.org/10.18632/oncotarget.13212] [PMID: 27835602]
[82]
Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta, 2014, 1843(11), 2563-2582.
[http://dx.doi.org/10.1016/j.bbamcr.2014.05.014] [PMID: 24892271]
[83]
O’Hayre, M.; Salanga, C.L.; Handel, T.M.; Allen, S.J. Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochem. J., 2008, 409(3), 635-649.
[http://dx.doi.org/10.1042/BJ20071493] [PMID: 18177271]
[84]
Singh, S.; Sadanandam, A.; Singh, R.K. Chemokines in tumor angiogenesis and metastasis. Cancer Metastasis Rev., 2007, 26(3-4), 453-467.
[http://dx.doi.org/10.1007/s10555-007-9068-9] [PMID: 17828470]
[85]
Yubero, S.; Ramudo, L.; Manso, M.A.; De Dios, I. The role of redox status on chemokine expression in acute pancreatitis. Biochim. Biophys. Acta, 2009, 1792(2), 148-154.
[http://dx.doi.org/10.1016/j.bbadis.2008.12.002] [PMID: 19111613]
[86]
Bhatia, M.; Hegde, A. Treatment with antileukinate, a CXCR2 chemokine receptor antagonist, protects mice against acute pancreatitis and associated lung injury. Regul. Pept., 2007, 138(1), 40-48.
[http://dx.doi.org/10.1016/j.regpep.2006.08.006] [PMID: 17014919]
[87]
Steele, C.W.; Karim, S.A.; Foth, M.; Rishi, L.; Leach, J.D.; Porter, R.J.; Nixon, C.; Jeffry Evans, T.R.; Carter, C.R.; Nibbs, R.J.; Sansom, O.J.; Morton, J.P. CXCR2 inhibition suppresses acute and chronic pancreatic inflammation. J. Pathol., 2015, 237(1), 85-97.
[http://dx.doi.org/10.1002/path.4555] [PMID: 25950520]
[88]
Zhou, G.X.; Zhu, X.J.; Ding, X.L.; Zhang, H.; Chen, J.P.; Qiang, H.; Zhang, H.F.; Wei, Q. Protective effects of MCP-1 inhibitor on a rat model of severe acute pancreatitis. HBPD Int., 2010, 9(2), 201-207.
[PMID: 20382594]
[89]
Wente, M.N.; Keane, M.P.; Burdick, M.D.; Friess, H.; Büchler, M.W.; Ceyhan, G.O.; Reber, H.A.; Strieter, R.M.; Hines, O.J. Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. Cancer Lett., 2006, 241(2), 221-227.
[http://dx.doi.org/10.1016/j.canlet.2005.10.041] [PMID: 16458421]
[90]
Nywening, T.M.; Wang-Gillam, A.; Sanford, D.E.; Belt, B.A.; Panni, R.Z.; Cusworth, B.M.; Toriola, A.T.; Nieman, R.K.; Worley, L.A.; Yano, M.; Fowler, K.J.; Lockhart, A.C.; Suresh, R.; Tan, B.R.; Lim, K.H.; Fields, R.C.; Strasberg, S.M.; Hawkins, W.G.; DeNardo, D.G.; Goedegebuure, S.P.; Linehan, D.C. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol., 2016, 17(5), 651-662.
[http://dx.doi.org/10.1016/S1470-2045(16)00078-4] [PMID: 27055731]
[91]
Ijichi, H.; Chytil, A.; Gorska, A.E.; Aakre, M.E.; Bierie, B.; Tada, M.; Mohri, D.; Miyabayashi, K.; Asaoka, Y.; Maeda, S.; Ikenoue, T.; Tateishi, K.; Wright, C.V.; Koike, K.; Omata, M.; Moses, H.L. Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. J. Clin. Invest., 2011, 121(10), 4106-4117.
[http://dx.doi.org/10.1172/JCI42754] [PMID: 21926469]
[92]
Tan, M.C.; Goedegebuure, P.S.; Belt, B.A.; Flaherty, B.; Sankpal, N.; Gillanders, W.E.; Eberlein, T.J.; Hsieh, C.S.; Linehan, D.C. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J. Immunol., 2009, 182(3), 1746-1755.
[http://dx.doi.org/10.4049/jimmunol.182.3.1746] [PMID: 19155524]
[93]
Feig, C.; Jones, J.O.; Kraman, M.; Wells, R.J.; Deonarine, A.; Chan, D.S.; Connell, C.M.; Roberts, E.W.; Zhao, Q.; Caballero, O.L.; Teichmann, S.A.; Janowitz, T.; Jodrell, D.I.; Tuveson, D.A.; Fearon, D.T. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. USA, 2013, 110(50), 20212-20217.
[http://dx.doi.org/10.1073/pnas.1320318110] [PMID: 24277834]
[94]
Sung, B.; Jhurani, S.; Ahn, K.S.; Mastuo, Y.; Yi, T.; Guha, S.; Liu, M.; Aggarwal, B.B. Zerumbone down-regulates chemokine receptor CXCR4 expression leading to inhibition of CXCL12-induced invasion of breast and pancreatic tumor cells. Cancer Res., 2008, 68(21), 8938-8944.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2155] [PMID: 18974138]
[95]
Turnquist, H.R.; Lin, X.; Ashour, A.E.; Hollingsworth, M.A.; Singh, R.K.; Talmadge, J.E.; Solheim, J.C. CCL21 induces extensive intratumoral immune cell infiltration and specific anti-tumor cellular immunity. Int. J. Oncol., 2007, 30(3), 631-639.
[http://dx.doi.org/10.3892/ijo.30.3.631] [PMID: 17273764]
[96]
Han, H.; Du, L.; Cao, Z.; Zhang, B.; Zhou, Q. Triptonide potently suppresses pancreatic cancer cell-mediated vasculogenic mimicry by inhibiting expression of VE-cadherin and chemokine ligand 2 genes. Eur. J. Pharmacol., 2018, 818, 593-603.
[http://dx.doi.org/10.1016/j.ejphar.2017.11.019] [PMID: 29162433]
[97]
Baggiolini, M.; Dahinden, C.A. CC chemokines in allergic inflammation. Immunol. Today, 1994, 15(3), 127-133.
[http://dx.doi.org/10.1016/0167-5699(94)90156-2] [PMID: 8172645]
[98]
Matsuo, Y.; Raimondo, M.; Woodward, T.A.; Wallace, M.B.; Gill, K.R.; Tong, Z.; Burdick, M.D.; Yang, Z.; Strieter, R.M.; Hoffman, R.M.; Guha, S. CXC-chemokine/CXCR2 biological axis promotes angiogenesis in vitro and in vivo in pancreatic cancer. Int. J. Cancer, 2009, 125(5), 1027-1037.
[http://dx.doi.org/10.1002/ijc.24383] [PMID: 19431209]
[99]
Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interferon Cytokine Res., 2009, 29(6), 313-326.
[http://dx.doi.org/10.1089/jir.2008.0027] [PMID: 19441883]
[100]
Grady, T.; Liang, P.; Ernst, S.A.; Logsdon, C.D. Chemokine gene expression in rat pancreatic acinar cells is an early event associated with acute pancreatitis. Gastroenterology, 1997, 113(6), 1966-1975.
[http://dx.doi.org/10.1016/S0016-5085(97)70017-9] [PMID: 9394737]
[101]
Saurer, L.; Reber, P.; Schaffner, T.; Büchler, M.W.; Buri, C.; Kappeler, A.; Walz, A.; Friess, H.; Mueller, C. Differential expression of chemokines in normal pancreas and in chronic pancreatitis. Gastroenterology, 2000, 118(2), 356-367.
[http://dx.doi.org/10.1016/S0016-5085(00)70218-6] [PMID: 10648464]
[102]
Zhao, H.F.; Ito, T.; Gibo, J.; Kawabe, K.; Oono, T.; Kaku, T.; Arita, Y.; Zhao, Q.W.; Usui, M.; Egashira, K.; Nawata, H. Anti-monocyte chemoattractant protein 1 gene therapy attenuates experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Gut, 2005, 54(12), 1759-1767.
[http://dx.doi.org/10.1136/gut.2004.049403] [PMID: 16284287]
[103]
Saeki, K.; Kanai, T.; Nakano, M.; Nakamura, Y.; Miyata, N.; Sujino, T.; Yamagishi, Y.; Ebinuma, H.; Takaishi, H.; Ono, Y.; Takeda, K.; Hozawa, S.; Yoshimura, A.; Hibi, T. CCL2-induced migration and SOCS3-mediated activation of macrophages are involved in cerulein-induced pancreatitis in mice.Gastroenterology, 2012, 142(4), 1010-1020 e9.,
[http://dx.doi.org/10.1053/j.gastro.2011.12.054]
[104]
Sanford, D.E.; Belt, B.A.; Panni, R.Z.; Mayer, A.; Deshpande, A.D.; Carpenter, D.; Mitchem, J.B.; Plambeck-Suess, S.M.; Worley, L.A.; Goetz, B.D.; Wang-Gillam, A.; Eberlein, T.J.; Denardo, D.G.; Goedegebuure, S.P.; Linehan, D.C. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: A role for targeting the CCL2/CCR2 axis. Clin. Cancer Res., 2013, 19(13), 3404-3415.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0525] [PMID: 23653148]
[105]
Barmania, F.; Pepper, M.S. C-C chemokine receptor type five (CCR5): An emerging target for the control of HIV infection. Appl. Transl. Genomics, 2013, 2, 3-16.
[http://dx.doi.org/10.1016/j.atg.2013.05.004] [PMID: 27942440]
[106]
Goecke, H.; Forssmann, U.; Uguccioni, M.; Friess, H.; Conejo-Garcia, J.R.; Zimmermann, A.; Baggiolini, M.; Büchler, M.W. Macrophages infiltrating the tissue in chronic pancreatitis express the chemokine receptor CCR5. Surgery, 2000, 128(5), 806-814.
[http://dx.doi.org/10.1067/msy.2000.108613] [PMID: 11056444]
[107]
Singh, S.K.; Mishra, M.K.; Eltoum, I.A.; Bae, S.; Lillard, J.W., Jr; Singh, R. CCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cells. Sci. Rep., 2018, 8(1), 1323.
[http://dx.doi.org/10.1038/s41598-018-19643-0] [PMID: 29358632]
[108]
Schutyser, E.; Richmond, A.; Van Damme, J. Involvement of CC chemokine ligand 18 (CCL18) in normal and pathological processes. J. Leukoc. Biol., 2005, 78(1), 14-26.
[http://dx.doi.org/10.1189/jlb.1204712] [PMID: 15784687]
[109]
Meng, F.; Li, W.; Li, C.; Gao, Z.; Guo, K.; Song, S. CCL18 promotes epithelial-mesenchymal transition, invasion and migration of pancreatic cancer cells in pancreatic ductal adenocarcinoma. Int. J. Oncol., 2015, 46(3), 1109-1120.
[http://dx.doi.org/10.3892/ijo.2014.2794] [PMID: 25502147]
[110]
Geismann, C.; Grohmann, F.; Dreher, A.; Häsler, R.; Rosenstiel, P.; Legler, K.; Hauser, C.; Egberts, J.H.; Sipos, B.; Schreiber, S.; Linkermann, A.; Hassan, Z.; Schneider, G.; Schäfer, H.; Arlt, A. Role of CCL20 mediated immune cell recruitment in NF-κB mediated TRAIL resistance of pancreatic cancer. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(5), 782-796.
[http://dx.doi.org/10.1016/j.bbamcr.2017.02.005] [PMID: 28188806]
[111]
Rubie, C.; Frick, V.O.; Ghadjar, P.; Wagner, M.; Grimm, H.; Vicinus, B.; Justinger, C.; Graeber, S.; Schilling, M.K. CCL20/CCR6 expression profile in pancreatic cancer. J. Transl. Med., 2010, 8, 45.
[http://dx.doi.org/10.1186/1479-5876-8-45] [PMID: 20459729]
[112]
Liu, B.; Jia, Y.; Ma, J.; Wu, S.; Jiang, H.; Cao, Y.; Sun, X.; Yin, X.; Yan, S.; Shang, M.; Mao, A. Tumor-associated macrophage-derived CCL20 enhances the growth and metastasis of pancreatic cancer. Acta Biochim. Biophys. Sin. (Shanghai), 2016, 48(12), 1067-1074.
[http://dx.doi.org/10.1093/abbs/gmw101] [PMID: 27797715]
[113]
Klemm, C.; Dommisch, H.; Göke, F.; Kreppel, M.; Jepsen, S.; Rolf, F.; Dommisch, K.; Perner, S.; Standop, J. Expression profiles for 14-3-3 zeta and CCL20 in pancreatic cancer and chronic pancreatitis. Pathol. Res. Pract., 2014, 210(6), 335-341.
[http://dx.doi.org/10.1016/j.prp.2014.01.001] [PMID: 24629487]
[114]
Campbell, J.J.; Bowman, E.P.; Murphy, K.; Youngman, K.R.; Siani, M.A.; Thompson, D.A.; Wu, L.; Zlotnik, A.; Butcher, E.C. 6-C-kine (SLC), a lymphocyte adhesion-triggering chemokine expressed by high endothelium, is an agonist for the MIP-3beta receptor CCR7. J. Cell Biol., 1998, 141(4), 1053-1059.
[http://dx.doi.org/10.1083/jcb.141.4.1053] [PMID: 9585422]
[115]
Manzo, A.; Bugatti, S.; Caporali, R.; Prevo, R.; Jackson, D.G.; Uguccioni, M.; Buckley, C.D.; Montecucco, C.; Pitzalis, C. CCL21 expression pattern of human secondary lymphoid organ stroma is conserved in inflammatory lesions with lymphoid neogenesis. Am. J. Pathol., 2007, 171(5), 1549-1562.
[http://dx.doi.org/10.2353/ajpath.2007.061275] [PMID: 17982129]
[116]
Stein, J.V.; Soriano, S.F.; M’rini, C.; Nombela-Arrieta, C.; de Buitrago, G.G.; Rodríguez-Frade, J.M.; Mellado, M.; Girard, J.P.; Martínez-A, C. CCR7-mediated physiological lymphocyte homing involves activation of a tyrosine kinase pathway. Blood, 2003, 101(1), 38-44.
[http://dx.doi.org/10.1182/blood-2002-03-0841] [PMID: 12393730]
[117]
Willimann, K.; Legler, D.F.; Loetscher, M.; Roos, R.S.; Delgado, M.B.; Clark-Lewis, I.; Baggiolini, M.; Moser, B. The chemokine SLC is expressed in T cell areas of lymph nodes and mucosal lymphoid tissues and attracts activated T cells via CCR7. Eur. J. Immunol., 1998, 28(6), 2025-2034.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199806)28:06<2025::AID-IMMU2025>3.0.CO;2-C] [PMID: 9645384]
[118]
Hedrick, J.A.; Zlotnik, A. Identification and characterization of a novel beta chemokine containing six conserved cysteines. J. Immunol., 1997, 159(4), 1589-1593.
[PMID: 9257816]
[119]
Nagira, M.; Imai, T.; Hieshima, K.; Kusuda, J.; Ridanpää, M.; Takagi, S.; Nishimura, M.; Kakizaki, M.; Nomiyama, H.; Yoshie, O. Molecular cloning of a novel human CC chemokine secondary lymphoid-tissue chemokine that is a potent chemoattractant for lymphocytes and mapped to chromosome 9p13. J. Biol. Chem., 1997, 272(31), 19518-19524.
[http://dx.doi.org/10.1074/jbc.272.31.19518] [PMID: 9235955]
[120]
Nagira, M.; Imai, T.; Yoshida, R.; Takagi, S.; Iwasaki, M.; Baba, M.; Tabira, Y.; Akagi, J.; Nomiyama, H.; Yoshie, O. A lymphocyte-specific CC chemokine, secondary lymphoid tissue chemokine (SLC), is a highly efficient chemoattractant for B cells and activated T cells. Eur. J. Immunol., 1998, 28(5), 1516-1523.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199805)28:05<1516:AID-IMMU1516>3.0.CO;2-J] [PMID: 9603456]
[121]
Yoshida, R.; Nagira, M.; Kitaura, M.; Imagawa, N.; Imai, T.; Yoshie, O. Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J. Biol. Chem., 1998, 273(12), 7118-7122.
[http://dx.doi.org/10.1074/jbc.273.12.7118] [PMID: 9507024]
[122]
Raju, R.; Gadakh, S.; Gopal, P.; George, B.; Advani, J.; Soman, S.; Prasad, T. S.; Girijadevi, R. Differential ligand-signaling network of CCL19/CCL21-CCR7 system. Database (Oxford), 2015, 2015
[123]
Zhao, B.; Cui, K.; Wang, C.L.; Wang, A.L.; Zhang, B.; Zhou, W.Y.; Zhao, W.H.; Li, S. The chemotactic interaction between CCL21 and its receptor, CCR7, facilitates the progression of pancreatic cancer via induction of angiogenesis and lymphangiogenesis. J. Hepatobiliary Pancreat. Sci., 2011, 18(6), 821-828.
[http://dx.doi.org/10.1007/s00534-011-0395-4] [PMID: 21594558]
[124]
Zhang, L.; Wang, D.; Li, Y.; Liu, Y.; Xie, X.; Wu, Y.; Zhou, Y.; Ren, J.; Zhang, J.; Zhu, H.; Su, Z. CCL21/CCR7 Axis Contributed to CD133+ Pancreatic Cancer Stem-Like Cell Metastasis via EMT and Erk/NF-κB Pathway. PLoS One, 2016, 11(8), e0158529.
[http://dx.doi.org/10.1371/journal.pone.0158529] [PMID: 27505247]
[125]
Keeley, E.C.; Mehrad, B.; Strieter, R.M. CXC chemokines in cancer angiogenesis and metastases. Adv. Cancer Res., 2010, 106, 91-111.
[http://dx.doi.org/10.1016/S0065-230X(10)06003-3] [PMID: 20399957]
[126]
Acharyya, S.; Oskarsson, T.; Vanharanta, S.; Malladi, S.; Kim, J.; Morris, P.G.; Manova-Todorova, K.; Leversha, M.; Hogg, N.; Seshan, V.E.; Norton, L.; Brogi, E.; Massagué, J.A. CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell, 2012, 150(1), 165-178.
[http://dx.doi.org/10.1016/j.cell.2012.04.042] [PMID: 22770218]
[127]
Sawant, K.V.; Poluri, K.M.; Dutta, A.K.; Sepuru, K.M.; Troshkina, A.; Garofalo, R.P.; Rajarathnam, K. Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions. Sci. Rep., 2016, 6, 33123.
[http://dx.doi.org/10.1038/srep33123] [PMID: 27625115]
[128]
Lesina, M.; Wörmann, S.M.; Morton, J.; Diakopoulos, K.N.; Korneeva, O.; Wimmer, M.; Einwächter, H.; Sperveslage, J.; Demir, I.E.; Kehl, T.; Saur, D.; Sipos, B.; Heikenwälder, M.; Steiner, J.M.; Wang, T.C.; Sansom, O.J.; Schmid, R.M.; Algül, H. RelA regulates CXCL1/CXCR2-dependent oncogene-induced senescence in murine Kras-driven pancreatic carcinogenesis. J. Clin. Invest., 2016, 126(8), 2919-2932.
[http://dx.doi.org/10.1172/JCI86477] [PMID: 27454298]
[129]
Seifert, L.; Werba, G.; Tiwari, S.; Giao Ly, N.N.; Alothman, S.; Alqunaibit, D.; Avanzi, A.; Barilla, R.; Daley, D.; Greco, S.H.; Torres-Hernandez, A.; Pergamo, M.; Ochi, A.; Zambirinis, C.P.; Pansari, M.; Rendon, M.; Tippens, D.; Hundeyin, M.; Mani, V.R.; Hajdu, C.; Engle, D.; Miller, G. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature, 2016, 532(7598), 245-249.
[http://dx.doi.org/10.1038/nature17403] [PMID: 27049944]
[130]
Vandercappellen, J.; Van Damme, J.; Struyf, S. The role of the CXC chemokines platelet factor-4 (CXCL4/PF-4) and its variant (CXCL4L1/PF-4var) in inflammation, angiogenesis and cancer. Cytokine Growth Factor Rev., 2011, 22(1), 1-18.
[http://dx.doi.org/10.1016/j.cytogfr.2010.10.011] [PMID: 21111666]
[131]
Zhang, Y.; Gao, J.; Wang, X.; Deng, S.; Ye, H.; Guan, W.; Wu, M.; Zhu, S.; Yu, Y.; Han, W. CXCL4 mediates tumor regrowth after chemotherapy by suppression of antitumor immunity. Cancer Biol. Ther., 2015, 16(12), 1775-1783.
[http://dx.doi.org/10.1080/15384047.2015.1095404] [PMID: 26479470]
[132]
Wetterholm, E.; Linders, J.; Merza, M.; Regner, S.; Thorlacius, H. Platelet-derived CXCL4 regulates neutrophil infiltration and tissue damage in severe acute pancreatitis. Transl. Res., 2016, 176, 105-118.
[http://dx.doi.org/10.1016/j.trsl.2016.04.006] [PMID: 27183218]
[133]
Pooran, N.; Indaram, A.; Singh, P.; Bank, S. Cytokines (IL-6, IL-8, TNF): Early and reliable predictors of severe acute pancreatitis. J. Clin. Gastroenterol., 2003, 37(3), 263-266.
[http://dx.doi.org/10.1097/00004836-200309000-00013] [PMID: 12960727]
[134]
Matsuo, Y.; Ochi, N.; Sawai, H.; Yasuda, A.; Takahashi, H.; Funahashi, H.; Takeyama, H.; Tong, Z.; Guha, S. CXCL8/IL-8 and CXCL12/SDF-1alpha co-operatively promote invasiveness and angiogenesis in pancreatic cancer. Int. J. Cancer, 2009, 124(4), 853-861.
[http://dx.doi.org/10.1002/ijc.24040] [PMID: 19035451]
[135]
Chen, Y.; Shi, M.; Yu, G.Z.; Qin, X.R.; Jin, G.; Chen, P.; Zhu, M.H. Interleukin-8, a promising predictor for prognosis of pancreatic cancer. World J. Gastroenterol., 2012, 18(10), 1123-1129.
[http://dx.doi.org/10.3748/wjg.v18.i10.1123] [PMID: 22416189]
[136]
Liu, M.; Guo, S.; Stiles, J.K. The emerging role of CXCL10 in cancer. (Review) . Oncol. Lett., 2011, 2(4), 583-589. [Review]
[http://dx.doi.org/10.3892/ol.2011.300] [PMID: 22848232]
[137]
Dyer, K.D.; Percopo, C.M.; Fischer, E.R.; Gabryszewski, S.J.; Rosenberg, H.F. Pneumoviruses infect eosinophils and elicit MyD88-dependent release of chemoattractant cytokines and interleukin-6. Blood, 2009, 114(13), 2649-2656.
[http://dx.doi.org/10.1182/blood-2009-01-199497] [PMID: 19652202]
[138]
Lo, B.K.; Yu, M.; Zloty, D.; Cowan, B.; Shapiro, J.; McElwee, K.J. CXCR3/ligands are significantly involved in the tumorigenesis of basal cell carcinomas. Am. J. Pathol., 2010, 176(5), 2435-2446.
