Insights into Potent Therapeutical Antileukemic Agent L-glutaminase Enzyme Under Solid-state Fermentation: A Review

Author(s): Chandrasai Potla Durthi*, Madhuri Pola, Satish Babu Rajulapati*, Anand Kishore Kola

Journal Name: Current Drug Metabolism

Volume 21 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Aim and Objective: To review the applications and production studies of reported antileukemic drug L-glutaminase under Solid-state Fermentation (SSF).

Overview: An amidohydrolase that gained economic importance because of its wide range of applications in the pharmaceutical industry, as well as the food industry, is L-glutaminase. The medical applications utilized it as an anti-tumor agent as well as an antiretroviral agent. L-glutaminase is employed in the food industry as an acrylamide degradation agent, as a flavor enhancer and for the synthesis of theanine. Another application includes its use in hybridoma technology as a biosensing agent. Because of its diverse applications, scientists are now focusing on enhancing the production and optimization of L-glutaminase from various sources by both Solid-state Fermentation (SSF) and submerged fermentation studies. Of both types of fermentation processes, SSF has gained importance because of its minimal cost and energy requirement. L-glutaminase can be produced by SSF from both bacteria and fungi. Single-factor studies, as well as multi-level optimization studies, were employed to enhance L-glutaminase production. It was concluded that L-glutaminase activity achieved by SSF was 1690 U/g using wheat bran and Bengal gram husk by applying feed-forward artificial neural network and genetic algorithm. The highest L-glutaminase activity achieved under SSF was 3300 U/gds from Bacillus sp., by mixture design. Purification and kinetics studies were also reported to find the molecular weight as well as the stability of L-glutaminase.

Conclusion: The current review is focused on the production of L-glutaminase by SSF from both bacteria and fungi. It was concluded from reported literature that optimization studies enhanced L-glutaminase production. Researchers have also confirmed antileukemic and anti-tumor properties of the purified L-glutaminase on various cell lines.

Keywords: L-glutaminase, solid state fermentation, antileukemic, anti-tumor, production, optimization, kinetics, in silico studies, cytotoxic studies, mixture design, genetic algorithm, neural network.

[1]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009, 324(5930), 1029-1033.
[http://dx.doi.org/10.1126/science.1160809] [PMID: 19460998]
[2]
Durthi, C.P.; Pola, M.; Rajulapati, S.B.; Kola, A.K.; Kamal, M.A. Versatile and valuable utilization of amidohydrolase l-glutaminase in pharma and food industries: a review. Curr. Drug Metab., 2020, 21
[http://dx.doi.org/10.2174/1574884715666200116110542] [PMID: 31951174]
[3]
Mantovani, A. Cancer: Inflaming metastasis. Nature, 2009, 457(7225), 36-37.
[http://dx.doi.org/10.1038/457036b] [PMID: 19122629]
[4]
Poste, G.; Fidler, I.J. The pathogenesis of cancer metastasis. Nature, 1980, 283(5743), 139-146.
[http://dx.doi.org/10.1038/283139a0] [PMID: 6985715]
[5]
Svgk Dowluru, K.; Chandra Sai, P.; Venkata Nageswara Rao, P.; Govinda Rao, D.; Varahala Rao, V.; Suresh, P.; Rajeswara Reddy, E.; Vinod Kumar, D.; Bhaskar Reddy, G. Protein interaction networks in metallo proteins and docking approaches of metallic compounds with TIMP and MMP in control of MAPK pathway. Lett. Drug Des. Discov., 2013, 10, 49-55.
[http://dx.doi.org/10.2174/157018013804142465]
[6]
Visvader, J.E. Cells of origin in cancer. Nature, 2011, 469(7330), 314-322.
[http://dx.doi.org/10.1038/nature09781] [PMID: 21248838]
[7]
Parsa, N. Environmental factors inducing human cancers. Iran. J. Public Health, 2012, 41(11), 1-9.
[PMID: 23304670]
[8]
Potla Durthi, C.; Pola, M.; Kola, A.K.; Rajulapati, S.B. Screening, optimization of culture conditions and scale-up for production of the L-glutaminase by novel isolated Bacillus sps. mutant endophyte using response surface methodology. Biocatal. Agric. Biotechnol., 2019, 18
[http://dx.doi.org/10.1016/j.bcab.2019.101077]
[9]
Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M.J. Cancer statistics, 2009. CA Cancer J. Clin., 2009, 59(4), 225-249.
[http://dx.doi.org/10.3322/caac.20006] [PMID: 19474385]
[10]
Sudhakar, A. History of cancer, ancient and modern treatment methods. J. Cancer Sci. Ther., 2009, 1(2), 1-4.
[http://dx.doi.org/10.4172/1948-5956.100000e2] [PMID: 20740081]
[11]
Shankar, V.; Deshpande, M.M.; Chaitra, N.; Aditi, S. Automatic detection of acute lymphoblasitc leukemia using image processing. 2016 IEEE International Conference on Advances in Computer Applications (ICACA), 2016, pp. 186-189.
[http://dx.doi.org/10.1109/ICACA.2016.7887948]
[12]
Hall, G.L. Important Differences in Cancer Care. In: Patient-Centered Clinical Care for African Americans; Hall, G., Ed.; Springer: New York, 2020, pp. 69-84.
[http://dx.doi.org/10.1007/978-3-030-26418-5_6]
[13]
Smith, R.A.; von Eschenbach, A.C.; Wender, R.; Levin, B.; Byers, T.; Rothenberger, D.; Brooks, D.; Creasman, W.; Cohen, C.; Runowicz, C.; Saslow, D.; Cokkinides, V.; Eyre, H. ACS Prostate Cancer Advisory Committee, ACS Colorectal Cancer Advisory Committee, ACS Endometrial Cancer Advisory Committee. American Cancer Society guidelines for the early detection of cancer: update of early detection guidelines for prostate, colorectal, and endometrial cancers. Also: update 2001--testing for early lung cancer detection. CA Cancer J. Clin., 2001, 51(1), 38-75.
[http://dx.doi.org/10.3322/canjclin.51.1.38] [PMID: 11577479]
[14]
Key, T.J.; Allen, N.E.; Spencer, E.A.; Travis, R.C. The effect of diet on risk of cancer. Lancet, 2002, 360(9336), 861-868.
[http://dx.doi.org/10.1016/S0140-6736(02)09958-0] [PMID: 12243933]
[15]
Kushi, L.H.; Doyle, C.; McCullough, M.; Rock, C.L.; Demark-Wahnefried, W.; Bandera, E.V.; Gapstur, S.; Patel, A.V.; Andrews, K.; Gansler, T. American Cancer Society 2010 Nutrition and Physical Activity Guidelines Advisory Committee. American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J. Clin., 2012, 62(1), 30-67.
[http://dx.doi.org/10.3322/caac.20140] [PMID: 22237782]
[16]
Tambaro, F.P.; Garcia-Manero, G.; O’Brien, S.M.; Faderl, S.H.; Ferrajoli, A.; Burger, J.A.; Pierce, S.; Wang, X.; Do, K.A.; Kantarjian, H.M.; Keating, M.J.; Wierda, W.G. Outcomes for patients with chronic lymphocytic leukemia and acute leukemia or myelodysplastic syndrome. Leukemia, 2016, 30(2), 325-330.
[http://dx.doi.org/10.1038/leu.2015.227] [PMID: 26290497]
[17]
Buffler, P.A.; Kwan, M.L.; Reynolds, P.; Urayama, K.Y. Environmental and genetic risk factors for childhood leukemia: appraising the evidence. Cancer Invest., 2005, 23(1), 60-75.
[http://dx.doi.org/10.1081/CNV-46402] [PMID: 15779869]
[18]
Lawlor, E.; McCann, S.R.; Whelan, A.; Greally, J.; Temperley, I.J. Acute myeloid leukaemia occurring in untreated chronic lymphatic leukaemia. Br. J. Haematol., 1979, 43(3), 369-373.
[http://dx.doi.org/10.1111/j.1365-2141.1979.tb03764.x] [PMID: 291440]
[19]
Haferlach, C.; Rieder, H.; Lillington, D.M.; Dastugue, N.; Hagemeijer, A.; Harbott, J.; Stilgenbauer, S.; Knuutila, S.; Johansson, B.; Fonatsch, C. Proposals for standardized protocols for cytogenetic analyses of acute leukemias, chronic lymphocytic leukemia, chronic myeloid leukemia, chronic myeloproliferative disorders, and myelodysplastic syndromes. Genes Chromosomes Cancer, 2007, 46(5), 494-499.
[http://dx.doi.org/10.1002/gcc.20433] [PMID: 17311250]
[20]
Levine, R.L.; Loriaux, M.; Huntly, B.J.; Loh, M.L.; Beran, M.; Stoffregen, E.; Berger, R.; Clark, J.J.; Willis, S.G.; Nguyen, K.T.; Flores, N.J.; Estey, E.; Gattermann, N.; Armstrong, S.; Look, A.T.; Griffin, J.D.; Bernard, O.A.; Heinrich, M.C.; Gilliland, D.G.; Druker, B.; Deininger, M.W. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood, 2005, 106(10), 3377-3379.
[http://dx.doi.org/10.1182/blood-2005-05-1898] [PMID: 16081687]
[21]
Durthi, C.P.; Pola, M.; Podha, S.; Rajulapati, S.B. Genetic algorithm optimization of l-glutaminase from novel mutated Bacillus sp. Curr. Trends Biotechnol. Pharm., 2019, 13, 50-57.
[22]
Pola, M.; Potla Durthi, C.; Erva, R.R.; Rajulapati, S.B. Multi Gene Genetic Program Modelling on L- Asparaginase Activity of Bacillus stratosphericus. Chem. Prod. Proc. Model., 2019. [Epub ahead of print]
[23]
Pola, M.; Durthi, C.P.; Rajulapati, S.B. Modeling and optimization of l-asparaginase production from novel Bacillus stratosphericus by soft computing techniques. Curr. Trends Biotechnol. Pharm., 2019, 13, 438-447.
[24]
Pola, M.; Durthi, C.P.; Rajulapati, S.B.; Erva, R.R. Modelling and optimization of L-asparaginase production from bacillus stratosphericus. Curr. Trends Biotechnol. Pharm., 2018, 12, 390-405.
[25]
Pola, M.; Rajulapati, S.B.; Potla Durthi, C.; Erva, R.R.; Bhatia, M. In silico modelling and molecular dynamics simulation studies on L-Asparaginase isolated from bacterial endophyte of Ocimum tenuiflorum. Enzyme Microb. Technol., 2018, 117, 32-40.
[http://dx.doi.org/10.1016/j.enzmictec.2018.06.005] [PMID: 30037549]
[26]
Pui, C-H.; Evans, W.E. Treatment of acute lymphoblastic leukemia. N. Engl. J. Med., 2006, 354(2), 166-178.
[http://dx.doi.org/10.1056/NEJMra052603] [PMID: 16407512]
[27]
Pui, C-H. Acute lymphoblastic leukemia; Springer: New York, 2011.
[http://dx.doi.org/10.1007/978-3-642-16483-5_57]
[28]
Feldman, A.L.; Minniti, C.; Santi, M.; Downing, J.R.; Raffeld, M.; Jaffe, E.S. Histiocytic sarcoma after acute lymphoblastic leukaemia: a common clonal origin. Lancet Oncol., 2004, 5(4), 248-250.
[http://dx.doi.org/10.1016/S1470-2045(04)01428-7] [PMID: 15050956]
[29]
Belson, M.; Kingsley, B.; Holmes, A. Risk factors for acute leukemia in children: a review. Environ. Health Perspect., 2007, 115(1), 138-145.
[http://dx.doi.org/10.1289/ehp.9023] [PMID: 17366834]
[30]
Fragkandrea, I.; Nixon, J.A.; Panagopoulou, P. Signs and symptoms of childhood cancer: a guide for early recognition. Am. Fam. Physician, 2013, 88(3), 185-192.
[PMID: 23939697]
[31]
Home, H.C.; Relapse, T.A. Acute lymphocytic leukemia, 1997.Available at: . http://pennstatehershey.adam.com/content.aspx?productid=108&pid=10&gid=000086.
[32]
Chen, Y.N.; LaMarche, M.J.; Chan, H.M.; Fekkes, P.; Garcia-Fortanet, J.; Acker, M.G.; Antonakos, B.; Chen, C.H.; Chen, Z.; Cooke, V.G.; Dobson, J.R.; Deng, Z.; Fei, F.; Firestone, B.; Fodor, M.; Fridrich, C.; Gao, H.; Grunenfelder, D.; Hao, H.X.; Jacob, J.; Ho, S.; Hsiao, K.; Kang, Z.B.; Karki, R.; Kato, M.; Larrow, J.; La Bonte, L.R.; Lenoir, F.; Liu, G.; Liu, S.; Majumdar, D.; Meyer, M.J.; Palermo, M.; Perez, L.; Pu, M.; Price, E.; Quinn, C.; Shakya, S.; Shultz, M.D.; Slisz, J.; Venkatesan, K.; Wang, P.; Warmuth, M.; Williams, S.; Yang, G.; Yuan, J.; Zhang, J.H.; Zhu, P.; Ramsey, T.; Keen, N.J.; Sellers, W.R.; Stams, T.; Fortin, P.D. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature, 2016, 535(7610), 148-152.
[http://dx.doi.org/10.1038/nature18621] [PMID: 27362227]
[33]
Triplett, T.A.; Garrison, K.C.; Marshall, N.; Donkor, M.; Blazeck, J.; Lamb, C.; Qerqez, A.; Dekker, J.D.; Tanno, Y.; Lu, W-C.; Karamitros, C.S.; Ford, K.; Tan, B.; Zhang, X.M.; McGovern, K.; Coma, S.; Kumada, Y.; Yamany, M.S.; Sentandreu, E.; Fromm, G.; Tiziani, S.; Schreiber, T.H.; Manfredi, M.; Ehrlich, L.I.R.; Stone, E.; Georgiou, G. Reversal of indoleamine 2,3-dioxygenase-mediated cancer immune suppression by systemic kynurenine depletion with a therapeutic enzyme. Nat. Biotechnol., 2018, 36(8), 758-764.
[http://dx.doi.org/10.1038/nbt.4180] [PMID: 30010674]
[34]
Amobonye, A.; Singh, S.; Pillai, S. Recent advances in microbial glutaminase production and applications-a concise review. Crit. Rev. Biotechnol., 2019, 39(7), 944-963.
[http://dx.doi.org/10.1080/07388551.2019.1640659] [PMID: 31327254]
[35]
Binod, P.; Sindhu, R.; Madhavan, A.; Abraham, A.; Mathew, A.K.; Beevi, U.S.; Sukumaran, R.K.; Singh, S.P.; Pandey, A. Recent developments in L-glutaminase production and applications - an overview. Bioresour. Technol, 2017, 245(Pt B), 1766-1774.
[http://dx.doi.org/10.1016/j.biortech.2017.05.059] [PMID: 28549811]
[36]
El-Sayed, A.S. L-glutaminase production by Trichoderma koningii under solid-state fermentation. Indian J. Microbiol., 2009, 49(3), 243-250.
[http://dx.doi.org/10.1007/s12088-009-0020-2] [PMID: 23100777]
[37]
Frankenberger, W., Jr; Tabatabai, M. LgGlutaminase activity of soils. Soil Biol. Biochem., 1991, 23, 869-874.
[http://dx.doi.org/10.1016/0038-0717(91)90099-6]
[38]
Kashyap, P.; Sabu, A.; Pandey, A.; Szakacs, G.; Soccol, C.R. Extra-cellular L-glutaminase production by Zygosaccharomyces rouxii under solid-state fermentation. Process Biochem., 2002, 38, 307-312.
[http://dx.doi.org/10.1016/S0032-9592(02)00060-2]
[39]
Katikala, P.K.; Bobbarala, V.; Tadimalla, P.; Guntuku, G.S. Screening of L-glutaminase producing marine bacterial cultures for extracellular production of L-glutaminase. Int. J. Chemtech Res., 2009, 1, 1232-1235.
[40]
Balagurunathan, R.; Radhakrishnan, M.; Somasundaram, S. L-glutaminase producing actinomycetes from marine sediments–selective isolation, semi quantitative assay and characterization of potential strain. Aust. J. Basic Appl. Sci., 2010, 4, 698-705.
[41]
Sathish, T.; Lakshmi, G.S.; Rao, ChS.; Brahmaiah, P.; Prakasham, R.S. Mixture design as first step for improved glutaminase production in solid-state fermentation by isolated Bacillus. Lett. Appl. Microbiol., 2008, 47(4), 256-262.
[http://dx.doi.org/10.1111/j.1472-765X.2008.02413.x] [PMID: 18761613]
[42]
Hölker, U.; Lenz, J. Solid-state fermentation--are there any biotechnological advantages? Curr. Opin. Microbiol., 2005, 8(3), 301-306.
[http://dx.doi.org/10.1016/j.mib.2005.04.006] [PMID: 15939353]
[43]
Ellaiah, P.; Srinivasulu, B.; Adinarayana, K. Optimisation studies on neomycin production by a mutant strain of Streptomyces marinensis in solid state fermentation. Process Biochem., 2004, 39, 529-534.
[http://dx.doi.org/10.1016/S0032-9592(02)00059-6]
[44]
Renu, S.; Chandrasekaran, M. Extracellular L-glutaminase production by marine bacteria. Biotechnol. Lett., 1992, 14, 471-474.
[http://dx.doi.org/10.1007/BF01023169]
[45]
Sabu, A.; Keerthi, T.R.; Kumar, S.R.; Chandrasekaran, M. L-glutaminase production by marine Beauveria sp under solid state fermentation. Process Biochem., 2000, 35, 705-710.
[http://dx.doi.org/10.1016/S0032-9592(99)00127-2]
[46]
Nathiya, K.; Nath, S.S.; Angayarkanni, J.; Palaniswamy, M. Optimised production of L-glutaminase: A tumour inhibitor from Aspergillus flavus cultured on agroindustrial residues. Afr. J. Biotechnol., 2011, 10, 13887-13894.
[http://dx.doi.org/10.5897/AJB11.1251]
[47]
Athira, R.; Elizebeth, T.; Narendra, T.; Sheik, T.A.; Gupta, S.K.; Chaudary, M.; Siddalingeshwara, K.; Pramod, T. Investigation on the production of L-glutaminase from Pseudomonas stutzeri strain under solid state fermentation using various agro residues. J. Drug Deliv. Ther., 2014, 4, 81-85.
[http://dx.doi.org/10.22270/jddt.v4i2.814]
[48]
Kiruthika, J.; Saraswathy, N.; Murugesan, S. Maximizing L-glutaminase production from marine Bacillus subtilis JK-79 under solid state fermentation. Afr. J. Biotechnol., 2018, 17, 288-305.
[http://dx.doi.org/10.5897/AJB2017.16015]
[49]
Prabhu, G.N.; Chandrasekaran, M. Impact of process parameters on L-glutaminase production by marine Vibrio costicola in solid state fermentation using polystyrene as an inert support. Process Biochem., 1997, 32, 285-289.
[http://dx.doi.org/10.1016/S0032-9592(96)00083-0]
[50]
Prabhu, G.N.; Chandrasekaran, M. Purification and characterization of an anti-cancer enzyme produced by marine Vibrio costicola under a novel solid state fermentation process. Braz. Arch. Biol. Technol., 1999, 42, 363-368.
[http://dx.doi.org/10.1590/S1516-89131999000300015]
[51]
Jesuraj, S.; Praya, J.; Kingsley, R.; Kumar, L.D.; Ravikumar, M. Bio-processing of Ar isolates for economical production of L-glutaminase by solid-state fermentation. Int. J. Chemtech Res., 2013, 5, 1428-1436.
[52]
Ye, M.; Liu, X.; Zhao, L. Production of a novel salt-tolerant L-glutaminase from Bacillus amyloliquefaciens using agro-industrial residues and its application in Chinese soy sauce fermentation. Biotechnology (Faisalabad), 2013, 12, 25-35.
[http://dx.doi.org/10.3923/biotech.2013.25.35]
[53]
Sridevi, S.; Prathyusha, K.; Mohan, Y.S.Y.V.; Sandeep, B. Isolation and primary screening of L-glutaminase from agro-residual wastes. Int. J. Pharm. Sci. Rev. Res., 2016, 39, 147-150.
[54]
Orabi, H.; El-Fakharany, E.; Abdelkhalek, E.; Sidkey, N. Production, optimization, purification, characterization, and anti-cancer application of extracellular L-glutaminase produced from the marine bacterial isolate. Prep. Biochem. Biotechnol., 2019, 1-11.
