Recent Advances in Nanotherapeutic Interventions for the Treatment of Alzheimer’s Disease

Author(s): Anmol Dogra, R.S. Narang, Jasjeet K. Narang*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 19 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Alzheimer’s disease (AD), with impairment of learning and memory as the common clinical manifestations, is one of the most challenging diseases affecting individuals, their families and society as a whole. The fact that its prevalence is escalating rapidly, with the total number of AD patients estimated to reach 115.4 million by 2050, has made the disease a very challenging ailment worldwide. Several biological barriers like the bloodbrain barrier (BBB), drug efflux by P-glycoprotein and the blood-cerebrospinal fluid barrier restrict the delivery of conventional AD drugs to the central nervous system (CNS), thereby limiting their effectiveness. In order to overcome the above physiological barriers, the development of nanomedicines has been extensively explored. The present review provides an insight into the pathophysiology of AD and risk factors associated with AD. Besides, various nanoformulations reported in the literature for the diagnosis and treatments of AD have been classified and summarised. The patented nanoformulations for AD and details of nanoformulations which are in clinical trials are also mentioned. The review would be helpful to researchers and scientific community by providing them with information related to the recent advances in nanointerventions for the diagnosis and treatment of AD, which they can further explore for better management of the disease. However, although the nanotherapeutics for managing AD have been extensively explored, the factors which hinder their commercialisation, the toxicity concern being one of them, need to be addressed so that effective nanotherapeutics for AD can be developed for clinical use.

Keywords: Alzheimer's disease, Blood Brain Barrier (BBB), nanoformulations, clinical trials, patented nanoformulations, Central Nervous System (CNS).

[1]
Franceschi C, Garagnani P, Morsiani C, et al. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front Med (Lausanne) 2018; 5: 61.
[http://dx.doi.org/10.3389/fmed.2018.00061] [PMID: 29662881]
[2]
Barchet TM, Amiji MM. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin Drug Deliv 2009; 6(3): 211-25.
[http://dx.doi.org/10.1517/17425240902758188] [PMID: 19290842]
[3]
Fazil M, Shadab , Baboota S, Sahni JK, Ali J. Nanotherapeutics for Alzheimer’s disease (AD): Past, present and future. J Drug Target 2012; 20(2): 97-113.
[http://dx.doi.org/10.3109/1061186X.2011.607499] [PMID: 22023651]
[4]
Ferri CP, Prince M, Brayne C, et al. Alzheimer’s Disease International. Global prevalence of dementia: a Delphi consensus study. Lancet 2005; 366(9503): 2112-7.
[http://dx.doi.org/10.1016/S0140-6736(05)67889-0] [PMID: 16360788]
[5]
Hossain MF, Uddin MS, Uddin GMS, et al. Melatonin in Alzheimer’s disease: a latent endogenous regulator of neurogenesis to mitigate Alzheimer’s neuropathology. Mol Neurobiol 2019; 56(12): 8255-76.
[http://dx.doi.org/10.1007/s12035-019-01660-3] [PMID: 31209782]
[6]
Nabeshima T, Nitta A. Memory impairment and neuronal dysfunction induced by beta-amyloid protein in rats. Tohoku J Exp Med 1994; 174(3): 241-9.
[http://dx.doi.org/10.1620/tjem.174.241] [PMID: 7761989]
[7]
Popovic N, Brundin P. Therapeutic potential of controlled drug delivery systems in neurodegenerative diseases. Int J Pharm 2006; 314(2): 120-6.
[http://dx.doi.org/10.1016/j.ijpharm.2005.09.040] [PMID: 16529886]
[8]
Alzheimer’s Association. Early Onset Dementia: A National Challenge, A Future Crisis(Washington, DC: Alzheimer’s Association 2006 JuneAvailable at: https://www.alz.org/national/docu ments/report_earlyonset_summary.pdf
[9]
Hebert LE, Beckett LA, Scherr PA, Evans DA. Annual incidence of Alzheimer disease in the United States projected to the years 2000 through 2050. Alzheimer Dis Assoc Disord 2001; 15(4): 169-73.
[http://dx.doi.org/10.1097/00002093-200110000-00002] [PMID: 11723367]
[10]
Alzheimer’s Association. Alzheimer’s disease Facts and Figures. Alzheimers Dement 2019; 15(3): 321-87.
[http://dx.doi.org/10.1016/j.jalz.2019.01.010]
[11]
Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 2003; 60(8): 1119-22.
[http://dx.doi.org/10.1001/archneur.60.8.1119] [PMID: 12925369]
[12]
Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C. Molecular pathogenesis of Alzheimer’s disease: an update. Ann Neurosci 2017; 24(1): 46-54.
[http://dx.doi.org/10.1159/000464422] [PMID: 28588356]
[13]
Uddin MS, Kabir MT, Al Mamun A, Abdel-Daim MM, Barreto GE, Ashraf GM. APOE and Alzheimer’s disease: evidence mounts that targeting APOE4 may combat Alzheimer’s pathogenesis. Mol Neurobiol 2019; 56(4): 2450-65.
[http://dx.doi.org/10.1007/s12035-018-1237-z] [PMID: 30032423]
[14]
Mokhtar SH, Bakhuraysah MM, Cram DS, Petratos S. The Beta-amyloid protein of Alzheimer’s disease: communication breakdown by modifying the neuronal cytoskeleton. Int J Alzheimers Dis 2013; 2013910502
[http://dx.doi.org/10.1155/2013/910502] [PMID: 24416616]
[15]
Fahrenholz F, Gilbert S, Kojro E, Lammich S, Postina R. Alpha-secretase activity of the disintegrin metalloprotease ADAM 10. Influences of domain structure. Ann N Y Acad Sci 2000; 920: 215-22.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06925.x] [PMID: 11193153]
[16]
Peterson CM, Johannsen DL, Ravussin E. Skeletal muscle mitochondria and aging: a review. J Aging Res 2012; 2012194821
[http://dx.doi.org/10.1155/2012/194821] [PMID: 22888430]
[17]
Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM. Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 2003; 24(8): 1063-70.
[http://dx.doi.org/10.1016/j.neurobiolaging.2003.08.012] [PMID: 14643377]
[18]
Van Giau V, An SSA, Hulme JP. Mitochondrial therapeutic interventions in Alzheimer’s disease. J Neurol Sci 2018; 395: 62-70.
[http://dx.doi.org/10.1016/j.jns.2018.09.033] [PMID: 30292965]
[19]
Swerdlow RH. Pathogenesis of Alzheimer’s disease. Clin Interv Aging 2007; 2(3): 347-59.