[http://dx.doi.org/10.2353/ajpath.2010.081059] [PMID: 20228225]
[139]
Luster, A.D.; Ravetch, J.V. Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). J. Exp. Med., 1987, 166(4), 1084-1097.
[http://dx.doi.org/10.1084/jem.166.4.1084] [PMID: 2443596]
[140]
Lunardi, S.; Jamieson, N.B.; Lim, S.Y.; Griffiths, K.L.; Carvalho-Gaspar, M.; Al-Assar, O.; Yameen, S.; Carter, R.C.; McKay, C.J.; Spoletini, G.; D’Ugo, S.; Silva, M.A.; Sansom, O.J.; Janssen, K.P.; Muschel, R.J.; Brunner, T.B. IP-10/CXCL10 induction in human pancreatic cancer stroma influences lymphocytes recruitment and correlates with poor survival. Oncotarget, 2014, 5(22), 11064-11080.
[http://dx.doi.org/10.18632/oncotarget.2519] [PMID: 25415223]
[141]
Deng, L.; Chen, N.; Li, Y.; Zheng, H.; Lei, Q. CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim. Biophys. Acta, 2010, 1806(1), 42-49.
[PMID: 20122997]
[142]
Liang, K.; Liu, Y.; Eer, D.; Liu, J.; Yang, F.; Hu, K. High CXC chemokine ligand 16 (CXCL16) expression promotes proliferation and metastasis of lung cancer via regulating the NF-κB pathway. Med. Sci. Monit., 2018, 24, 405-411.
[http://dx.doi.org/10.12659/MSM.906230] [PMID: 29353287]
[143]
Wittel, U.A.; Schmidt, A.I.; Poxleitner, P.J.; Seifert, G.J.; Chikhladze, S.; Puolakkainen, P.; Hopt, U.T.; Kylänpää, L. The chemokine ligand CXCL16 is an indicator of bacterial infection in necrotizing pancreatitis. Pancreatology, 2015, 15(2), 124-130.
[http://dx.doi.org/10.1016/j.pan.2015.01.004] [PMID: 25661686]
[144]
Wente, M.N.; Gaida, M.M.; Mayer, C.; Michalski, C.W.; Haag, N.; Giese, T.; Felix, K.; Bergmann, F.; Giese, N.A.; Friess, H. Expression and potential function of the CXC chemokine CXCL16 in pancreatic ductal adenocarcinoma. Int. J. Oncol., 2008, 33(2), 297-308.
[PMID: 18636150]
[145]
Chalabi-Dchar, M.; Cassant-Sourdy, S.; Duluc, C.; Fanjul, M.; Lulka, H.; Samain, R.; Roche, C.; Breibach, F.; Delisle, M.B.; Poupot, M.; Dufresne, M.; Shimaoka, T.; Yonehara, S.; Mathonnet, M.; Pyronnet, S.; Bousquet, C. Loss of somatostatin receptor subtype 2 promotes growth of KRAS-induced pancreatic tumors in mice by activating PI3K signaling and overexpression of CXCL16. Gastroenterology, 2015, 148(7), 1452-1465.
[http://dx.doi.org/10.1053/j.gastro.2015.02.009] [PMID: 25683115]
[146]
Manohar, M.; Verma, A.K.; Upparahalli Venkateshaiah, S.; Goyal, H.; Mishra, A. Food-induced acute pancreatitis. Dig. Dis. Sci., 2017, 62(12), 3287-3297.
[http://dx.doi.org/10.1007/s10620-017-4817-2] [PMID: 29086330]
[147]
Ino, Y.; Yamazaki-Itoh, R.; Shimada, K.; Iwasaki, M.; Kosuge, T.; Kanai, Y.; Hiraoka, N. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br. J. Cancer, 2013, 108(4), 914-923.
[http://dx.doi.org/10.1038/bjc.2013.32] [PMID: 23385730]
[148]
Awla, D.; Abdulla, A.; Zhang, S.; Roller, J.; Menger, M.D.; Regnér, S.; Thorlacius, H. Lymphocyte function antigen-1 regulates neutrophil recruitment and tissue damage in acute pancreatitis. Br. J. Pharmacol., 2011, 163(2), 413-423.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01225.x] [PMID: 21244370]
[149]
Griesmann, H.; Drexel, C.; Milosevic, N.; Sipos, B.; Rosendahl, J.; Gress, T.M.; Michl, P. Pharmacological macrophage inhibition decreases metastasis formation in a genetic model of pancreatic cancer. Gut, 2017, 66(7), 1278-1285.
[http://dx.doi.org/10.1136/gutjnl-2015-310049] [PMID: 27013602]
[150]
Shevchenko, I.; Karakhanova, S.; Soltek, S.; Link, J.; Bayry, J.; Werner, J.; Umansky, V.; Bazhin, A.V. Low-dose gemcitabine depletes regulatory T cells and improves survival in the orthotopic Panc02 model of pancreatic cancer. Int. J. Cancer, 2013, 133(1), 98-107.
[http://dx.doi.org/10.1002/ijc.27990] [PMID: 23233419]
[151]
Bedrosian, A.S.; Nguyen, A.H.; Hackman, M.; Connolly, M.K.; Malhotra, A.; Ibrahim, J.; Cieza-Rubio, N.E.; Henning, J.R.; Barilla, R.; Rehman, A.; Pachter, H.L.; Medina-Zea, M.V.; Cohen, S.M.; Frey, A.B.; Acehan, D.; Miller, G. Dendritic cells promote pancreatic viability in mice with acute pancreatitis.Gastroenterology, 2011, 141(5), 1915-26 e1-14.,
[http://dx.doi.org/10.1053/j.gastro.2011.07.033]
[152]
Ochi, A.; Nguyen, A.H.; Bedrosian, A.S.; Mushlin, H.M.; Zarbakhsh, S.; Barilla, R.; Zambirinis, C.P.; Fallon, N.C.; Rehman, A.; Pylayeva-Gupta, Y.; Badar, S.; Hajdu, C.H.; Frey, A.B.; Bar-Sagi, D.; Miller, G. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J. Exp. Med., 2012, 209(9), 1671-1687.
[http://dx.doi.org/10.1084/jem.20111706] [PMID: 22908323]
[153]
Liu, C.Y.; Xu, J.Y.; Shi, X.Y.; Huang, W.; Ruan, T.Y.; Xie, P.; Ding, J.L. M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab. Invest., 2013, 93(7), 844-854.
[http://dx.doi.org/10.1038/labinvest.2013.69] [PMID: 23752129]
[154]
Kaneda, M.M.; Cappello, P.; Nguyen, A.V.; Ralainirina, N.; Hardamon, C.R.; Foubert, P.; Schmid, M.C.; Sun, P.; Mose, E.; Bouvet, M.; Lowy, A.M.; Valasek, M.A.; Sasik, R.; Novelli, F.; Hirsch, E.; Varner, J.A. Macrophage PI3Kγ drives pancreatic ductal adenocarcinoma progression. Cancer Discov., 2016, 6(8), 870-885.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1346] [PMID: 27179037]
[155]
Esposito, I.; Friess, H.; Kappeler, A.; Shrikhande, S.; Kleeff, J.; Ramesh, H.; Zimmermann, A.; Büchler, M.W. Mast cell distribution and activation in chronic pancreatitis. Hum. Pathol., 2001, 32(11), 1174-1183.
[http://dx.doi.org/10.1053/hupa.2001.28947] [PMID: 11727255]
[156]
Demir, I.E.; Schorn, S.; Schremmer-Danninger, E.; Wang, K.; Kehl, T.; Giese, N.A.; Algül, H.; Friess, H.; Ceyhan, G.O. Perineural mast cells are specifically enriched in pancreatic neuritis and neuropathic pain in pancreatic cancer and chronic pancreatitis. PLoS One, 2013, 8(3), e60529.