[http://dx.doi.org/10.1080/10826068.2019.1703193] [PMID: 31846380]
[55]
Pallem, C.; Manipati, S.; Somalanka, S.R.; Pradesh, A. Process optimization of L-glutaminase production by Trichoderma koningii under solid state fermentation (SSF). Int. J. Appl. Biol. Pharm. Technol., 2010, 1, 1168-1174.
[56]
Ito, K.; Hanya, Y.; Koyama, Y. Purification and characterization of a glutaminase enzyme accounting for the majority of glutaminase activity in Aspergillus sojae under solid-state culture. Appl. Microbiol. Biotechnol., 2013, 97(19), 8581-8590.
[http://dx.doi.org/10.1007/s00253-013-4693-4] [PMID: 23339014]
[57]
Revanth, B.; Raju, K. L-glutaminase production by Aspergillus wentii MTCC 1901 under solid state fermentation using mixed agro industrial residues. Int. J. Chem. Sci., 2013, 11, 277-290.
[58]
Dutta, S.; Ghosh, S.; Pramanik, S. L-asparaginase and L-glutaminase from Aspergillus fumigatus WL002: production and some physicochemical properties. Appl. Biochem. Microbiol., 2015, 51, 425-431.
[http://dx.doi.org/10.1134/S0003683815040067]
[59]
Sameera, V.; Raju, K.J. Optimization of process parameters for the production of L-glutaminase with mixed substrate by solid state fermentation using Aspergillus wentii MTCC 1901. Int. J. Res. Eng. Technol., 2015, 4, 328-333.
[http://dx.doi.org/10.15623/ijret.2015.0405063]
[60]
Kumari, D.; Raju, K.J. Production and optimization of L-glutaminase with mixed substrate using Aspergillus wentii MTCC 1901 by solid state fermentation. Int. J. Eng. Res. Technol. (Ahmedabad), 2016, 5, 10-18.
[61]
Sathish, T.; Uppuluri, K.; Chari, P.V.B.; Kezia, D. Sequential optimization methods for augmentation of marine enzymes production in solid-state fermentation: L-glutaminase production a case study. Adv. Food Nutr. Res., 78, 95-114.
[62]
Ahmed, A.; Taha, T.; Abo-Dahab, N.; Hassan, F. Process optimization of L-glutaminase production; a tumour inhibitor from marine endophytic isolate Aspergillus sp. ALAA-2000. J. Microb. Biochem. Technol., 2016, 8, 256-267.
[63]
Musa, O.O.; Humphrey, C.N. Statistical optimization of L-glutaminase production by Trichoderma species under solid state fermentation using African locust beans as substrate. Afr. J. Biochem. Res., 2019, 13, 73-81.
[http://dx.doi.org/10.5897/AJBR2019.1024]
[64]
El-Gendy, M.M.A.A.; Al-Zahrani, S.H.M.; El-Bondkly, A.M.A. Construction of potent recombinant strain through intergeneric protoplast fusion in endophytic fungi for anticancerous enzymes production using rice straw. Appl. Biochem. Biotechnol., 2017, 183(1), 30-50.
[http://dx.doi.org/10.1007/s12010-017-2429-0] [PMID: 28205049]
[65]
Iyer, P.; Singhal, R.S. Production of glutaminase(E.C. 3.2.1.5) from Zygosaccharomyces rouxii in solid-state fermentation and modeling the growth of Z. rouxii therein. J. Microbiol. Biotechnol., 2010, 20(4), 737-748.
[PMID: 20467247]
[66]
Singh, P.; Banik, R.M.; Shah, P. Amino acid sequence determination, in silico tertiary structure prediction and anticancer activity assessment of L-glutaminase from Bacillus cereus. Netw. Model. Anal. Health Inform. Bioinform., 2016, 5, 11.
[http://dx.doi.org/10.1007/s13721-016-0118-5]
[67]
Tork, S.E.; Aly, M.M.; Elsemin, O. A new l-glutaminase from Streptomyces pratensis NRC 10: Gene identification, enzyme purification, and characterization. Int. J. Biol. Macromol., 2018, 113, 550-557.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.080] [PMID: 29458104]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 3
Year: 2020
Page: [211 - 220]
Pages: 10
DOI: 10.2174/1389200221666200421122147
Price: $65

Article Metrics

PDF: 20
HTML: 1