Phytotherapy for Cardiovascular Disease: A Bench-to-Bedside Approach

Author(s): Mervin Chávez-Castillo*, Ángel Ortega, Pablo Duran, Daniela Pirela, María Marquina, Climaco Cano, Juan Salazar, Maricarmen C. Gonzalez, Valmore Bermúdez, Joselyn Rojas-Quintero, Manuel Velasco

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 35 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

At present, cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, and global trends suggest that this panorama will persist or worsen in the near future. Thus, optimization of treatment strategies and the introduction of novel therapeutic alternatives for CVD represent key objectives in contemporary biomedical research. In recent years, phytotherapy-defined as the therapeutic use of whole or minimally modified plant components-has ignited large scientific interest, with a resurgence of abundant investigation on a wide array of medicinal herbs (MH) for CVD and other conditions. Numerous MH have been observed to intervene in the pathophysiology of CVD via a myriad of molecular mechanisms, including antiinflammatory, anti-oxidant, and other beneficial properties, which translate into the amelioration of three essential aspects of the pathogenesis of CVD: Dyslipidemia, atherosclerosis, and hypertension. Although the preclinical data in this scenario is very rich, the true clinical impact of MH and their purported mechanisms of action is less clear, as large-scale robust research in this regard is in relatively early stages and faces important methodological challenges. This review offers a comprehensive look at the most prominent preclinical and clinical evidence currently available concerning the use of MH in the treatment of CVD from a bench-to-bedside approach.

Keywords: Phytotherapy, medicinal herbs, cardiovascular disease, dyslipidemia, atherosclerosis, hypertension.