[http://dx.doi.org/10.1371/journal.pone.0060529] [PMID: 23555989]
[157]
Lopez-Font, I.; Gea-Sorlí, S.; de-Madaria, E.; Gutiérrez, L.M.; Pérez-Mateo, M.; Closa, D. Pancreatic and pulmonary mast cells activation during experimental acute pancreatitis. World J. Gastroenterol., 2010, 16(27), 3411-3417.
[http://dx.doi.org/10.3748/wjg.v16.i27.3411] [PMID: 20632444]
[158]
Strouch, M.J.; Cheon, E.C.; Salabat, M.R.; Krantz, S.B.; Gounaris, E.; Melstrom, L.G.; Dangi-Garimella, S.; Wang, E.; Munshi, H.G.; Khazaie, K.; Bentrem, D.J. Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clin. Cancer Res., 2010, 16(8), 2257-2265.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1230] [PMID: 20371681]
[159]
Karamitopoulou, E.; Shoni, M.; Theoharides, T.C. Increased number of non-degranulated mast cells in pancreatic ductal adenocarcinoma but not in acute pancreatitis. Int. J. Immunopathol. Pharmacol., 2014, 27(2), 213-220.
[http://dx.doi.org/10.1177/039463201402700208] [PMID: 25004833]
[160]
Longo, V.; Tamma, R.; Brunetti, O.; Pisconti, S.; Argentiero, A.; Silvestris, N.; Ribatti, D. Mast cells and angiogenesis in pancreatic ductal adenocarcinoma. Clin. Exp. Med., 2018, 18(3), 319-323.
[http://dx.doi.org/10.1007/s10238-018-0493-6] [PMID: 29492715]
[161]
Abdulla, A.; Awla, D.; Thorlacius, H.; Regnér, S. Role of neutrophils in the activation of trypsinogen in severe acute pancreatitis. J. Leukoc. Biol., 2011, 90(5), 975-982.
[http://dx.doi.org/10.1189/jlb.0411195] [PMID: 21810937]
[162]
Leppkes, M.; Maueröder, C.; Hirth, S.; Nowecki, S.; Günther, C.; Billmeier, U.; Paulus, S.; Biermann, M.; Munoz, L.E.; Hoffmann, M.; Wildner, D.; Croxford, A.L.; Waisman, A.; Mowen, K.; Jenne, D.E.; Krenn, V.; Mayerle, J.; Lerch, M.M.; Schett, G.; Wirtz, S.; Neurath, M.F.; Herrmann, M.; Becker, C. Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis. Nat. Commun., 2016, 7, 10973.
[http://dx.doi.org/10.1038/ncomms10973] [PMID: 26964500]
[163]
Chakraborty, S.; Kaur, S.; Muddana, V.; Sharma, N.; Wittel, U.A.; Papachristou, G.I.; Whitcomb, D.; Brand, R.E.; Batra, S.K. Elevated serum neutrophil gelatinase-associated lipocalin is an early predictor of severity and outcome in acute pancreatitis. Am. J. Gastroenterol., 2010, 105(9), 2050-2059.
[http://dx.doi.org/10.1038/ajg.2010.23] [PMID: 20179686]
[164]
Lippi, G.; Meschi, T.; Nouvenne, A.; Mattiuzzi, C.; Borghi, L. Neutrophil gelatinase-associated lipocalin in cancer. Adv. Clin. Chem.,, 2014, 64, 179-219.
[http://dx.doi.org/10.1016/B978-0-12-800263-6.00004-5] [PMID: 24938019]
[165]
Grosse-Steffen, T.; Giese, T.; Giese, N.; Longerich, T.; Schirmacher, P.; Hänsch, G.M.; Gaida, M.M. Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma and pancreatic tumor cell lines: The role of neutrophils and neutrophil-derived elastase. Clin. Dev. Immunol., 2012.2012720768
[http://dx.doi.org/10.1155/2012/720768] [PMID: 23227088]
[166]
Rigoni, A.; Colombo, M.P.; Pucillo, C. Mast cells, basophils and eosinophils: From allergy to cancer. Semin. Immunol., 2018, 35, 29-34.
[http://dx.doi.org/10.1016/j.smim.2018.02.001] [PMID: 29428698]
[167]
Yanagawa, M.; Uchida, K.; Ando, Y.; Tomiyama, T.; Yamaguchi, T.; Ikeura, T.; Fukui, T.; Nishio, A.; Uemura, Y.; Miyara, T.; Okamoto, H.; Satoi, S.; Okazaki, K. Basophils activated via TLR signaling may contribute to pathophysiology of type 1 autoimmune pancreatitis. J. Gastroenterol., 2018, 53(3), 449-460.
[http://dx.doi.org/10.1007/s00535-017-1390-6] [PMID: 28921377]
[168]
De Monte, L.; Wörmann, S.; Brunetto, E.; Heltai, S.; Magliacane, G.; Reni, M.; Paganoni, A.M.; Recalde, H.; Mondino, A.; Falconi, M.; Aleotti, F.; Balzano, G.; Algül, H.; Doglioni, C.; Protti, M.P. Basophil recruitment into tumor-draining lymph nodes correlates with Th2 inflammation and reduced survival in pancreatic cancer patients. Cancer Res., 2016, 76(7), 1792-1803.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1801-T] [PMID: 26873846]
[169]
Zhang, M.L.; Jiang, Y.F.; Wang, X.R.; Ding, L.L.; Wang, H.J.; Meng, Q.Q.; Gao, P.J. Different phenotypes of monocytes in patients with new-onset mild acute pancreatitis. World J. Gastroenterol., 2017, 23(8), 1477-1488.
[http://dx.doi.org/10.3748/wjg.v23.i8.1477] [PMID: 28293095]
[170]
Reppucci, J.; Chang, M.; Hughes, S.; Liu, X. Eosinophilic pancreatitis: A rare cause of recurrent acute pancreatitis. Case Rep. Gastroenterol., 2017, 11(1), 120-126.
[http://dx.doi.org/10.1159/000457788] [PMID: 28611564]
[171]
Tian, L.; Fu, P.; Dong, X.; Qi, J.; Zhu, H. Eosinophilic pancreatitis: Three case reports and literature review. Mol. Clin. Oncol., 2016, 4(4), 559-562.
[http://dx.doi.org/10.3892/mco.2016.760] [PMID: 27073662]
[172]
Ibrahim, U.; Asti, D.; Saqib, A.; Mudduluru, B.M.; Ayaz, S.; Odaimi, M. Eosinophilia as the presenting sign in pancreatic cancer: An extremely rare occurrence. Postgrad. Med., 2017, 129(3), 399-401.
[http://dx.doi.org/10.1080/00325481.2017.1246345] [PMID: 27718779]
[173]
Soares, K.C.; Rucki, A.A.; Wu, A.A.; Olino, K.; Xiao, Q.; Chai, Y.; Wamwea, A.; Bigelow, E.; Lutz, E.; Liu, L.; Yao, S.; Anders, R.A.; Laheru, D.; Wolfgang, C.L.; Edil, B.H.; Schulick, R.D.; Jaffee, E.M.; Zheng, L. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J. Immunother., 2015, 38(1), 1-11.
[http://dx.doi.org/10.1097/CJI.0000000000000062] [PMID: 25415283]
[174]
Winograd, R.; Byrne, K.T.; Evans, R.A.; Odorizzi, P.M.; Meyer, A.R.; Bajor, D.L.; Clendenin, C.; Stanger, B.Z.; Furth, E.E.; Wherry, E.J.; Vonderheide, R.H. Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol. Res., 2015, 3(4), 399-411.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0215] [PMID: 25678581]
[175]
Miyoshi, H.; Uchida, K.; Taniguchi, T.; Yazumi, S.; Matsushita, M.; Takaoka, M.; Okazaki, K. Circulating naïve and CD4+CD25high regulatory T cells in patients with autoimmune pancreatitis. Pancreas, 2008, 36(2), 133-140.
[http://dx.doi.org/10.1097/MPA.0b013e3181577553] [PMID: 18376303]
[176]
Demols, A.; Le Moine, O.; Desalle, F.; Quertinmont, E.; Van Laethem, J.L.; Devière, J. CD4(+)T cells play an important role in acute experimental pancreatitis in mice. Gastroenterology, 2000, 118(3), 582-590.
[http://dx.doi.org/10.1016/S0016-5085(00)70265-4] [PMID: 10702210]
[177]
Bayne, L.J.; Beatty, G.L.; Jhala, N.; Clark, C.E.; Rhim, A.D.; Stanger, B.Z.; Vonderheide, R.H. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell, 2012, 21(6), 822-835.
[http://dx.doi.org/10.1016/j.ccr.2012.04.025] [PMID: 22698406]
[178]
Hunger, R.E.; Mueller, C.; Z’graggen, K.; Friess, H.; Büchler, M.W. Cytotoxic cells are activated in cellular infiltrates of alcoholic chronic pancreatitis. Gastroenterology, 1997, 112(5), 1656-1663.
[http://dx.doi.org/10.1016/S0016-5085(97)70048-9] [PMID: 9136845]
[179]
Janakiram, N.B.; Mohammed, A.; Bryant, T.; Ritchie, R.; Stratton, N.; Jackson, L.; Lightfoot, S.; Benbrook, D.M.; Asch, A.S.; Lang, M.L.; Rao, C.V. Loss of natural killer T cells promotes pancreatic cancer in LSL-KrasG12D/+ mice. Immunology, 2017, 152(1), 36-51.
[http://dx.doi.org/10.1111/imm.12746] [PMID: 28419443]
[180]
Uchida, K.; Kusuda, T.; Koyabu, M.; Miyoshi, H.; Fukata, N.; Sumimoto, K.; Fukui, Y.; Sakaguchi, Y.; Ikeura, T.; Shimatani, M.; Fukui, T.; Matsushita, M.; Takaoka, M.; Nishio, A.; Okazaki, K. Regulatory T cells in type 1 autoimmune pancreatitis. Int. J. Rheumatol., 2012.2012795026
[http://dx.doi.org/10.1155/2012/795026] [PMID: 22536257]
[181]
Jang, J.E.; Hajdu, C.H.; Liot, C.; Miller, G.; Dustin, M.L.; Bar-Sagi, D. Crosstalk between regulatory T cells and tumor-associated dendritic cells negates anti-tumor immunity in pancreatic cancer. Cell Rep., 2017, 20(3), 558-571.
[http://dx.doi.org/10.1016/j.celrep.2017.06.062] [PMID: 28723561]
[182]
Pylayeva-Gupta, Y.; Das, S.; Handler, J.S.; Hajdu, C.H.; Coffre, M.; Koralov, S.B.; Bar-Sagi, D. IL35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov., 2016, 6(3), 247-255.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0843] [PMID: 26715643]
[183]
Lee, K.E.; Spata, M.; Bayne, L.J.; Buza, E.L.; Durham, A.C.; Allman, D.; Vonderheide, R.H.; Simon, M.C. Hif1a deletion reveals pro-neoplastic function of b cells in pancreatic neoplasia. Cancer Discov., 2016, 6(3), 256-269.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0822] [PMID: 26715642]
[184]
Sumimoto, K.; Uchida, K.; Kusuda, T.; Mitsuyama, T.; Sakaguchi, Y.; Fukui, T.; Matsushita, M.; Takaoka, M.; Nishio, A.; Okazaki, K. The role of CD19+ CD24high CD38high and CD19+ CD24high CD27+ regulatory B cells in patients with type 1 autoimmune pancreatitis. Pancreatology, 2014, 14(3), 193-200.
[http://dx.doi.org/10.1016/j.pan.2014.02.004] [PMID: 24854615]
[185]
Chen, X.; Wang, L.; Zhang, L.; Zhao, C. IgG4-related Autoimmune Pancreatitis Mimicking Acute Pancreatitis: A Case Report. Chin. Med. Sci. J., 2017, 32(1), 65-68.
[http://dx.doi.org/10.24920/J1001-9242.2007.009] [PMID: 28399987]
[186]
Sendler, M.; Beyer, G.; Mahajan, U.M.; Kauschke, V.; Maertin, S.; Schurmann, C.; Homuth, G.; Volker, U.; Volzke, H.; Halangk, W.; Wartmann, T.; Weiss, F.U.; Hegyi, P.; Lerch, M.M.; Mayerle, J. Complement Component 5 Mediates Development of Fibrosis, via Activation of Stellate Cells, in 2 Mouse Models of Chronic Pancreatitis. Gastroenterology, 2015, 149(3), 765-76.e10.
[187]
Chen, J.; Wu, W.; Zhen, C.; Zhou, H.; Yang, R.; Chen, L.; Hu, L. Expression and clinical significance of complement C3, complement C4b1 and apolipoprotein E in pancreatic cancer. Oncol. Lett., 2013, 6(1), 43-48.
[http://dx.doi.org/10.3892/ol.2013.1326] [PMID: 23946775]
[188]
Farrow, B.; Sugiyama, Y.; Chen, A.; Uffort, E.; Nealon, W.; Mark Evers, B. Inflammatory mechanisms contributing to pancreatic cancer development. Ann. Surg., 2004, 239(6), 763-769.
[http://dx.doi.org/10.1097/01.sla.0000128681.76786.07] [PMID: 15166955]
[189]
Fu, Q.; Zhai, Z.; Wang, Y.; Xu, L.; Jia, P.; Xia, P.; Liu, C.; Zhang, X.; Qin, T.; Zhang, H. NLRP3 deficiency alleviates severe acute pancreatitis and pancreatitis-associated lung injury in a mouse model. BioMed Res. Int., 2018, 2018, 1294951.
[http://dx.doi.org/10.1155/2018/1294951] [PMID: 30622955]
[190]
Ethridge, R.T.; Hashimoto, K.; Chung, D.H.; Ehlers, R.A.; Rajaraman, S.; Evers, B.M. Selective inhibition of NF-kappaB attenuates the severity of cerulein-induced acute pancreatitis. J. Am. Coll. Surg., 2002, 195(4), 497-505.
[http://dx.doi.org/10.1016/S1072-7515(02)01222-X] [PMID: 12375755]
[191]
Satoh, A.; Shimosegawa, T.; Fujita, M.; Kimura, K.; Masamune, A.; Koizumi, M.; Toyota, T. Inhibition of nuclear factor-kappaB activation improves the survival of rats with taurocholate pancreatitis. Gut, 1999, 44(2), 253-258.
[http://dx.doi.org/10.1136/gut.44.2.253] [PMID: 9895386]
[192]
Kanak, M.A.; Shahbazov, R.; Yoshimatsu, G.; Levy, M.F.; Lawrence, M.C.; Naziruddin, B. A small molecule inhibitor of NFκB blocks ER stress and the NLRP3 inflammasome and prevents progression of pancreatitis. J. Gastroenterol., 2017, 52(3), 352-365.
[http://dx.doi.org/10.1007/s00535-016-1238-5] [PMID: 27418337]
[193]
Singh, S.; Srivastava, S.K.; Bhardwaj, A.; Owen, L.B.; Singh, A.P. CXCL12-CXCR4 signalling axis confers gemcitabine resistance to pancreatic cancer cells: A novel target for therapy. Br. J. Cancer, 2010, 103(11), 1671-1679.
[http://dx.doi.org/10.1038/sj.bjc.6605968] [PMID: 21045835]
[194]
Mori, T.; Doi, R.; Koizumi, M.; Toyoda, E.; Ito, D.; Kami, K.; Masui, T.; Fujimoto, K.; Tamamura, H.; Hiramatsu, K.; Fujii, N.; Imamura, M. CXCR4 antagonist inhibits stromal cell-derived factor 1-induced migration and invasion of human pancreatic cancer. Mol. Cancer Ther., 2004, 3(1), 29-37.
[http://dx.doi.org/10.1186/1476-4598-3-29] [PMID: 14749473]
[195]
Balic, A.; Sørensen, M.D.; Trabulo, S.M.; Sainz, B., Jr; Cioffi, M.; Vieira, C.R.; Miranda-Lorenzo, I.; Hidalgo, M.; Kleeff, J.; Erkan, M.; Heeschen, C. Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling. Mol. Cancer Ther., 2014, 13(7), 1758-1771.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0948] [PMID: 24785258]
[196]
Daley, D.; Mani, V.R.; Mohan, N.; Akkad, N.; Pandian, G.S.D.B.; Savadkar, S.; Lee, K.B.; Torres-Hernandez, A.; Aykut, B.; Diskin, B.; Wang, W.; Farooq, M.S.; Mahmud, A.I.; Werba, G.; Morales, E.J.; Lall, S.; Wadowski, B.J.; Rubin, A.G.; Berman, M.E.; Narayanan, R.; Hundeyin, M.; Miller, G. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J. Exp. Med., 2017, 214(6), 1711-1724.
[http://dx.doi.org/10.1084/jem.20161707] [PMID: 28442553]
[197]
Andoh, A.; Takaya, H.; Saotome, T.; Shimada, M.; Hata, K.; Araki, Y.; Nakamura, F.; Shintani, Y.; Fujiyama, Y.; Bamba, T. Cytokine regulation of chemokine (IL-8, MCP-1, and RANTES) gene expression in human pancreatic periacinar myofibroblasts. Gastroenterology, 2000, 119(1), 211-219.
[http://dx.doi.org/10.1053/gast.2000.8538] [PMID: 10889171]
[198]
Hosoi, F.; Izumi, H.; Kawahara, A.; Murakami, Y.; Kinoshita, H.; Kage, M.; Nishio, K.; Kohno, K.; Kuwano, M.; Ono, M. N-myc downstream regulated gene 1/Cap43 suppresses tumor growth and angiogenesis of pancreatic cancer through attenuation of inhibitor of kappaB kinase beta expression. Cancer Res., 2009, 69(12), 4983-4991.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4882] [PMID: 19491262]
[199]
Kayali, A.G.; Lopez, A.D.; Hao, E.; Hinton, A.; Hayek, A.; King, C.C. The SDF-1α/CXCR4 axis is required for proliferation and maturation of human fetal pancreatic endocrine progenitor cells. PLoS One, 2012, 7(6), e38721.
[http://dx.doi.org/10.1371/journal.pone.0038721] [PMID: 22761699]
[200]
Gong, J.; Meng, H.B.; Hua, J.; Song, Z.S.; He, Z.G.; Zhou, B.; Qian, M.P. The SDF-1/CXCR4 axis regulates migration of transplanted bone marrow mesenchymal stem cells towards the pancreas in rats with acute pancreatitis. Mol. Med. Rep., 2014, 9(5), 1575-1582.
[http://dx.doi.org/10.3892/mmr.2014.2053] [PMID: 24626964]
[201]
Balkwill, F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin. Cancer Biol., 2004, 14(3), 171-179.
[http://dx.doi.org/10.1016/j.semcancer.2003.10.003] [PMID: 15246052]
[202]
Billadeau, D.D.; Chatterjee, S.; Bramati, P.; Sreekumar, R.; Shah, V.; Hedin, K.; Urrutia, R. Characterization of the CXCR4 signaling in pancreatic cancer cells. Int. J. Gastrointest. Cancer, 2006, 37(4), 110-119.
[PMID: 18175225]
[203]
Wehler, T.; Wolfert, F.; Schimanski, C.C.; Gockel, I.; Herr, W.; Biesterfeld, S.; Seifert, J.K.; Adwan, H.; Berger, M.R.; Junginger, T.; Galle, P.R.; Moehler, M. Strong expression of chemokine receptor CXCR4 by pancreatic cancer correlates with advanced disease. Oncol. Rep., 2006, 16(6), 1159-1164.
[http://dx.doi.org/10.3892/or.16.6.1159] [PMID: 17089032]
[204]
Wang, Z.; Ma, Q.; Liu, Q.; Yu, H.; Zhao, L.; Shen, S.; Yao, J. Blockade of SDF-1/CXCR4 signalling inhibits pancreatic cancer progression in vitro via inactivation of canonical Wnt pathway. Br. J. Cancer, 2008, 99(10), 1695-1703.
[http://dx.doi.org/10.1038/sj.bjc.6604745] [PMID: 19002187]
[205]
Tamiya, T.; Kashiwagi, I.; Takahashi, R.; Yasukawa, H.; Yoshimura, A. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways: Regulation of T-cell inflammation by SOCS1 and SOCS3. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 980-985.
[http://dx.doi.org/10.1161/ATVBAHA.110.207464] [PMID: 21508344]
[206]
Inagaki-Ohara, K.; Kondo, T.; Ito, M.; Yoshimura, A. SOCS, inflammation, and cancer. JAK-STAT, 2013, 2(3), e24053.
[http://dx.doi.org/10.4161/jkst.24053] [PMID: 24069550]
[207]
Wang, L.; Mehta, S.; Brock, M.; Gill, S.E. Inhibition of murine pulmonary microvascular endothelial cell apoptosis promotes recovery of barrier function under septic conditions. Mediators Inflamm., 2017.20173415380
[http://dx.doi.org/10.1155/2017/3415380] [PMID: 28250575]
[208]
Huang, L.; Hu, B.; Ni, J.; Wu, J.; Jiang, W.; Chen, C.; Yang, L.; Zeng, Y.; Wan, R.; Hu, G.; Wang, X. Transcriptional repression of SOCS3 mediated by IL-6/STAT3 signaling via DNMT1 promotes pancreatic cancer growth and metastasis. J. Exp. Clin. Cancer Res., 2016, 35, 27.
[http://dx.doi.org/10.1186/s13046-016-0301-7] [PMID: 26847351]
[209]
Gao, L.; Lu, G.T.; Lu, Y.Y.; Xiao, W.M.; Mao, W.J.; Tong, Z.H.; Yang, N.; Li, B.Q.; Yang, Q.; Ding, Y.B.; Li, W.Q. Diabetes aggravates acute pancreatitis possibly via activation of NLRP3 inflammasome in db/db mice. Am. J. Transl. Res., 2018, 10(7), 2015-2025.
[PMID: 30093939]
[210]
Hoque, R.; Sohail, M.; Malik, A.; Sarwar, S.; Luo, Y.; Shah, A.; Barrat, F.; Flavell, R.; Gorelick, F.; Husain, S.; Mehal, W. TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis. Gastroenterology, 2011, 141(1), 358-369.
[http://dx.doi.org/10.1053/j.gastro.2011.03.041] [PMID: 21439959]
[211]
Kandikattu, H.K.; Upparahalli Venkateshaiah, S.; Mishra, A. Synergy of Interleukin (IL)-5 and IL-18 in eosinophil mediated pathogenesis of allergic diseases. Cytokine Growth Factor Rev., 2019, 47, 83-98.
[http://dx.doi.org/10.1016/j.cytogfr.2019.05.003] [PMID: 31126874]
[212]
Kandikattu, H.K.; Rachitha, P.; Jayashree, G.V.; Krupashree, K.; Sukhith, M.; Majid, A.; Amruta, N.; Khanum, F. Anti-inflammatory and anti-oxidant effects of Cardamom (Elettaria repens (Sonn.) Baill) and its phytochemical analysis by 4D GCXGC TOF-MS. Biomed. Pharmacother., 2017, 91, 191-201.
