Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Research Article

Targeting Breast Cancer Cells with G4 PAMAM Dendrimers and Valproic Acid Derivative Complexes

Author(s): Alberto M. Muñoz, Manuel J. Fragoso-Vázquez, Berenice P. Martel, Alma Chávez-Blanco, Alfonso Dueñas-González, José R.García-Sánchez, Martiniano Bello*, Aurelio Romero-Castro and José Correa-Basurto*

Volume 20, Issue 15, 2020

Page: [1857 - 1872] Pages: 16

DOI: 10.2174/1871520620666200423073812

Price: $65

Abstract

Background: Our research group has developed some Valproic Acid (VPA) derivatives employed as anti-proliferative compounds targeting the HDAC8 enzyme. However, some of these compounds are poorly soluble in water.

Objective: Employed the four generations of Polyamidoamine (G4 PAMAM) dendrimers as drug carriers of these compounds to increase their water solubility for further in vitro evaluation.

Methods: VPA derivatives were subjected to Docking and Molecular Dynamics (MD) simulations to evaluate their affinity on G4 PAMAM. Then, HPLC-UV/VIS, 1H NMR, MALDI-TOF and atomic force microscopy were employed to establish the formation of the drug-G4 PAMAM complexes.

Results: The docking results showed that the amide groups of VPA derivatives make polar interactions with G4 PAMAM, whereas MD simulations corroborated the stability of the complexes. HPLC UV/VIS experiments showed an increase in the drug water solubility which was found to be directly proportional to the amount of G4 PAMAM. 1H NMR showed a disappearance of the proton amine group signals, correlating with docking results. MALDI-TOF and atomic force microscopy suggested the drug-G4 PAMAM dendrimer complexes formation.

Discussion: In vitro studies showed that G4 PAMAM has toxicity in the micromolar concentration in MDAMB- 231, MCF7, and 3T3-L1 cell lines. VPA CF-G4 PAMAM dendrimer complex showed anti-proliferative properties in the micromolar concentration in MCF-7 and 3T3-L1, and in the milimolar concentration in MDAMB- 231, whereas VPA MF-G4 PAMAM dendrimer complex didn’t show effects on the three cell lines employed.

Conclusion: These results demonstrate that G4 PAMAM dendrimers are capableof transporting poorly watersoluble aryl-VPA derivate compounds to increase its cytotoxic activity against neoplastic cell lines.

Keywords: PAMAM dendrimers, breast cancer, HDAC inhibitors, molecular docking, molecular dynamics, HPLC, atomic force microscopy.

