Evaluation of the Effects of Rumex obtusifolius Seed and Leaf Extracts Against Acanthamoeba: An in vitro Study

Author(s): Tooran Nayeri, Farahnaz Bineshian, Fariba Khoshzaban, Abdolhossein Dalimi Asl, Fatemeh Ghaffarifar*

Journal Name: Infectious Disorders - Drug Targets
Formerly Current Drug Targets - Infectious Disorders

Volume 21 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Acanthamoebiasis treatment is a major and challenging problem due to the presence of resistant cyst form. Many herbal extracts and their derivatives have been used against trophozoites and cysts of Acanthamoeba, but no effective therapeutic agent has yet been discovered. Therefore, the present study aimed to evaluate the effect of Rumex obtusifolius (R. obtusifolius) extracts against a clinical strain of Acanthamoeba genotype T4 in vitro.

Methods: In this experimental study, after genotyping the clinical isolate, the hydroalcohlic extracts of R. obtusifolius seeds and leaves were prepared. Different concentrations (1.25, 2.5, 5 and 10 mg/ml) of extracts were tested in triplicate (24, 48 and 72h) on trophozoites and cysts of Acanthamoeba. The mortality of the parasite was assessed by trypan blue vital staining and flow cytometry analysis.

Results: Results showed that the extract of R. obtusifolius leaves at the concentration of 10 mg/ml killed 100% of trophozoites and cysts after 72 h. However, the seed extract of R. obtusifolius had weak inhibitory effects on trophozoites and cysts of Acanthamoeba. In the presence of 10 mg/ml of hydroalcoholic seed extract of R.obtusifolius in culture medium after 72 h, 28.6% of trophozoites and 0% of cysts of Acanthamoeba were killed. After analysis by flow cytometry, seeds and leaves extract indicated apoptosis effect. Seed and leaf extracts caused 2.6% and 0.4% percent apoptosis.

Conclusion: These extracts are not promising candidates for further medicine development on acanthamoebiasis. Nonetheless, further research is necessary to clarify the effects of effective fractions of seed and leaf extracts of R. obtusifolius and their mechanisms of action.

Keywords: Acanthamoeba, Keratitis, Hydroalcohlic extract, Rumex obtusifolius, In vitro, photophobia, edema.

[1]
Hajaji, S.; Sifaoui, I.; López-Arencibia, A.; Reyes-Batlle, M.; Jiménez, I.A.; Bazzocchi, I.L.; Valladares, B.; Pinero, J.E.; Lorenzo-Morales, J.; Akkari, H. Correlation of radical-scavenging capacity and amoebicidal activity of Matricaria recutita L. (Asteraceae). Exp. Parasitol., 2017, 183, 212-217.
[http://dx.doi.org/10.1016/j.exppara.2017.09.011] [PMID: 28919332]
[2]
Mahboob, T.; Azlan, A.M.; Shipton, F.N.; Boonroumkaew, P.; Nor Azman, N.S.; Sekaran, S.D.; Ithoi, I.; Tan, T.C.; Samudi, C.; Wiart, C.; Nissapatorn, V. Acanthamoebicidal activity of periglaucine A and betulinic acid from Pericampylus glaucus (Lam.) Merr. in vitro. Exp. Parasitol., 2017, 183, 160-166.
[http://dx.doi.org/10.1016/j.exppara.2017.09.002] [PMID: 28916456]
[3]
Sifaoui, I.; López-Arencibia, A.; Ticona, J.C.; Martín-Navarro, C.M.; Reyes-Batlle, M.; Mejri, M.; Lorenzo-Morales, J.; Jiménez, A.I.; Valladares, B.; Lopez-Bazzocchi, I.; Abderabba, M.; Piñero, J.E. Bioassay guided isolation and identification of anti-Acanthamoeba compounds from Tunisian olive leaf extracts. Exp. Parasitol., 2014, 145(Suppl.), S111-S114.
[http://dx.doi.org/10.1016/j.exppara.2014.02.018] [PMID: 24726697]
[4]
Hadaś, E.; Derda, M.; Cholewiński, M. Evaluation of the effectiveness of tea tree oil in treatment of Acanthamoeba infection. Parasitol. Res., 2017, 116(3), 997-1001.
[http://dx.doi.org/10.1007/s00436-017-5377-2] [PMID: 28124137]
[5]
Martinez, A.J. Free-living amebas: infection of the central nervous system. Mt. Sinai J. Med., 1993, 60(4), 271-278.
[PMID: 8232369]
[6]
Naginton, J.; Watson, P.G.; Playfair, T.J.; McGill, J.; Jones, B.R.; Steele, A.D. Amoebic infection of the eye. Lancet, 1974, 2(7896), 1537-1540.
[http://dx.doi.org/10.1016/S0140-6736(74)90285-2] [PMID: 4140981]
[7]
Illingworth, C.D.; Cook, S.D. Acanthamoeba keratitis. Surv. Ophthalmol., 1998, 42(6), 493-508.
[http://dx.doi.org/10.1016/S0039-6257(98)00004-6] [PMID: 9635900]
[8]
Moreira, A.T.; Prajna, N.V. Acanthamoeba as a cause of peripheral ulcerative keratitis. Cornea, 2003, 22(6), 576-577.
[http://dx.doi.org/10.1097/00003226-200308000-00018] [PMID: 12883355]
[9]
Radford, C.F.; Minassian, D.C.; Dart, J.K. Acanthamoeba keratitis in England and Wales: incidence, outcome, and risk factors. Br. J. Ophthalmol., 2002, 86(5), 536-542.
[http://dx.doi.org/10.1136/bjo.86.5.536] [PMID: 11973250]
[10]
Radford, C.F.; Lehmann, O.J.; Dart, J.K. National Acanthamoeba Keratitis Study Group. Acanthamoeba keratitis: multicentre survey in England 1992-6. Br. J. Ophthalmol., 1998, 82(12), 1387-1392.
[http://dx.doi.org/10.1136/bjo.82.12.1387] [PMID: 9930269]
[11]
Butler, T.K.; Males, J.J.; Robinson, L.P.; Wechsler, A.W.; Sutton, G.L.; Cheng, J.; Taylor, P.; McClellan, K. Six-year review of Acanthamoeba keratitis in New South Wales, Australia: 1997-2002. Clin. Exp. Ophthalmol., 2005, 33(1), 41-46.
[http://dx.doi.org/10.1111/j.1442-9071.2004.00911.x] [PMID: 15670077]
[12]
Anger, C.; Lally, J.M. Acanthamoeba: a review of its potential to cause keratitis, current lens care solution disinfection standards and methodologies, and strategies to reduce patient risk. Eye Contact Lens, 2008, 34(5), 247-253.
[http://dx.doi.org/10.1097/ICL.0b013e31817e7d83] [PMID: 18779663]
[13]
Martinez, A.J.; Janitschke, K. Acanthamoeba, an opportunistic microorganism: a review. Infection, 1985, 13(6), 251-256.
[http://dx.doi.org/10.1007/BF01645432] [PMID: 2867047]
[14]
Liesegang, T.J.; Lens, C. Physiologic changes of the cornea with contact lens wear. CLAO J., 2002, 28(1), 12-27.
[PMID: 11838985]
[15]
Klein, P. Corneal immune ring as a complication of soft extended wear contact lens use. Optom. Vis. Sci., 1991, 68(11), 853-857.