[http://dx.doi.org/10.1016/j.biopha.2017.04.049] [PMID: 28458157]
[213]
Huang, H.; Liu, Y.; Daniluk, J.; Gaiser, S.; Chu, J.; Wang, H.; Li, Z.S.; Logsdon, C.D.; Ji, B. Activation of nuclear factor-κB in acinar cells increases the severity of pancreatitis in mice. Gastroenterology, 2013, 144(1), 202-210.
[http://dx.doi.org/10.1053/j.gastro.2012.09.059] [PMID: 23041324]
[214]
Guo, X.; Zheng, L.; Jiang, J.; Zhao, Y.; Wang, X.; Shen, M.; Zhu, F.; Tian, R.; Shi, C.; Xu, M.; Li, X.; Peng, F.; Zhang, H.; Feng, Y.; Xie, Y.; Xu, X.; Jia, W.; He, R.; Xie, C.; Hu, J.; Ye, D.; Wang, M.; Qin, R. Blocking NF-κB is essential for the immunotherapeutic effect of recombinant IL18 in pancreatic cancer. Clin. Cancer Res., 2016, 22(23), 5939-5950.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1144] [PMID: 27297583]
[215]
Röder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med., 2016, 48e219, 2016.
[http://dx.doi.org/10.1038/emm.2016.6] [PMID: 26964835]
[216]
Leung, P.S.; Ip, S.P. Pancreatic acinar cell: Its role in acute pancreatitis. Int. J. Biochem. Cell Biol., 2006, 38(7), 1024-1030.
[http://dx.doi.org/10.1016/j.biocel.2005.12.001] [PMID: 16423553]
[217]
Bockman, D.E. Morphology of the exocrine pancreas related to pancreatitis. Microsc. Res. Tech., 1997, 37(5-6), 509-519.
[http://dx.doi.org/10.1002/(SICI)1097-0029(19970601)37:5/6<509:AID-JEMT13>3.0.CO;2-U] [PMID: 9220428]
[218]
Williams, J.A. Regulation of acinar cell function in the pancreas. Curr. Opin. Gastroenterol., 2010, 26(5), 478-483.
[http://dx.doi.org/10.1097/MOG.0b013e32833d11c6] [PMID: 20625287]
[219]
Mareninova, O.A.; Sendler, M.; Malla, S.R.; Yakubov, I.; French, S.W.; Tokhtaeva, E.; Vagin, O.; Oorschot, V.; Lüllmann-Rauch, R.; Blanz, J.; Dawson, D.; Klumperman, J.; Lerch, M.M.; Mayerle, J.; Gukovsky, I.; Gukovskaya, A.S. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis. Cell. Mol. Gastroenterol. Hepatol., 2015, 1(6), 678-694.
[http://dx.doi.org/10.1016/j.jcmgh.2015.07.006] [PMID: 26693174]
[220]
Algül, H.; Treiber, M.; Lesina, M.; Nakhai, H.; Saur, D.; Geisler, F.; Pfeifer, A.; Paxian, S.; Schmid, R.M. Pancreas-specific RelA/p65 truncation increases susceptibility of acini to inflammation-associated cell death following cerulein pancreatitis. J. Clin. Invest., 2007, 117(6), 1490-1501.
[http://dx.doi.org/10.1172/JCI29882] [PMID: 17525802]
[221]
Hessmann, E.; Zhang, J.S.; Chen, N.M.; Hasselluhn, M.; Liou, G.Y.; Storz, P.; Ellenrieder, V.; Billadeau, D.D.; Koenig, A. NFATc4 regulates Sox9 gene expression in acinar cell plasticity and pancreatic cancer initiation. Stem Cells Int., 2016.20165272498
[http://dx.doi.org/10.1155/2016/5272498] [PMID: 26697077]
[222]
Storz, P. Acinar cell plasticity and development of pancreatic ductal adenocarcinoma. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(5), 296-304.
[http://dx.doi.org/10.1038/nrgastro.2017.12] [PMID: 28270694]
[223]
Schludi, B.; Moin, A.S.M.; Montemurro, C.; Gurlo, T.; Matveyenko, A.V.; Kirakossian, D.; Dawson, D.W.; Dry, S.M.; Butler, P.C.; Butler, A.E. Islet inflammation and ductal proliferation may be linked to increased pancreatitis risk in type 2 diabetes. JCI Insight, 2017, 2(13), 92282.
[http://dx.doi.org/10.1172/jci.insight.92282] [PMID: 28679961]
[224]
Stark, A.; Eibl, G. Pancreatic Ductal Adenocarcinoma. Pancreapedia; Exocrine Pancreas Knowledge Base, 2015.
[225]
Gomez-Chou, S.B.; Swidnicka-Siergiejko, A.K.; Badi, N.; Chavez-Tomar, M.; Lesinski, G.B.; Bekaii-Saab, T.; Farren, M.R.; Mace, T.A.; Schmidt, C.; Liu, Y.; Deng, D.; Hwang, R.F.; Zhou, L.; Moore, T.; Chatterjee, D.; Wang, H.; Leng, X.; Arlinghaus, R.B.; Logsdon, C.D.; Cruz-Monserrate, Z. Lipocalin-2 promotes pancreatic ductal adenocarcinoma by regulating inflammation in the tumor microenvironment. Cancer Res., 2017, 77(10), 2647-2660.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1986] [PMID: 28249896]
[226]
Apte, M.V.; Haber, P.S.; Applegate, T.L.; Norton, I.D.; McCaughan, G.W.; Korsten, M.A.; Pirola, R.C.; Wilson, J.S. Periacinar stellate shaped cells in rat pancreas: Identification, isolation, and culture. Gut, 1998, 43(1), 128-133.
[http://dx.doi.org/10.1136/gut.43.1.128] [PMID: 9771417]
[227]
Phillips, P.A.; Yang, L.; Shulkes, A.; Vonlaufen, A.; Poljak, A.; Bustamante, S.; Warren, A.; Xu, Z.; Guilhaus, M.; Pirola, R.; Apte, M.V.; Wilson, J.S. Pancreatic stellate cells produce acetylcholine and may play a role in pancreatic exocrine secretion. Proc. Natl. Acad. Sci. USA, 2010, 107(40), 17397-17402.
[http://dx.doi.org/10.1073/pnas.1000359107] [PMID: 20852067]
[228]
Omary, M.B.; Lugea, A.; Lowe, A.W.; Pandol, S.J. The pancreatic stellate cell: a star on the rise in pancreatic diseases. J. Clin. Invest., 2007, 117(1), 50-59.
[http://dx.doi.org/10.1172/JCI30082] [PMID: 17200706]
[229]
Mews, P.; Phillips, P.; Fahmy, R.; Korsten, M.; Pirola, R.; Wilson, J.; Apte, M. Pancreatic stellate cells respond to inflammatory cytokines: potential role in chronic pancreatitis. Gut, 2002, 50(4), 535-541.
[http://dx.doi.org/10.1136/gut.50.4.535] [PMID: 11889076]
[230]
Zambirinis, C.P.; Levie, E.; Nguy, S.; Avanzi, A.; Barilla, R.; Xu, Y.; Seifert, L.; Daley, D.; Greco, S.H.; Deutsch, M.; Jonnadula, S.; Torres-Hernandez, A.; Tippens, D.; Pushalkar, S.; Eisenthal, A.; Saxena, D.; Ahn, J.; Hajdu, C.; Engle, D.D.; Tuveson, D.; Miller, G. TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. J. Exp. Med., 2015, 212(12), 2077-2094.
[http://dx.doi.org/10.1084/jem.20142162] [PMID: 26481685]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 8
Year: 2020
Published on: 14 October, 2020
Page: [1182 - 1210]
Pages: 29
DOI: 10.2174/1871530320666200423095700
Price: $65

Article Metrics

PDF: 22
HTML: 4
EPUB: 2
PRC: 3