« Previous
Graphical Abstract
[1]
Huang, Y.W.; Kuo, C.T.; Stoner, K.; Huang, T.H.; Wang, L.S. An overview of epigenetics and chemoprevention. FEBS Lett., 2011, 585(13), 2129-2136.
[http://dx.doi.org/10.1016/j.febslet.2010.11.002 ] [PMID: 21056563]
[2]
Cairns, B.R. The logic of chromatin architecture and remodelling at promoters. Nature, 2009, 461(7261), 193-198.
[http://dx.doi.org/10.1038/nature08450 ] [PMID: 19741699]
[3]
Robey, R.W.; Chakraborty, A.R.; Basseville, A.; Luchenko, V.; Bahr, J.; Zhan, Z.; Bates, S.E. Histone deacetylase inhibitors: Emerging mechanisms of resistance. Mol. Pharm., 2011, 8(6), 2021-2031.
[http://dx.doi.org/10.1021/mp200329f ] [PMID: 21899343]
[4]
Biel, M.; Wascholowski, V.; Giannis, A. Epigenetics--an epicenter of gene regulation: Histones and histone-modifying enzymes. Angew. Chem. Int. Ed. Engl., 2005, 44(21), 3186-3216.
[http://dx.doi.org/10.1002/anie.200461346 ] [PMID: 15898057]
[5]
Kurdistani, S.K.; Grunstein, M. Histone acetylation and deacetylation in yeast. Nat. Rev. Mol. Cell Biol., 2003, 4(4), 276-284.
[http://dx.doi.org/10.1038/nrm1075 ] [PMID: 12671650]
[6]
Simonsson, M.; Heldin, C.H.; Ericsson, J.; Grönroos, E. The balance between acetylation and deacetylation controls Smad7 stability. J. Biol. Chem., 2005, 280(23), 21797-21803.
[http://dx.doi.org/10.1074/jbc.M503134200 ] [PMID: 15831498]
[7]
Aldana-Masangkay, G.I.; Sakamoto, K.M. The role of HDAC6 in cancer. J. Biomed. Biotechnol., 2011, 2011, 875824.
[http://dx.doi.org/10.1155/2011/875824] [PMID: 21076528]
[8]
Gryder, B.E.; Sodji, Q.H.; Oyelere, A.K. Targeted cancer therapy: Giving histone deacetylase inhibitors all they need to succeed. Future Med. Chem., 2012, 4(4), 505-524.
[http://dx.doi.org/10.4155/fmc.12.3 ] [PMID: 22416777]
[9]
Bose, P.; Dai, Y.; Grant, S. Histone Deacetylase Inhibitor (HDACI) mechanisms of action: Emerging insights. Pharmacol. Ther., 2014, 143(3), 323-336.
[http://dx.doi.org/10.1016/j.pharmthera.2014.04.004 ] [PMID: 24769080]
[10]
Giannini, G.; Cabri, W.; Fattorusso, C.; Rodriquez, M. Histone deacetylase inhibitors in the treatment of cancer: Overview and perspectives. Future Med. Chem., 2012, 4(11), 1439-1460.
[http://dx.doi.org/10.4155/fmc.12.80 ] [PMID: 22857533]
[11]
Lakshmaiah, K.C.; Jacob, L.A.; Aparna, S.; Lokanatha, D.; Saldanha, S.C. Epigenetic therapy of cancer with histone deacetylase inhibitors. J. Cancer Res. Ther., 2014, 10(3), 469-478.
[PMID: 25313724]
[12]
Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov., 2006, 5(9), 769-784.
[http://dx.doi.org/10.1038/nrd2133 ] [PMID: 16955068]
[13]
Gurvich, N.; Tsygankova, O.M.; Meinkoth, J.L.; Klein, P.S. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res., 2004, 64(3), 1079-1086.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-0799 ] [PMID: 14871841]
[14]
Abaza, M.S.; Bahman, A.M.; Al-Attiyah, R.J. Valproic acid, an anti-epileptic drug and a histone deacetylase inhibitor, in combination with proteasome inhibitors exerts antiproliferative, pro-apoptotic and chemosensitizing effects in human colorectal cancer cells: underlying molecular mechanisms. Int. J. Mol. Med., 2014, 34(2), 513-532.
[http://dx.doi.org/10.3892/ijmm.2014.1795 ] [PMID: 24899129]
[15]
Matsuda, Y.; Wakai, T.; Kubota, M.; Osawa, M.; Hirose, Y.; Sakata, J.; Kobayashi, T.; Fujimaki, S.; Takamura, M.; Yamagiwa, S.; Aoyagi, Y. Valproic acid overcomes transforming growth factor-β-mediated sorafenib resistance in hepatocellular carcinoma. Int. J. Clin. Exp. Pathol., 2014, 7(4), 1299-1313.
[PMID: 24817927]
[16]
Chateauvieux, S.; Morceau, F.; Dicato, M.; Diederich, M. Molecular and therapeutic potential and toxicity of valproic acid. J. Biomed. Biotechnol., 2010, 2010, 1-18.
[http://dx.doi.org/10.1155/2010/479364 ] [PMID: 20798865]
[17]
Prestegui-Martel, B.; Bermúdez-Lugo, J.A.; Chávez-Blanco, A.; Dueñas-González, A.; García-Sánchez, J.R.; Pérez-González, O.A.; Padilla-Martínez, I.I.; Fragoso-Vázques, J.M.; Mendieta-Wejebe, J.E.; Correa-Basurto, A.M.; Méndez-Luna, D.; Trujillo-Ferrara, J.; Correa-Basurto, J.N. -(2-hydroxyphenyl)-2-propylpentanamide, a valproic acid aryl derivative designed in silico with improved anti-proliferative activity in HeLa, rhabdomyosarcoma and breast cancer cells. J. Enzyme Inhib. Med. Chem., 2016, 1, 1-10.
[18]
Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A new class of polymers: Starburst-dendritic macromolecules. Polym. J., 1985, 17, 117-132.
[http://dx.doi.org/10.1295/polymj.17.117]
[19]