[http://dx.doi.org/10.1097/00006324-199111000-00004] [PMID: 1766646]
[16]
Visvesvara, G.; Schuster, F. Opportunistic free-living amebae. Int. J. Parasitol., 2008, 30(20), 151-158.
[17]
Chin, J.; Young, A.L.; Hui, M.; Jhanji, V. Acanthamoeba keratitis: 10-year study at a tertiary eye care center in Hong Kong. Cont. Lens Anterior Eye, 2015, 38(2), 99-103.
[http://dx.doi.org/10.1016/j.clae.2014.11.146] [PMID: 25496910]
[18]
Bacon, A; Frazer, D; Dart, J; Matheson, M; Ficker, L; Wright, PJE A review of 72 consecutive cases of Acanthamoeba keratitis, 1984–1992. 1993, 7(6), 719.
[19]
Auran, JD; Starr, MB; Jakobiec, FAJC Acanthamoeba keratitis. A review of the literature., 1987, 6(1), 2-26.
[20]
Dodangeh, S.; Niyyati, M.; Kamalinejad, M.; Lorenzo-Morales, J.; Moshfe, A.; Haghighi, A.; Azargashb, E. In-vitro Activity of Trigonella foenum graecum seeds against a clinical strain of Acanthamoeba genotype T4. Iran. J. Pharm. Res., 2018, 17(2), 661-667.
[PMID: 29881423]
[21]
Derda, M.; Hadaś, E.; Cholewiński, M.; Skrzypczak, Ł.; Grzondziel, A.; Wojtkowiak-Giera, A. Artemisia annua L. as a plant with potential use in the treatment of acanthamoebiasis. Parasitol. Res., 2016, 115(4), 1635-1639.
[http://dx.doi.org/10.1007/s00436-016-4902-z] [PMID: 26782959]
[22]
Souhaiel, N.; Sifaoui, I.; Ben Hassine, D.; Bleton, J.; Bonose, M.; Moussa, F.; Piñero, J.E.; Lorenzo-Morales, J.; Abderrabba, M. Ammoides pusilla (Apiaceae) essential oil: Activity against Acanthamoeba castellanii Neff. Exp. Parasitol., 2017, 183, 99-103.
[http://dx.doi.org/10.1016/j.exppara.2017.10.011] [PMID: 29102680]
[23]
Nayeri Chegeni, T.; Ghaffarifar, F.; Khoshzaban, F.; Dalimi Asl, A.; Mirzaian, H.; Jameie, F. Effects of aqueous and ethanolic extracts of Myrtus communis leaves on trophozoites and cysts of Acanthamoeba: an in vitro study. IJML, 2019, 6(3), 219-225.
[http://dx.doi.org/10.18502/ijml.v6i3.1404]
[24]
Jimoh, F.; Adedapo, A.; Afolayan, A. Assessing the polyphenolic, nutritive and biological activities of acetone, methanol and aqueous extracts of Rumex sagittatus Thunb. Afr. J. Pharm. Pharmacol., 2010, 4(9), 630-635.
[25]
Harshaw, D.; Nahar, L.; Vadla, B. Saif-E-Naser GM, Sarker S. Bioactivity of Rumex obtusifolius (Polygonaceae). Arch. Biol. Sci., 2010, 62(2), 387-392.
[http://dx.doi.org/10.2298/ABS1002387H]
[26]
Trichopoulou, A.; Vasilopoulou, E.; Hollman, P.; Chamalides, C.; Foufa, E.; Kaloudis, T. Nutritional composition and flavonoid content of edible wild greens and green pies: a potential rich source of antioxidant nutrients in the Mediterranean diet. Food Chem., 2000, 70(3), 319-323.
[http://dx.doi.org/10.1016/S0308-8146(00)00091-1]
[27]
Spencer, P.; Sivakumaran, S.; Fraser, K.; Foo, L.Y.; Lane, G.A.; Edwards, P.J.; Meagher, L.P. Isolation and characterisation of procyanidins from Rumex obtusifolius. Phytochem. Anal., 2007, 18(3), 193-203.
[http://dx.doi.org/10.1002/pca.967] [PMID: 17500361]
[28]
Wegiera, M.; Smolarz, H.D.; Wianowska, D.; Dawidowicz, A. Anthracene derivatives in some species of Rumex L. genus. Acta Soc. Bot. Pol., 2007, 76(2), 103-108.
[29]
Nayeri Chegeni, T.; Ghaffarifar, F.; Pirestani, M.; Dalimi Asl, A.; Maspi, N. Genotyping of Acanthamoeba species isolated from keratitis patients by PCR sequencing methods in Tehran, Iran. IJML, 2019, 6(4), 259-265.
[http://dx.doi.org/10.18502/ijml.v6i4.2002]
[30]
Gortzi, O.; Lalas, S.; Chinou, I.; Tsaknis, J. technology. Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. Eur. Food Res. Technol., 2008, 226(3), 583-590.
[http://dx.doi.org/10.1007/s00217-007-0592-1]
[31]
Malatyali, E.; Tepe, B.; Degerli, S.; Berk, S.; Akpulat, H.A. In vitro amoebicidal activity of four Peucedanum species on Acanthamoeba castellanii cysts and trophozoites. Parasitol. Res., 2012, 110(1), 167-174.
[http://dx.doi.org/10.1007/s00436-011-2466-5] [PMID: 21626154]
[32]
Hassanlou, M.; Bhargava, A.; Hodge, W.G. Bilateral acanthamoeba keratitis and treatment strategy based on lesion depth. Can. J. Ophthalmol., 2006, 41(1), 71-73.
[http://dx.doi.org/10.1016/S0008-4182(06)80070-0] [PMID: 16462876]
[33]
Rama, P.; Matuska, S.; Viganò, M.; Spinelli, A.; Paganoni, G.; Brancato, R. Bilateral Acanthamoeba keratitis with late recurrence of the infection in a corneal graft: a case report. Eur. J. Ophthalmol., 2003, 13(3), 311-314.
[http://dx.doi.org/10.1177/112067210301300312] [PMID: 12747654]
[34]
Idris, O.A.; Wintola, O.A.; Afolayan, A.J. Evaluation of the bioactivities of Rumex crispus L. leaves and root extracts using toxicity, antimicrobial, and antiparasitic assays. Evid. Based Complement. Alternat. Med., 2019, 2019, 6825297.
[http://dx.doi.org/10.1155/2019/6825297] [PMID: 31827556]
[35]
Bineshian, F.; Bakhshandeh, N.; Freidounian, M.; Nazari, H. Anti-Candida and antioxidant activities of hydroalcohlic extract of Rumex obtusifolius leaves. Pak. J. Pharm. Sci., 2019, 32(3), 919-926.
[PMID: 31278700]
[36]
Wilkinson, S. α-Picoline from Rumex obtusifolius L. Nature, 1958, 181(4609), 636-637.
[http://dx.doi.org/10.1038/181636a0] [PMID: 13517253]
[37]
Fairbairn, J; Muhtadi, FJP The biosynthesis and metabolism of anthraquinones in Rumex obtusifolius. 1972, 11(1), 215-219.
[38]
Kasai, T.; Okuda, M.; Sakamura, S. 6-O-Malonyl-β-methyl-D-glucopyranoside from roots of Rumex obtusifolius. Phytochemistry, 1981, 20(5), 1131-1132.
[http://dx.doi.org/10.1016/0031-9422(81)83043-9]
[39]
Demirezer, Ö.L.; Kuruüzüm, A. Rapid and simple biological activity screening of some Rumex species; evaluation of bioguided fractions of R. scutatus and pure compounds. Z. Naturforsch. C, 1997, 52(9-10), 665-669.
[http://dx.doi.org/10.1515/znc-1997-9-1014]
[40]
Leitsch, D.; Köhsler, M.; Marchetti-Deschmann, M.; Deutsch, A.; Allmaier, G.; Duchêne, M.; Walochnik, J. Major role for cysteine proteases during the early phase of Acanthamoeba castellanii encystment. Eukaryot. Cell, 2010, 9(4), 611-618.
[http://dx.doi.org/10.1128/EC.00300-09] [PMID: 20190073]
[41]
Niyyati, M.; Dodangeh, S.; Lorenzo-Morales, J. A review of the current research trends in the application of medicinal plants as a source for novel therapeutic agents against Acanthamoeba infections. Iran. J. Pharm. Res., 2016, 15(4), 893-900.
[PMID: 28243287]
[42]
Polat, Z.A.; Tepe, B.; Vural, A. In vitro effectiveness of Thymus sipyleus subsp. sipyleus var. sipyleus on Acanthamoeba castellanii and its cytotoxic potential on corneal cells. Parasitol. Res., 2007, 101(6), 1551-1555.
[http://dx.doi.org/10.1007/s00436-007-0674-9] [PMID: 17661186]
[43]
Degerli, S.; Tepe, B.; Celiksoz, A.; Berk, S.; Malatyali, E. In vitro amoebicidal activity of Origanum syriacum and Origanum laevigatum on Acanthamoeba castellanii cysts and trophozoites. Exp. Parasitol., 2012, 131(1), 20-24.
[http://dx.doi.org/10.1016/j.exppara.2012.02.020] [PMID: 22417972]
[44]
Sanguan, S.; Wannasan, A.; Junkum, A.; Jitpakdi, A.; Riyong, D.; Champakaew, D. Screening for in vitro amoebicidal activity of plant essential oils against Acanthamoeba sp. Chiang Mai Med J., 2018, 57(2), 89-98.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 2
Year: 2021
Published on: 22 April, 2020
Page: [211 - 219]
Pages: 9
DOI: 10.2174/1871526520666200422111044
Price: $65

Article Metrics

PDF: 19
HTML: 1