[PMID: 18044185]
[20]
Weuve J, McQueen MB, Blacker D. The AlzRisk Database. Alzheimer research forum http://www.alzforum.org [23 September 2008]; Available from
[21]
Kennelly SP, Lawlor BA, Kenny RA. Blood pressure and the risk for dementia: a double edged sword. Ageing Res Rev 2009; 8(2): 61-70.
[http://dx.doi.org/10.1016/j.arr.2008.11.001] [PMID: 19063999]
[22]
Gorelick PB, Scuteri A, Black SE, et al. American Heart Association Stroke Council, Council on Epidemiology and Prevention, Council on Cardiovascular Nursing, Council on Cardiovascular Radiology and Intervention, and Council on Cardiovascular Surgery and Anesthesia. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 2011; 42(9): 2672-713.
[http://dx.doi.org/10.1161/STR.0b013e3182299496] [PMID: 21778438]
[23]
Nehls M. Unified theory of Alzheimer’s disease (UTAD): implications for prevention and curative therapy. J Mol Psychiatry 2016; 4: 3.
[http://dx.doi.org/10.1186/s40303-016-0018-8] [PMID: 27429752]
[24]
Díaz-Ruiz C, Wang J, Ksiezak-Reding H, et al. Role of hypertension in aggravating A neuropathology of AD type and Tau-mediated motor impairment. Cardiovasc Psychiatry Neurol 2009; 2009107286
[http://dx.doi.org/10.1155/2009/107286] [PMID: 19936102]
[25]
Esiri MM, Nagy Z, Smith MZ, Barnetson L, Smith AD. Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer’s disease. Lancet 1999; 354(9182): 919-20.
[http://dx.doi.org/10.1016/S0140-6736(99)02355-7] [PMID: 10489957]
[26]
Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 1997; 277(10): 813-7.
[http://dx.doi.org/10.1001/jama.1997.03540340047031] [PMID: 9052711]
[27]
Schneider JA, Wilson RS, Bienias JL, Evans DA, Bennett DA. Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology. Neurology 2004; 62(7): 1148-55.
[http://dx.doi.org/10.1212/01.WNL.0000118211.78503.F5] [PMID: 15079015]
[28]
Breteler MM. Vascular involvement in cognitive decline and dementia. Epidemiologic evidence from the Rotterdam Study and the Rotterdam Scan Study. Ann N Y Acad Sci 2000; 903: 457-65.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06399.x] [PMID: 10818538]
[29]
Stampfer MJ. Cardiovascular disease and Alzheimer’s disease: common links. J Intern Med 2006; 260(3): 211-23.
[http://dx.doi.org/10.1111/j.1365-2796.2006.01687.x] [PMID: 16918818]
[30]
Refsum H, Smith AD, Ueland PM, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem 2004; 50(1): 3-32.
[http://dx.doi.org/10.1373/clinchem.2003.021634] [PMID: 14709635]
[31]
Kruman II, Kumaravel TS, Lohani A, et al. Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J Neurosci 2002; 22(5): 1752-62.
[http://dx.doi.org/10.1523/JNEUROSCI.22-05-01752.2002] [PMID: 11880504]
[32]
Pacheco-Quinto J, Rodriguez de Turco EB, DeRosa S, et al. Hyperhomocysteinemic Alzheimer’s mouse model of amyloidosis shows increased brain amyloid β peptide levels. Neurobiol Dis 2006; 22(3): 651-6.
[http://dx.doi.org/10.1016/j.nbd.2006.01.005] [PMID: 16516482]
[33]
Selley ML. Increased homocysteine and decreased adenosine formation in Alzheimer’s disease. Neurol Res 2004; 26(5): 554-7.
[http://dx.doi.org/10.1179/016164104225016182] [PMID: 15265273]
[34]
Irizarry MC. Biomarkers of Alzheimer disease in plasma. NeuroRx 2004; 1(2): 226-34.
[http://dx.doi.org/10.1602/neurorx.1.2.226] [PMID: 15717023]
[35]
Atti AR, Palmer K, Volpato S, Winblad B, De Ronchi D, Fratiglioni L. Late-life body mass index and dementia incidence: nine-year follow-up data from the Kungsholmen Project. J Am Geriatr Soc 2008; 56(1): 111-6.
[http://dx.doi.org/10.1111/j.1532-5415.2007.01458.x] [PMID: 18028342]
[36]
Akbaraly TN, Portet F, Fustinoni S, et al. Leisure activities and the risk of dementia in the elderly: results from the Three-City Study. Neurology 2009; 73(11): 854-61.
[http://dx.doi.org/10.1212/WNL.0b013e3181b7849b] [PMID: 19752452]
[37]
Streeter CC, Jensen JE, Perlmutter RM, et al. Yoga Asana sessions increase brain GABA levels: a pilot study. J Altern Complement Med 2007; 13(4): 419-26.
[http://dx.doi.org/10.1089/acm.2007.6338] [PMID: 17532734]
[38]
Gard T, Taquet M, Dixit R, et al. Fluid intelligence and brain functional organization in aging yoga and meditation practitioners. Front Aging Neurosci 2014; 6: 76.
[http://dx.doi.org/10.3389/fnagi.2014.00076] [PMID: 24795629]
[39]
Hoffman LB, Schmeidler J, Lesser GT, et al. Less Alzheimer disease neuropathology in medicated hypertensive than nonhypertensive persons. Neurology 2009; 72(20): 1720-6.
[http://dx.doi.org/10.1212/01.wnl.0000345881.82856.d5] [PMID: 19228583]
[40]
Petrovitch H, White LR, Izmirilian G, et al. Midlife blood pressure and neuritic plaques, neurofibrillarytangles, and brain weight at death. Neurobiol Aging 2000; 21: 57-62.
[PMID: 10794849]
[41]
Gaspar JM, Baptista FI, Macedo MP, Ambrósio AF. Inside the diabetic brain: role of different players involved in cognitive decline. ACS Chem Neurosci 2016; 7(2): 131-42.
[http://dx.doi.org/10.1021/acschemneuro.5b00240] [PMID: 26667832]
[42]
Macauley SL, Stanley M, Caesar EE, et al. Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo. J Clin Invest 2015; 125(6): 2463-7.
[http://dx.doi.org/10.1172/JCI79742] [PMID: 25938784]
[43]
Kim DJ, Yu JH, Shin MS, Shin YW, Kim MS. Hyperglycemia reduces efficiency of brain networks in subjects with type 2 diabetes. PLoS One 2016; 11(6)e0157268
[http://dx.doi.org/10.1371/journal.pone.0157268] [PMID: 27336309]
[44]
Rom S, Zuluaga-Ramirez V, Gajghate S, et al. Hyperglycemia-driven neuroinflammation compromises BBB leading to memory loss in both diabetes mellitus (DM) type 1 and type 2 mouse models. Mol Neurobiol 2019; 56(3): 1883-96.
[http://dx.doi.org/10.1007/s12035-018-1195-5] [PMID: 29974394]
[45]
Silzer TK, Phillips NR. Etiology of type 2 diabetes and Alzheimer’s disease: Exploring the mitochondria. Mitochondrion 2018; 43: 16-24.
[http://dx.doi.org/10.1016/j.mito.2018.04.004] [PMID: 29678670]
[46]
Pushpakumar S, Kundu S, Sen U. Endothelial dysfunction: the link between homocysteine and hydrogen sulfide. Curr Med Chem 2014; 21(32): 3662-72.
[http://dx.doi.org/10.2174/0929867321666140706142335] [PMID: 25005183]
[47]
Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr 2000; 71: S621-9.
[http://dx.doi.org/10.1093/ajcn/71.2.621s]
[48]
Mrak RE, Griffin WS. Potential inflammatory biomarkers in Alzheimer’s disease. J Alzheimers Dis 2005; 8(4): 369-75.
[http://dx.doi.org/10.3233/JAD-2005-8406] [PMID: 16556968]
[49]
Beydoun MA, Lhotsky A, Wang Y, et al. Association of adiposity status and changes in early to mid-adulthood with incidence of Alzheimer’s disease. Am J Epidemiol 2008; 168(10): 1179-89.
[http://dx.doi.org/10.1093/aje/kwn229] [PMID: 18835864]
[50]
Abbott RD, White LR, Ross GW, Masaki KH, Curb JD, Petrovitch H. Walking and dementia in physically capable elderly men. JAMA 2004; 292(12): 1447-53.
[http://dx.doi.org/10.1001/jama.292.12.1447] [PMID: 15383515]
[51]
Ahmad MZ, Ahmad J, Amin S, et al. Role of nanomedicines in delivery of anti-acetylcholinesterase compounds to the brain in Alzheimer’s disease. CNS Neurol Disord Drug Targets 2014; 13(8): 1315-24.
[http://dx.doi.org/10.2174/1871527313666141023100618] [PMID: 25345516]
[52]
Sahni JK, Doggui S, Ali J, Baboota S, Dao L, Ramassamy C. Neurotherapeutic applications of nanoparticles in Alzheimer’s disease. J Control Release 2011; 152(2): 208-31.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.033] [PMID: 21134407]
[53]
Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 2002; 28(1): 1-13.
[http://dx.doi.org/10.1081/DDC-120001481] [PMID: 11858519]
[54]
Bassett DS, Gazzaniga MS. Understanding complexity in the human brain. Trends Cogn Sci (Regul Ed) 2011; 15(5): 200-9.
[http://dx.doi.org/10.1016/j.tics.2011.03.006] [PMID: 21497128]
[55]
Pasha S, Gupta K. Various drug delivery approaches to the central nervous system. Expert Opin Drug Deliv 2010; 7(1): 113-35.
[http://dx.doi.org/10.1517/17425240903405581] [PMID: 20017662]
[56]
Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology Based Theranostic Approaches in Alzheimer’s Disease Management: Current Status and Future Perspective. Curr Alzheimer Res 2017; 14(11): 1164-81.
[http://dx.doi.org/10.2174/1567205014666170508121031] [PMID: 28482786]
[57]
Mayeux R, Stern Y. Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2(8)a006239
[http://dx.doi.org/10.1101/cshperspect.a006239] [PMID: 22908189]
[58]
Pavan B, Dalpiaz A, Ciliberti N, Biondi C, Manfredini S, Vertuani S. Progress in drug delivery to the central nervous system by the prodrug approach. Molecules 2008; 13(5): 1035-65.
[http://dx.doi.org/10.3390/molecules13051035] [PMID: 18560328]
[59]
Sharma HS, Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res 2007; 162: 245-73.
[http://dx.doi.org/10.1016/S0079-6123(06)62013-X] [PMID: 17645923]
[60]
Lee G, Dallas S, Hong M, Bendayan R. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 2001; 53(4): 569-96.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.569] [PMID: 11734619]
[61]
Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 2003; 3 (2): 90-105.51.
[http://dx.doi.org/10.1124/mi.3.2.90 ] [PMID: 14993430]
[62]
Moghimi SM. Bionanotechnologies for treatment and diagnosis of Alzheimer’s disease. Nanomedicine (Lond) 2011; 7(5): 515-8.
[http://dx.doi.org/10.1016/j.nano.2011.05.001] [PMID: 21616169]
[63]
Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005; 2(4): 541-53.
[http://dx.doi.org/10.1602/neurorx.2.4.541] [PMID: 16489364]
[64]
Aulić S, Bolognesi ML, Legname G. Small-molecule theranostic probes: a promising future in neurodegenerative diseases. Int J Cell Biol 2013; 2013:150952.
[http://dx.doi.org/10.1155/2013/150952] [PMID: 24324497]
[65]
Freitas RA. Nanomedicine: Basic Capabilities. Library of Congress Cataloging-in- Publication Data 1999 Available at:.http://www.nanomedicine.com/NMI.htm
[66]
Market research report, Nanomedicine Market Analysis by Products, (Therapeutics, Regenerative Medicine, Diagnostics), by Application, (Clinical Oncology, Infectious Diseases), by Nanomolecule (Gold, Silver, Iron Oxide, Alumina),& Segment Forecasts 2017; 2013--2025. Report ID: 978-1-68038-942-5.
[67]
Feynman RP. There’s plenty of room at the bottom. Eng Sci 1960; 23: 22-36.
[68]
Seigneuric R, Markey L, Nuyten DS, et al. From nanotechnology to nanomedicine: applications to cancer research. Curr Mol Med 2010; 10(7): 640-52.
[http://dx.doi.org/10.2174/156652410792630634] [PMID: 20712588]
[69]
Modi G, Pillay V, Choonara YE, Ndesendo VM, du Toit LC, Naidoo D. Nanotechnological applications for the treatment of neurodegenerative disorders. Prog Neurobiol 2009; 88(4): 272-85.
[http://dx.doi.org/10.1016/j.pneurobio.2009.05.002] [PMID: 19486920]
[70]
Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol 2006; 24(10): 1211-7.
[http://dx.doi.org/10.1038/nbt1006-1211] [PMID: 17033654]
[71]
Freitas RA. What is nanomedicine? Nanomedicine, Nanotechnol. Biol Med 2005; 1: 2-9.
[72]
Freitas RA Jr. The future of nanofabrication and molecular scale devices in nanomedicine. Stud Health Technol Inform 2002; 80: 45-59.
[PMID: 12026137]
[73]
Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 2006; 58(14): 1456-9.
[http://dx.doi.org/10.1016/j.addr.2006.09.011] [PMID: 17070960]
[74]
Kim BY, Rutka JT, Chan WC. Nanomedicine. N Engl J Med 2010; 363(25): 2434-43.
[http://dx.doi.org/10.1056/NEJMra0912273] [PMID: 21158659]
[75]
Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018; 26(1): 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[76]
Kulkarni PV, Roney CA, Antich PP, Bonte FJ, Raghu AV, Aminabhavi TM. Quinoline-n-butylcyanoacrylate-based nanoparticles for brain targeting for the diagnosis of Alzheimer’s disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2(1): 35-47.
[http://dx.doi.org/10.1002/wnan.59] [PMID: 20049829]
[77]
Wilson B, Samanta MK, Muthu MS, Vinothapooshan G. Design and evaluation of chitosan nanoparticles as novel drug carrier for the delivery of rivastigmine to treat Alzheimer’s disease. Ther Deliv 2011; 2(5): 599-609.
[http://dx.doi.org/10.4155/tde.11.21] [PMID: 22833977]
[78]
Jaruszewski KM, Ramakrishnan S, Poduslo JF, Kandimalla KK. Chitosan enhances the stability and targeting of immuno-nanovehicles to cerebro-vascular deposits of Alzheimer’s disease amyloid protein. Nanomedicine (Lond) 2012; 8(2): 250-60.
[http://dx.doi.org/10.1016/j.nano.2011.06.008] [PMID: 21704598]
[79]
Zhang C, Wan X, Zheng X, et al. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials 2014; 35(1): 456-65.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.063] [PMID: 24099709]
[80]
Brambilla D, Verpillot R, Le Droumaguet B, et al. PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: toward engineering of functional nanomedicines for Alzheimer’s disease. ACS Nano 2012; 6(7): 5897-908.
[http://dx.doi.org/10.1021/nn300489k] [PMID: 22686577]
[81]
Reddy PH, Manczak M, Yin X, et al. Protective effects of indian spice curcumin against amyloid beta in Alzheimer’s disease. J Alzheimers Dis 2018; 61(3): 843-66.
[http://dx.doi.org/10.3233/JAD-170512] [PMID: 29332042]
[82]
den Haan J, Morrema THJ, Rozemuller AJ, Bouwman FH, Hoozemans JJM. Different curcumin forms selectively bind fibrillar amyloid beta in post mortem Alzheimer’s disease brains: Implications for in-vivo diagnostics. Acta Neuropathol Commun 2018; 6(1): 75.
[http://dx.doi.org/10.1186/s40478-018-0577-2] [PMID: 30092839]
[83]
Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. J Neurosci Res 2004; 75(6): 742-50.
[http://dx.doi.org/10.1002/jnr.20025] [PMID: 14994335]
[84]
Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001; 21(21): 8370-7.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08370.2001] [PMID: 11606625]
[85]
Yallapu MM, Nagesh PKB, Jaggi M, Chauhan SC. Therapeutic Applications of Curcumin Nanoformulations. AAPS J 2015; 17(6): 1341-56.
[http://dx.doi.org/10.1208/s12248-015-9811-z] [PMID: 26335307]
[86]
Mathew A, Fukuda T, Nagaoka Y, et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 2012; 7(3):e32616.
[http://dx.doi.org/10.1371/journal.pone.0032616] [PMID: 22403681]
[87]
Patil R, Gangalum PR, Wagner S, et al. Curcumin targeted, polymalic acid-based MRI contrast agent for the detection of Aβ plaques in Alzheimer’s disease. Macromol Biosci 2015; 15(9): 1212-7.
[http://dx.doi.org/10.1002/mabi.201500062] [PMID: 26036700]
[88]
Tiwari SK, Agarwal S, Seth B, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 2014; 8(1): 76-103.
[http://dx.doi.org/10.1021/nn405077y] [PMID: 24467380]
[89]
Chen M, Du ZY, Zheng X, Li DL, Zhou RP, Zhang K. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen Res 2018; 13(4): 742-52.
[http://dx.doi.org/10.4103/1673-5374.230303] [PMID: 29722330]
[90]
Lauzon MA, Daviau A, Marcos B, Faucheux N. Nanoparticle-mediated growth factor delivery systems: A new way to treat Alzheimer’s disease. J Control Release 2015; 206: 187-205.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.024] [PMID: 25804873]
[91]
Di Stefano A, Iannitelli A, Laserra S, Sozio P. Drug delivery strategies for Alzheimer’s disease treatment. Expert Opin Drug Deliv 2011; 8(5): 581-603.
[http://dx.doi.org/10.1517/17425247.2011.561311] [PMID: 21391862]
[92]
Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, et al. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 2009; 17(8): 564-74.
[http://dx.doi.org/10.1080/10611860903112842] [PMID: 19694610]
[93]
Thorne RG, Pronk GJ, Padmanabhan V, Frey WH II. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004; 127(2): 481-96.
[http://dx.doi.org/10.1016/j.neuroscience.2004.05.029] [PMID: 15262337]
[94]
Zhang C, Chen J, Feng C, et al. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int J Pharm 2014; 461(1-2): 192-202.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.049] [PMID: 24300213]
[95]
Carradori D, Balducci C, Re F, et al. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomedicine (Lond) 2018; 14(2): 609-18.
[http://dx.doi.org/10.1016/j.nano.2017.12.006] [PMID: 29248676]
[96]
Sathya S, Shanmuganathan B, Saranya S, Vaidevi S, Ruckmani K, Pandima DK. Phytol-loaded PLGA nanoparticle as a modulator of Alzheimer’s toxic Aβ peptide aggregation and fibrillation associated with impaired neuronal cell function. Artif Cells Nanomed Biotechnol 2017; 25: 1-12.
[http://dx.doi.org/10.1080/21691401.2017.1391822] [PMID: 29069924]
[97]
Fornaguera C, Feiner-Gracia N, Calderó G, García-Celma MJ, Solans C. Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases. Nanoscale 2015; 7(28): 12076-84.
[http://dx.doi.org/10.1039/C5NR03474D] [PMID: 26118655]
[98]
Huang N, Lu S, Liu XG, Zhu J, Wang YJ, Liu RT. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice. Oncotarget 2017; 8(46): 81001-13.
[http://dx.doi.org/10.18632/oncotarget.20944] [PMID: 29113362]
[99]
Sánchez-López E, Ettcheto M, Egea MA, et al. New potential strategies for Alzheimer’s disease prevention: pegylated biodegradable dexibuprofen nanospheres administration to APPswe/PS1dE9. Nanomedicine (Lond) 2017; 13(3): 1171-82.
[http://dx.doi.org/10.1016/j.nano.2016.12.003] [PMID: 27986603]
[100]
Bhavna Md S. Design, Development, optimization and characterization of donepezil loaded chitosan nanoparticles for brain targeting to treat Alzheimer’s disease. Sci Adv Mater 2014; 201(6): 1-16.
[http://dx.doi.org/10.1166/sam.2014.1761]
[101]
Md S, Ali M, Baboota S, Sahni JK, Bhatnagar A, Ali J. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev Ind Pharm 2014; 40(2): 278-87.
[http://dx.doi.org/10.3109/03639045.2012.758130] [PMID: 23369094]
[102]
Fazil M, Md S, Haque S, et al. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci 2012; 47(1): 6-15.
[http://dx.doi.org/10.1016/j.ejps.2012.04.013] [PMID: 22561106]
[103]
Doggui S, Sahni JK, Arseneault M, Dao L, Ramassamy C. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. J Alzheimers Dis 2012; 30(2): 377-92.
[http://dx.doi.org/10.3233/JAD-2012-112141] [PMID: 22426019]
[104]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[105]
Zahin N, Anwar R, Tewari D, et al. Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ Sci Pollut Res Int 2019; 1-18In press
[http://dx.doi.org/10.1007/s11356-019-05211-0] [PMID: 31079299]
[106]
Mourtas S, Lazar AN, Markoutsa E, Duyckaerts C, Antimisiaris SG. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur J Med Chem 2014; 80: 175-83.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.050] [PMID: 24780594]
[107]
Zheng X, Shao X, Zhang C, et al. Intranasal H102 Peptide-Loaded Liposomes for Brain Delivery to Treat Alzheimer’s Disease. Pharm Res 2015; 32(12): 3837-49.
[http://dx.doi.org/10.1007/s11095-015-1744-9] [PMID: 26113236]
[108]
Al Asmari AK, Ullah Z, Tariq M, Fatani A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des Devel Ther 2016; 10: 205-15.
[PMID: 26834457]
[109]
Yang ZZ, Zhang YQ, Wang ZZ, Wu K, Lou JN, Qi XR. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int J Pharm 2013; 452(1-2): 344-54.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.009] [PMID: 23680731]
[110]
Li W, Zhou Y, Zhao N, Hao B, Wang X, Kong P. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Environ Toxicol Pharmacol 2012; 34(2): 272-9.
[http://dx.doi.org/10.1016/j.etap.2012.04.012] [PMID: 22613079]
[111]
Guo JW, Guan PP, Ding WY, et al. Erythrocyte membrane-encapsulated celecoxib improves the cognitive decline of Alzheimer’s disease by concurrently inducing neurogenesis and reducing apoptosis in APP/PS1 transgenic mice. Biomaterials 2017; 145: 106-27.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.023] [PMID: 28865290]
[112]
Corace G, Angeloni C, Malaguti M, et al. Multifunctional liposomes for nasal delivery of the anti-Alzheimer drug tacrine hydrochloride. J Liposome Res 2014; 24(4): 323-35.
[http://dx.doi.org/10.3109/08982104.2014.899369] [PMID: 24807822]
[113]
Kuo YC, Tsao CW. Neuroprotection against apoptosis of SK-N-MC cells using RMP-7- and lactoferrin-grafted liposomes carrying quercetin. Int J Nanomedicine 2017; 12: 2857-69.
[http://dx.doi.org/10.2147/IJN.S132472] [PMID: 28435263]
[114]
Balducci C, Mancini S, Minniti S, et al. Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer’s disease mouse models. J Neurosci 2014; 34(42): 14022-31.
[http://dx.doi.org/10.1523/JNEUROSCI.0284-14.2014] [PMID: 25319699]
[115]
Mutlu NB, Değim Z, Yilmaz Ş, Eşsiz D, Nacar A. New perspective for the treatment of Alzheimer diseases: liposomal rivastigmine formulations. Drug Dev Ind Pharm 2011; 37(7): 775-89.
[http://dx.doi.org/10.3109/03639045.2010.541262] [PMID: 21231901]
[116]
Chen ZL, Huang M, Wang XR, et al. Transferrin-modified liposome promotes α-mangostin to penetrate the blood-brain barrier. Nanomedicine (Lond) 2016; 12(2): 421-30.
[http://dx.doi.org/10.1016/j.nano.2015.10.021] [PMID: 26711963]
[117]
Kuo YC, Wang CT. Protection of SK-N-MC cells against β-amyloid peptide-induced degeneration using neuron growth factor-loaded liposomes with surface lactoferrin. Biomaterials 2014; 35(22): 5954-64.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.082] [PMID: 24746790]
[118]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[119]
Bernardi A, Frozza RL, Meneghetti A, et al. Indomethacin-loaded lipid-core nanocapsules reduce the damage triggered by Aβ1-42 in Alzheimer’s disease models. Int J Nanomedicine 2012; 7: 4927-42.
[http://dx.doi.org/10.2147/IJN.S35333] [PMID: 23028221]
[120]
Vakilinezhad MA, Amini A, Akbari Javar H, Baha’addini Beigi Zarandi BF, Montaseri H, Dinarvand R. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing Tau hyperphosphorylation. Daru 2018; 26(2): 165-77.
[http://dx.doi.org/10.1007/s40199-018-0221-5] [PMID: 30386982]
[121]
Loureiro JA, Andrade S, Duarte A, et al. Resveratrol and Grape Extract-loaded Solid Lipid Nanoparticles for the Treatment of Alzheimer’s Disease. Molecules 2017; 22(2): 277.
[http://dx.doi.org/10.3390/molecules22020277] [PMID: 28208831]
[122]
Ma X, Song Q, Gao X. Reconstituted high-density lipoproteins: novel biomimetic nanocarriers for drug delivery. Acta Pharm Sin B 2018; 8(1): 51-63.
[http://dx.doi.org/10.1016/j.apsb.2017.11.006] [PMID: 29872622]
[123]
Song Q, Huang M, Yao L, et al. Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer’s disease by accelerating the clearance of amyloid-beta. ACS Nano 2014; 8(3): 2345-59.
[http://dx.doi.org/10.1021/nn4058215] [PMID: 24527692]
[124]
Muntimadugu E, Dhommati R, Jain A, Challa VG, Shaheen M, Khan W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer’s disease. Eur J Pharm Sci 2016; 92: 224-34.
[http://dx.doi.org/10.1016/j.ejps.2016.05.012] [PMID: 27185298]
[125]
Das S, Dowding JM, Klump KE, McGinnis JF, Self W, Seal S. Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine (Lond) 2013; 8(9): 1483-508.
[http://dx.doi.org/10.2217/nnm.13.133] [PMID: 23987111]
[126]
Rhee SK, Quist AP, Lal R. Amyloid beta protein-(1-42) forms calcium-permeable, Zn2+-sensitive channel. J Biol Chem 1998; 273(22): 13379-82.
[http://dx.doi.org/10.1074/jbc.273.22.13379] [PMID: 9593665]
[127]
Suh WH, Suslick KS, Stucky GD, Suh YH. Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 2009; 87(3): 133-70.
[http://dx.doi.org/10.1016/j.pneurobio.2008.09.009] [PMID: 18926873]
[128]
D’Angelo B, Santucci S, Benedetti E, et al. Cerium oxide nanoparticles trigger neuronal survival in a human Alzheimer disease model by modulating BDNF pathway. Curr Nanosci 2009; 5(2): 167-76.
[http://dx.doi.org/10.2174/157341309788185523]
[129]
Kwon HJ, Cha MY, Kim D, et al. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano 2016; 10(2): 2860-70.
[http://dx.doi.org/10.1021/acsnano.5b08045] [PMID: 26844592]
[130]
Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, et al. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun 2010; 393(4): 649-55.
[http://dx.doi.org/10.1016/j.bbrc.2010.02.046] [PMID: 20153731]
[131]
Gao N, Sun H, Dong K, Ren J, Qu X. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chemistry 2015; 21(2): 829-35.
[http://dx.doi.org/10.1002/chem.201404562] [PMID: 25376633]
[132]
Kogan MJ, Bastus NG, Amigo R, et al. Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett 2006; 6(1): 110-5.
[http://dx.doi.org/10.1021/nl0516862] [PMID: 16402797]
[133]
Nazem A, Mansoori GA. Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents. J Alzheimers Dis 2008; 13(2): 199-223.
[http://dx.doi.org/10.3233/JAD-2008-13210] [PMID: 18376062]
[134]
Kim Y, Park JH, Lee H, Nam JM. How Do the Size, Charge and Shape of Nanoparticles Affect Amyloid β Aggregation on Brain Lipid Bilayer? Sci Rep 2016; 6: 19548.
[http://dx.doi.org/10.1038/srep19548] [PMID: 26782664]
[135]
Praça C, Rai A, Santos T, et al. A nanoformulation for the preferential accumulation in adult neurogenic niches. J Control Release 2018; 284: 57-72.
[http://dx.doi.org/10.1016/j.jconrel.2018.06.013] [PMID: 29902485]
[136]
Sivanesan SK, Shanmugam RK. Gold Nanoparticles in Diagnosis and Treatment of Alzheimer’s Disease. Nanobiotechnol Neurodegen Dis 2019; 12: 289-306.
[http://dx.doi.org/10.1007/978-3-030-30930-5_12]
[137]
Yang L, Yin T, Liu Y, Sun J, Zhou Y, Liu J. Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer’s disease treatment. Acta Biomater 2016; 46: 177-90.
[http://dx.doi.org/10.1016/j.actbio.2016.09.010] [PMID: 27619837]
[138]
Karimzadeh M, Rashidi L, Ganji F. Mesoporous silica nanoparticles for efficient rivastigmine hydrogen tartrate delivery into SY5Y cells. Drug Dev Ind Pharm 2017; 43(4): 628-36.
[http://dx.doi.org/10.1080/03639045.2016.1275668] [PMID: 28043167]
[139]
Mirsadeghi S, Shanehsazzadeh S, Atyabi F, Dinarvand R. Effect of PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) under magnetic field on amyloid beta fibrillation process. Mater Sci Eng C 2016; 59: 390-7.
[http://dx.doi.org/10.1016/j.msec.2015.10.026] [PMID: 26652388]
[140]
Wang Y, Jin M, Chen G, et al. Bio-barcode detection technology and its research applications: A review. J Adv Res 2019; 20: 23-32.
[http://dx.doi.org/10.1016/j.jare.2019.04.009] [PMID: 31193255]
[141]
Zhang C, Zheng X, Wan X, et al. The potential use of H102 peptide-loaded dual-functional nanoparticles in the treatment of Alzheimer’s disease. J Control Release 2014; 192: 317-24.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.050] [PMID: 25102404]
[142]
Jose J, Charyulu RN. Prolonged drug delivery system of an antifungal drug by association with polyamidoamine dendrimers. Int J Pharm Investig 2016; 6(2): 123-7.
[http://dx.doi.org/10.4103/2230-973X.177833] [PMID: 27051632]
[143]
Patel DA, Henry JE, Good TA. Attenuation of β-amyloid-induced toxicity by sialic-acid-conjugated dendrimers: role of sialic acid attachment. Brain Res 2007; 1161: 95-105.
[http://dx.doi.org/10.1016/j.brainres.2007.05.055] [PMID: 17604005]
[144]
Igartúa DE, Martinez CS, Temprana CF, Alonso SDV, Prieto MJ. PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases: A biophysical and nanotoxicological characterization. Int J Pharm 2018; 544(1): 191-202.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.032] [PMID: 29678547]
[145]
Aso E, Martinsson I, Appelhans D, et al. Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection. Nanomedicine (Lond) 2019; 17: 198-209.
[http://dx.doi.org/10.1016/j.nano.2019.01.010] [PMID: 30708052]
[146]
Karami Z, Saghatchi Zanjani MR, Hamidi M. Nanoemulsions in CNS drug delivery: recent developments, impacts and challenges. Drug Discov Today 2019; 24(5): 1104-15.
[http://dx.doi.org/10.1016/j.drudis.2019.03.021] [PMID: 30914298]
[147]
Sood S, Jain K, Kuppusamy G. Intranasal delivery of curcumin–/INS; donepezil nanoemulsion for brain targeting in Alzheimer’s disease. J Neurol Sci 2013; 333: e316-7.
[http://dx.doi.org/10.1016/j.jns.2013.07.1182]
[148]
Md S, Gan SY, Haw YH, Ho CL, Wong S, Choudhury H. In vitro neuroprotective effects of naringenin nanoemulsion against β- amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation Int J Biol Macromol 2018; 118((Pt A)): 1211-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.190] [PMID: 30001606]
[149]
Rogers SL, Friedhoff LT. Long-term efficacy and safety of donepezil in the treatment of Alzheimer’s disease: an interim analysis of the results of a US multicentre open label extension study. Eur Neuropsychopharmacol 1998; 8(1): 67-75.
[http://dx.doi.org/10.1016/S0924-977X(97)00079-5] [PMID: 9452942]
[150]
Zhang P, Chen L, Gu W, Xu Z, Gao Y, Li Y. In vitro and in vivo evaluation of donepezil-sustained release microparticles for the treatment of Alzheimer’s disease. Biomaterials 2007; 28(10): 1882-8.
[http://dx.doi.org/10.1016/j.biomaterials.2006.12.016] [PMID: 17196249]
[151]
Ikeda K, Okada T, Sawada S, Akiyoshi K, Matsuzaki K. Inhibition of the formation of amyloid beta-protein fibrils using biocompatible nanogels as artificial chaperones. FEBS Lett 2006; 580(28-29): 6587-95.
[http://dx.doi.org/10.1016/j.febslet.2006.11.009] [PMID: 17125770]
[152]
Boridy S, Takahashi H, Akiyoshi K, Maysinger D. The binding of pullulan modified cholesteryl nanogels to Abeta oligomers and their suppression of cytotoxicity. Biomaterials 2009; 30(29): 5583-91.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.010] [PMID: 19577802]
[153]
Mansoori GA. Diamondoid Molecules. Adv Chem Phys 2007; 207-58. Avaialble at:.https://www.researchgate.net/publ ication/321069601_Diamondoid_Molecules
[154]
Reisberg B, Doody R, Stöffler A, Schmitt F, Ferris S, Möbius HJ. Memantine Study Group. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 2003; 348(14): 1333-41.
[http://dx.doi.org/10.1056/NEJMoa013128] [PMID: 12672860]
[155]
Lipton SA. Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J Alzheimers Dis 2004; 6(6)(Suppl.): S61-74.
[PMID: 15665416]
[156]
Sadegh Malvajerd S, Izadi Z, Azadi A, et al. Neuroprotective Potential of Curcumin-Loaded Nanostructured Lipid Carrier in an Animal Model of Alzheimer’s Disease: Behavioral and Biochemical Evidence. J Alzheimers Dis 2019; 69(3): 671-86.
[http://dx.doi.org/10.3233/JAD-190083] [PMID: 31156160]
[157]
Zakarial Ansar F, Saiful Yazan L, Wei Keat N, et al. Thymoquinone-loaded nanostructured lipid carrier improved spatial learning,memory and exploratory behaviour in Alzheimer’s disease animalmodel: findings of the International Conference on Drug Discoveryand Translational Medicine 2018 (ICDDTM '18) Seizing Opportunities and Addressing Challenges of Precision Medicine. Availableat: https://www.frontiersin.org/10.3389/conf.fphar.2018.63.00 060/6116/International_Conference_on_Drug_Discovery_and_Translatioal_Medicine_2018_(ICDDTM_18)%E2%80%9CSeizing_Op/all_events/event_abstract
[158]
Bhutani S. Fabrication of an Ion-Sensitive in Situ Gel loaded with Nanostructured Lipid Carrier for Nose to Brain delivery of Donepezil. Asn J Pharma 2018; 12(4): 293.
[159]
Jojo GM, Kuppusamy G, De A, Karri VVSNR. Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer’s disease using Box-Behnken design. Drug Dev Ind Pharm 2019; 45(7): 1061-72.
[http://dx.doi.org/10.1080/03639045.2019.1593439] [PMID: 30922126]
[160]
Dugan LL, Lovett EG, Quick KL, Lotharius J, Lin TT, O’Malley KL. Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord 2001; 7(3): 243-6.
[http://dx.doi.org/10.1016/S1353-8020(00)00064-X] [PMID: 11331193]
[161]
Mansoori GA. Principles of Nanotechnology: Molecular-Based Study of Condensed Matter in Small Systems. Available at: https://www.researchgate.net/publication/266395854_Principles_of_Nanotechnology_MolecularBased_Study_of_Condensed_Matter_in_Small_Systems
[http://dx.doi.org/10.1142/5749]
[162]
Jain KK. The role of nanobiotechnology in drug discovery. Drug Discov Today 2005; 10(21): 1435-42.
[http://dx.doi.org/10.1016/S1359-6446(05)03573-7] [PMID: 16243263]
[163]
Dugan LL, Turetsky DM, Du C, et al. Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci USA 1997; 94(17): 9434-9.
[http://dx.doi.org/10.1073/pnas.94.17.9434] [PMID: 9256500]
[164]
Podolski IY, Podlubnaya ZA, Kosenko EA, et al. Effects of hydrated forms of C60 fullerene on amyloid 1-peptide fibrillization in vitro and performance of the cognitive task. J Nanosci Nanotechnol 2007; 7(4-5): 1479-85.
[http://dx.doi.org/10.1166/jnn.2007.330] [PMID: 17450915]
[165]
Dugan LL, Gabrielsen JK, Yu SP, Lin TS, Choi DW. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis 1996; 3(2): 129-35.
[http://dx.doi.org/10.1006/nbdi.1996.0013] [PMID: 9173920]
[166]
Huang HM, Ou HC, Hsieh SJ, Chiang LY. Blockage of amyloid beta peptide-induced cytosolic free calcium by fullerenol-1, carboxylate C60 in PC12 cells. Life Sci 2000; 66(16): 1525-33.
[http://dx.doi.org/10.1016/S0024-3205(00)00470-7] [PMID: 10794500]
[167]
Kotelnikova RA, Smolina AV, Grigoryev VV, et al. Influence of water-soluble derivatives of [60] fullerene on therapeutically important targets related to neurodegenerative diseases. MedChemComm 2014; 5(11): 1664-8.
[http://dx.doi.org/10.1039/C4MD00194J]
[168]
Haes AJ, Chang L, Klein WL, Van Duyne RP. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 2005; 127(7): 2264-71.
[http://dx.doi.org/10.1021/ja044087q] [PMID: 15713105]
[169]
Sillerud LO, Solberg NO, Chamberlain R, et al. SPION-enhanced magnetic resonance imaging of Alzheimer’s disease plaques in AβPP/PS-1 transgenic mouse brain. J Alzheimers Dis 2013; 34(2): 349-65.