Ajay, P.; Devendra, T. Dendrimers: As a potential carrier for medicaments. Int. J. Pharm. Life Sci., 2010, 1, 91-98.
[20]
Esfand, R.; Tomalia, D.A. Poly(amidoamine) (PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications. Drug Discov. Today, 2001, 6(8), 427-436.
[http://dx.doi.org/10.1016/S1359-6446(01)01757-3 ] [PMID: 11301287]
[21]
Cheng, Y.; Xu, Z.; Ma, M.; Xu, T. Dendrimers as drug carriers: Applications in different routes of drug administration. J. Pharm. Sci., 2008, 97(1), 123-143.
[http://dx.doi.org/10.1002/jps.21079 ] [PMID: 17721949]
[22]
ACD/ChemSketch, version 14.01; Advanced Chemistry Development, Inc.: Toronto, ON, Canada, 2012.
[23]
Dennington, R.; Keith, T.; Millam, J. GaussViewVersion 5; Semichem Inc.: Shawnee Mission, KS, 2009.
[24]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R. Gaussian 98, revisión A.9. Gaussian; Pittsburgh, PA, . 1998.
[25]
Martínez-Muñoz, A.; Bello, M.; Romero-Castro, A.; Rodríguez-Fonseca, R.A.; Rodrigues, J.; Sánchez-Espinosa, V.A.; Correa-Basurto, J. Binding free energy calculations using MMPB/GBSA approaches for PAMAM-G4-drug complexes at neutral, basic and acid pH conditions. J. Mol. Graph. Model., 2017, 76, 330-341.
[http://dx.doi.org/10.1016/j.jmgm.2017.07.017 ] [PMID: 28759825]
[26]
Bellini, R.G.; Guimarães, A.P.; Pacheco, M.A.C.; Dias, D.M.; Furtado, V.R.; de Alencastro, R.B.; Horta, B.A. Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J. Mol. Graph. Model., 2015, 60, 34-42.
[http://dx.doi.org/10.1016/j.jmgm.2015.05.012 ] [PMID: 26093506]
[27]
Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688.
[http://dx.doi.org/10.1002/jcc.20290 ] [PMID: 16200636]
[28]
Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem., 2003, 24(16), 1999-2012.
[http://dx.doi.org/10.1002/jcc.10349 ] [PMID: 14531054]
[29]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79, 926-935.
[http://dx.doi.org/10.1063/1.445869]]
[30]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N⋅log (N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98, 10089-10092.
[http://dx.doi.org/10.1063/1.464397]]
[31]
Berendsen, H.; Postma, J.; Van-Gunsteren, W.; DiNola, A.; Haak, L. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81, 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[32]
Markowicz, M.; Szymański, P.; Ciszewski, M.; Kłys, A.; Mikiciuk-Olasik, E. Evaluation of poly(amidoamine) dendrimers as potential carriers of iminodiacetic derivatives using solubility studies and 2D-NOESY NMR spectroscopy. J. Biol. Phys., 2012, 38(4), 637-656.
[http://dx.doi.org/10.1007/s10867-012-9277-5 ] [PMID: 23144513]
[33]
Yu, W.; Lakkaraju, S.K.; Raman, E.P.; Fang, L.; MacKerell, A-D. Site-Identification by Ligand Competitive Saturation (SILCS) assisted pharmacophore modeling. J. Chem. Inf. Model., 2015, 55, 407-420.
[http://dx.doi.org/10.1021/ci500691p ] [PMID: 25622696]
[34]
Mehanna, W.E.; Lu, T.; Debnath, B.; Lasheen, D.S.; Serya, R.A.T.; Abouzid, K.A.; Neamati, N. Synthesis, ADMET properties, and biological evaluation of benzothiazole compounds targeting Chemokine Receptor 2 (CXCR2). ChemMedChem, 2017, 12(13), 1045-1054.
[http://dx.doi.org/10.1002/cmdc.201700229 ] [PMID: 28544630]
[35]
Jawahar, N.; Hingarh, P.K.; Arun, R.; Selvaraj, J.; Anbarasan, A.; Sathianarayanan, S.; Nagaraju, G. Enhanced oral bioavailability of an antipsychotic drug through nanostructured lipid carriers. Int. J. Biol. Macromol., 2018, 110, 269-275.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.121 ] [PMID: 29402457]
[36]
Martínez-Pacheco, H.; Ramírez-Galicia, G.; Vergara-Arias, M.; Gertsch, J.; Fragoso-Vazquez, J.M.; Mendez-Luna, D.; Abujamra, A.L.; Cristina, C.L.; Cecilia, R.M.; Mendoza-Lujambio, I.; Correa-Basurto, J. Docking and QSAR studies of aryl-valproic acid derivatives to identify antiproliferative agents targeting the HDAC8. Anticancer. Agents Med. Chem., 2017, 17(7), 927-940.
[http://dx.doi.org/10.2174/1871520616666161019143219 ] [PMID: 27774878]
[37]
Lobanov, M.Y.; Bogatyreva, N.S.; Galzitskaya, O.V. Radius of gyration as an indicator of protein structure compactness. Mol. Biol., 2008, 42, 623-628.
[http://dx.doi.org/10.1134/S0026893308040195 ] [PMID: 18856071]
[38]
Hung, W.I.; Hung, C.B.; Chang, Y.H.; Dai, J.K.; Li, Y.; He, H.; Chen, S.W.; Huang, T.C.; Wei, Y.; Jia, X.R.; Yeh, J.M. Synthesis and electroactive properties of poly(amidoamine) dendrimers with an aniline pentamer shell. J. Mater. Chem., 2011, 21, 4581-4587.
[http://dx.doi.org/10.1039/c0jm03876h]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy