Synthesis and Cytotoxic Activity of Azine Derivatives of 6-Hydroxyxanthanodiene

Author(s): Margarita E. Neganova, Sergey G. Klochkov, Sergey A. Pukhov, Svetlana V. Afanasieva, Yulia R. Aleksandrova, Ekaterina Y. Yandulova, Marco F. Avila-Rodriguez, Liudmila M. Mikhaleva, Vladimir N. Nikolenko, Siva G. Somasundaram, Cecil E. Kirkland, Gjumrakch Aliev*

Journal Name: Current Cancer Drug Targets

Volume 20 , Issue 9 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: The conjugates of the sesquiterpene lactone of the eremophilane series of 6- hydroxyxanthanodiene with hydrogenated azines (piperidines and piperazines) have been synthesized and identified by NMR spectrometer.

Objective: A lactone with an unusual skeleton “6-hydroxyxanthanodiene” was extracted from the plant Elecampane (Inula helenium L) and identified various species with NMR spectrometer.

Methods: The cytotoxic, mitochondrial, and antioxidant activities on different tumor lines such as A549, HCT116, RD and Jurkat were investigated and determined possible mechanisms.

Results: The results showed that the most potent compound was IIIi exhibiting highest cytotoxicity against RD cells (IC50 25.23 ± 0.04 μM), depolarized the mitochondrial membrane and was an effective antioxidant (IC50 inhibition of LP 10.68 ± 3.21 μM) without any toxic side effect on healthy cells.

Conclusion: The conjugates of sesquiterpene lactone 6-hydroxyxanthanodiene III and hydrogenated azines may help to design potential promising anticancer drugs.

Keywords: 6-hydroxyxanthanodiene, azines, cytotoxicity, mitochondria, apoptosis, antioxidants, anticancer drug.

Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[] [PMID: 26852623]
Grothaus, P.G.; Cragg, G.M.; Newman, D.J. Plant natural products in anticancer drug discovery. Curr. Org. Chem., 2010, 14, 1781-1791.
Dandawate, P.R.; Subramaniam, D.; Jensen, R.A.; Anant, S. Targeting cancer stem cells and signaling pathways by phytochemicals: Novel approach for breast cancer therapy. Semin. Cancer Biol., 2016, 40-41, 192-208.
[] [PMID: 27609747]
Kreuger, M.R.; Grootjans, S.; Biavatti, M.W.; Vandenabeele, P.; D’Herde, K. Sesquiterpene lactones as drugs with multiple targets in cancer treatment: focus on parthenolide. Anticancer Drugs, 2012, 23(9), 883-896.
[] [PMID: 22797176]
Gach, K.; Janecka, A. α-Methylene-γ-lactones as a novel class of anti-leukemic agents. Anticancer. Agents Med. Chem., 2014, 14(5), 688-694.
[] [PMID: 24628266]
Siveen, K.S.; Uddin, S.; Mohammad, R.M. Targeting acute myeloid leukemia stem cell signaling by natural products. Mol. Cancer, 2017, 16(1), 13.
[] [PMID: 28137265]
Merfort, I. Perspectives on sesquiterpene lactones in inflammation and cancer. Curr. Drug Targets, 2011, 12(11), 1560-1573.
[] [PMID: 21561425]
Harvey, A.L. Medicines from nature: Are natural products still relevant to drug discovery? Trends Pharmacol. Sci., 1999, 20(5), 196-198.
[] [PMID: 10354614]
Fraga, B.M. Natural sesquiterpenoids. Nat. Prod. Rep., 2006, 23(6), 943-972.
[] [PMID: 17119641]
Ghantous, A.; Gali-Muhtasib, H.; Vuorela, H.; Saliba, N.A.; Darwiche, N. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov. Today, 2010, 15(15-16), 668-678.
[] [PMID: 20541036]
da Silva Castro, E.; Alves Antunes, L.A.; Revoredo Lobo, J.F.; Ratcliffe, N.A.; Borges, R.M.; Rocha, L.; Burth, P.; Fonte Amorim, L.M. Antileukemic properties of sesquiterpene lactones: A systematic review. Anticancer. Agents Med. Chem., 2018, 18(3), 323-334.
[] [PMID: 28925880]
Klochkov, S.G.; Afanas’eva, S.V.; Pushin, A.N. Acidic isomerization of alantolactone derivatives. Chem. Nat. Compd., 2006, 42, 400-406.
Seaman, F.C.; Fischer, N.H.; Stuessy, T.F. Systematic implications of sesquiterpene lactones in the subtribe Melampodiinae. Biochem. Syst. Ecol., 1980, 8, 263-271.
Rejmund, M.; Mrozek-Wilczkiewicz, A.; Malarz, K.; Pyrkosz-Bulska, M.; Gajcy, K.; Sajewicz, M.; Musiol, R.; Polanski, J. Piperazinyl fragment improves anticancer activity of Triapine. PLoS One, 2018, 13(4)e0188767
[] [PMID: 29652894]
Klochkov, S.G.; Ananyev, I.V.; Pukhov, S.A.; Afanasyeva, S.V. Stereochemistry of the aza-michael reaction with natural alantolactones. Chem. Heterocycl. Compd., 2012, 48, 698.
Klochkov, S.G.; Romanova, A.A.; Anan, I.V.; Pukhov, S.A.; Afanas, S.V. Afanasieva synthesis and structure of (3R,3aR,4S,4aR,5S,9aR)-4-Hydroxy-4a,5-Dimethyl-3-[4-(4-Fluorophenyl)-Piperazino]Methyl-3a,4,4a,5,6,7,9,9a-Octahydronaphtho [2,3-b]Furan-2(3H)-. One. Chem. Nat. Compd., 2018, 54, 1146-1148.
Zamzami, N.; Kroemer, G. The mitochondrion in apoptosis: How Pandora’s box opens. Nat. Rev. Mol. Cell Biol., 2001, 2(1), 67-71.
[] [PMID: 11413468]
Michelakis, E.D.; Webster, L.; Mackey, J.R. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer, 2008, 99(7), 989-994.
[] [PMID: 18766181]
Zhang, Y.; Bao, Y.L.; Wu, Y.; Yu, C.L.; Huang, Y.X.; Sun, Y.; Zheng, L.H.; Li, Y.X. Alantolactone induces apoptosis in RKO cells through the generation of reactive oxygen species and the mitochondrial pathway. Mol. Med. Rep., 2013, 8(4), 967-972.
[] [PMID: 23970102]
Bonner, M.Y.; Arbiser, J.L. The antioxidant paradox: What are antioxidants and how should they be used in a therapeutic context for cancer. Future Med. Chem., 2014, 6(12), 1413-1422.
[] [PMID: 25329197]
Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 3rd ed; Oxford University Press: Oxford, 1999.
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[] [PMID: 6606682]
Präbst, K.; Engelhardt, H.; Ringgeler, S.; Hübner, H. Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin. Methods Mol. Biol., 2017, 1601, 1-17.
[] [PMID: 28470513]
Akerman, K.E.; Wikström, M.K. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett., 1976, 68(2), 191-197.
[] [PMID: 976474]
Chowdhury, S.R.; Djordjevic, J.; Albensi, B.C.; Fernyhough, P. Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria. Biosci. Rep., 2015, 36(1), e00286-e00286.
[] [PMID: 26647379]
Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem., 1949, 177(2), 751-766.
[PMID: 18110453]
Neganova, M.E.; Klochkov, S.G.; Petrova, L.N.; Shevtsova, E.F.; Afanasieva, S.V.; Chudinova, E.S.; Fisenko, V.P.; Bachurin, S.O.; Barreto, G.E.; Aliev, G. Securinine derivatives as potential anti-amyloid therapeutic approach. CNS Neurol. Disord. Drug Targets, 2017, 16(3), 351-355.
[] [PMID: 27823572]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [666 - 674]
Pages: 9
DOI: 10.2174/1568009620999200421200338
Price: $65

Article Metrics

PDF: 25