[http://dx.doi.org/10.3233/JAD-121171] [PMID: 23229079]
[170]
Skaat H, Margel S. Synthesis of fluorescent-maghemite nanoparticles as multimodal imaging agents for amyloid-β fibrils detection and removal by a magnetic field. Biochem Biophys Res Commun 2009; 386(4): 645-9.
[http://dx.doi.org/10.1016/j.bbrc.2009.06.110] [PMID: 19559008]
[171]
Yang J, Wadghiri YZ, Hoang DM, et al. Detection of amyloid plaques targeted by USPIO-Aβ1-42 in Alzheimer’s disease transgenic mice using magnetic resonance microimaging. Neuroimage 2011; 55(4): 1600-9.
[http://dx.doi.org/10.1016/j.neuroimage.2011.01.023] [PMID: 21255656]
[172]
Choi JS, Choi HJ, Jung DC, Lee JH, Cheon J. Nanoparticle assisted magnetic resonance imaging of the early reversible stages of amyloid β self-assembly. Chem Commun (Camb) 2008; 19(19): 2197-9.
[http://dx.doi.org/10.1039/b803294g] [PMID: 18463738]
[173]
Kang DY, Lee JH, Oh BK, Choi JW. Ultra-sensitive immunosensor for beta-amyloid (1-42) using scanning tunneling microscopy-based electrical detection. Biosens Bioelectron 2009; 24(5): 1431-6.
[http://dx.doi.org/10.1016/j.bios.2008.08.018] [PMID: 18829296]
[174]
Härtig W, Kacza J, Paulke BR, et al. In vivo labelling of hippocampal beta-amyloid in triple-transgenic mice with a fluorescent acetylcholinesterase inhibitor released from nanoparticles. Eur J Neurosci 2010; 31(1): 99-109.
[http://dx.doi.org/10.1111/j.1460-9568.2009.07038.x] [PMID: 20092557]
[175]
Georganopoulou DG, Chang L, Nam JM, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci USA 2005; 102(7): 2273-6.
[http://dx.doi.org/10.1073/pnas.0409336102] [PMID: 15695586]
[176]
Siegemund T, Paulke BR, Schmiedel H, et al. Thioflavins released from nanoparticles target fibrillar amyloid β in the hippocampus of APP/PS1 transgenic mice. Int J Dev Neurosci 2006; 24(2-3): 195-201.
[http://dx.doi.org/10.1016/j.ijdevneu.2005.11.012] [PMID: 16386399]
[177]
Tokuraku K, Marquardt M, Ikezu T. Real-time imaging and quantification of amyloid-beta peptide aggregates by novel quantum-dot nanoprobes. PLoS One 2009; 4(12)e8492
[http://dx.doi.org/10.1371/journal.pone.0008492] [PMID: 20041162]
[178]
Neely A, Perry C, Varisli B, et al. Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano 2009; 3(9): 2834-40.
[http://dx.doi.org/10.1021/nn900813b] [PMID: 19691350]
[179]
Wadghiri YZ, Sigurdsson EM, Sadowski M, et al. Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med 2003; 50(2): 293-302.
[http://dx.doi.org/10.1002/mrm.10529] [PMID: 12876705]
[180]
Hofmann-Amtenbrink M, Hofmann H, Montet X. Superparamagnetic nanoparticles - a tool for early diagnostics. Swiss Med Wkly 2010; 140(13081)
[http://dx.doi.org/10.4414/smw.2010.13081] [PMID: 20853192]
[181]
Roney CA, Arora V, Kulkarni PV, Antich PP, Bonte FJ. Nanoparticulate radiolabelled quinolines detect amyloid plaques in mouse models of Alzheimer’s disease. Int J Alzheimers Dis 2010; 2009:481031.
[PMID: 20721294]
[182]
Zhang D, Fa HB, Zhou JT, Li S, Diao XW, Yin W. The detection of β-amyloid plaques in an Alzheimer’s disease rat model with DDNP-SPIO. Clin Radiol 2015; 70(1): 74-80.
[http://dx.doi.org/10.1016/j.crad.2014.09.019] [PMID: 25459675]
[183]
Birks JGEJ, Iakovidou V, Tsolaki M, Holt FE. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev 2015; 2CD001191
[184]
Birks J, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev 2006; 1(1)CD001190
[http://dx.doi.org/10.1002/14651858.CD001190.pub2] [PMID: 16437430]
[185]
Loy C, Schneider L. Galantamine for Alzheimer’s disease and mild cognitive impairment. Cochrane Database Syst Rev 2006; 1(1)CD001747
[http://dx.doi.org/10.1002/14651858.CD001747.pub3] [PMID: 16437436]
[186]
Hanafy AS, Farid RM, Helmy MW, ElGamal SS. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: future potential contribution in Alzheimer’s disease management. Drug Deliv 2016; 23(8): 3111-22.
[http://dx.doi.org/10.3109/10717544.2016.1153748] [PMID: 26942549]
[187]
NCT03806478. Safety, Tolerability and Efficacy Assessment of Intranasal Nanoparticles of APH-1105, A Novel Alpha Secretase Modulator For Mild to Moderate Cognitive Impairment Due to Alzheimer's Disease (AD 2016.
[188]
Min W, Mao L, Shiqin G, Chunmei W. A kind of resveratrol nanoparticle and its preparation process with Brain targeting effect. China patents CN109602702A 2019 Apr..
[189]
Yasemin BK, Rabia CK, Tolga Z, Serda KG. It theranostics is used in Alzheimer's disease Fe3O4 @ Au core / shell nanoparticles. Turkey patents TR 201803509A2. 2018 Aug..
[190]
Rong Y, Han ZY, Xueliang QL, Xinhuan W, Wei W. The noble metal nano particles and its preparation method and application of Medicine small molecule modification China patents CN108635588A 2018 Oct
[191]
Harilal S, Jose J, Parambi DGT, et al. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J Pharm Pharmacol 2019; 71(9): 1370-83.
[http://dx.doi.org/10.1111/jphp.13132] [PMID: 31304982]
[192]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[193]
Dominy SS, Lynch C, Ermini F, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv 2019; 5:3333
[PMID: 30746447]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 19
Year: 2020
Published on: 17 June, 2020
Page: [2257 - 2279]
Pages: 23
DOI: 10.2174/1381612826666200422092620
Price: $65

Article Metrics

PDF: 23
HTML: 7