[1]
World Health Organization. Non-communicable diseases mortality and morbidity. Media center fact sheet. Available at: https://www.who.int/gho/ncd/mortality_morbidity/en/
[2]
Gheorghe A, Griffiths U, Murphy A, Legido-Quigley H, Lamptey P, Perel P. The economic burden of cardiovascular disease and hypertension in low- and middle-income countries: a systematic review. BMC Public Health 2018; 18(1): 975.
[http://dx.doi.org/10.1186/s12889-018-5806-x] [PMID: 30081871]
[3]
Joseph P, Leong D, McKee M, et al. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ Res 2017; 121(6): 677-94.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.308903] [PMID: 28860318]
[4]
Frass M, Strassl RP, Friehs H, Müllner M, Kundi M, Kaye AD. Use and acceptance of complementary and alternative medicine among the general population and medical personnel: a systematic review. Ochsner J 2012; 12(1): 45-56.
[PMID: 22438782]
[5]
Calapai G, Caputi AP. Herbal medicines: can we do without pharmacologist? Evid Based Complement Alternat Med 2007; 4(Suppl. 1): 41-3.
[http://dx.doi.org/10.1093/ecam/nem095] [PMID: 18227932]
[6]
Rabito MJ, Kaye AD. Complementary and alternative medicine and cardiovascular disease: an evidence-based review. Evid Based Complement Alternat Med 2013. 2013672097
[http://dx.doi.org/10.1155/2013/672097] [PMID: 23710229]
[7]
De La Cruz J, Dyzinger W, Herzog S, Dos Santos F, Villegas F, Ezinga M. Medicina del Estilo de Vida: Trabajando juntos para revertir la epidemia de las enfermedades crónicas en Latinoamérica. Cienc innov salud 2017; 4(2): 1-7.
[8]
Falzon C, Balabanova A. Phytotherapy. Primary Care: Clinics in Office Practice. Prim Care 2017; 44(2): 217-27.
[http://dx.doi.org/10.1016/j.pop.2017.02.001] [PMID: 28501226]
[9]
Ferreira T, Moreira C, Cária N, Victoriano G, Silva W, Magalhães J. Phytotherapy: an introduction to its history, use and application. Rev Bras Plantas Med 2014; 16(2): 290-8.
[http://dx.doi.org/10.1590/S1516-05722014000200019]
[10]
Rastogi S, Pandey MM, Rawat AK. Traditional herbs: a remedy for cardiovascular disorders. Phytomedicine 2016; 23(11): 1082-9.
[http://dx.doi.org/10.1016/j.phymed.2015.10.012] [PMID: 26656228]
[11]
Xiong X, Borrelli F, de Sá Ferreira A, Ashfaq T, Feng B. Herbal medicines for cardiovascular diseases. Evid Based Complement Alternat Med 2014. 2014809741
[http://dx.doi.org/10.1155/2014/809741] [PMID: 25525450]
[12]
Sandfort V, Lai S, Ahlman MA, et al. Obesity Is Associated With Progression of Atherosclerosis During Statin Treatment. J Am Heart Assoc 2016; 5(7) e003621
[http://dx.doi.org/10.1161/JAHA.116.003621] [PMID: 27413040]
[13]
Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A, Del Cañizo-Gómez FJ. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J Diabetes 2014; 5(4): 444-70.
[http://dx.doi.org/10.4239/wjd.v5.i4.444] [PMID: 25126392]
[14]
Garg R, Aggarwal S, Kumar R, Sharma G. Association of atherosclerosis with dyslipidemia and co-morbid conditions: A descriptive study. J Nat Sci Biol Med 2015; 6(1): 163-8.
[http://dx.doi.org/10.4103/0976-9668.149117] [PMID: 25810656]
[15]
Singh RB, Mengi SA, Xu YJ, Arneja AS, Dhalla NS. Pathogenesis of atherosclerosis: A multifactorial process. Exp Clin Cardiol 2002; 7(1): 40-53.
[PMID: 19644578]
[16]
Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature 2011; 473(7347): 317-25.
[http://dx.doi.org/10.1038/nature10146] [PMID: 21593864]
[17]
Insull W Jr. The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am J Med 2009; 122(1)(Suppl.): S3-S14.
[http://dx.doi.org/10.1016/j.amjmed.2008.10.013] [PMID: 19110086]
[18]
Furie MB, Mitchell RN. Plaque attack: one hundred years of atherosclerosis in The American Journal of Pathology. Am J Pathol 2012; 180(6): 2184-7.
[http://dx.doi.org/10.1016/j.ajpath.2012.04.003] [PMID: 22551843]
[19]
Sakakura K, Nakano M, Otsuka F, Ladich E, Kolodgie FD, Virmani R. Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ 2013; 22(6): 399-411.
[http://dx.doi.org/10.1016/j.hlc.2013.03.001] [PMID: 23541627]
[20]
Aquila G, Marracino L, Martino V, et al. The Use of Nutraceuticals to Counteract Atherosclerosis: The Role of the Notch Pathway. Oxid Med Cell Longev 2019. 20195470470
[http://dx.doi.org/10.1155/2019/5470470] [PMID: 31915510]
[21]
Ylä-Herttuala S, Bentzon JF, Daemen M, et al. ESC Working Group of Atherosclerosis and Vascular Biology. Stabilization of atherosclerotic plaques: an update. Eur Heart J 2013; 34(42): 3251-8.
[http://dx.doi.org/10.1093/eurheartj/eht301] [PMID: 23966311]
[22]
Fang J, Little PJ, Xu S. Atheroprotective Effects and Molecular Targets of Tanshinones Derived From Herbal Medicine Danshen. Med Res Rev 2018; 38(1): 201-28.
[http://dx.doi.org/10.1002/med.21438] [PMID: 28295428]
[23]
Liu Q, Li J, Hartstone-Rose A, et al. Chinese Herbal Compounds for the Prevention and Treatment of Atherosclerosis: Experimental Evidence and Mechanisms. Evid Based Complement Alternat Med 2015. 2015752610
[http://dx.doi.org/10.1155/2015/752610] [PMID: 26089946]
[24]
Chang CC, Chu CF, Wang CN, et al. The anti-atherosclerotic effect of tanshinone IIA is associated with the inhibition of TNF-α-induced VCAM-1, ICAM-1 and CX3CL1 expression. Phytomedicine 2014; 21(3): 207-16.
[http://dx.doi.org/10.1016/j.phymed.2013.09.012] [PMID: 24157079]
[25]
Kim J, Ahn H, Han BC, et al. Obovatol inhibits NLRP3, AIM2, and non-canonical inflammasome activation. Phytomedicine 2019. 63153019
[http://dx.doi.org/10.1016/j.phymed.2019.153019] [PMID: 31302317]
[26]
Gao Y, Wang X, He C. An isoflavonoid-enriched extract from Pueraria lobata (kudzu) root protects human umbilical vein endothelial cells against oxidative stress induced apoptosis. J Ethnopharmacol 2016; 193: 524-30.
[http://dx.doi.org/10.1016/j.jep.2016.10.005] [PMID: 27717903]
[27]
Zhang L, Zhang H, Li X, et al. Miltirone protects human EA.hy926 endothelial cells from oxidized low-density lipoprotein-derived oxidative stress via a heme oxygenase-1 and MAPK/Nrf2 dependent pathway. Phytomedicine 2016; 23(14): 1806-13.
[http://dx.doi.org/10.1016/j.phymed.2016.11.003] [PMID: 27912883]
[28]
Jin UH, Kang SK, Suh SJ, et al. Inhibitory effect of Salvia miltiorrhia BGE on matrix metalloproteinase-9 activity and migration of TNF-α-induced human aortic smooth muscle cells. Vascul Pharmacol 2006; 44(5): 345-53.
[http://dx.doi.org/10.1016/j.vph.2006.01.007] [PMID: 16540379]
[29]
Fang ZY, Lin R, Yuan BX, Liu Y, Zhang H. Tanshinone IIA inhibits atherosclerotic plaque formation by down-regulating MMP-2 and MMP-9 expression in rabbits fed a high-fat diet. Life Sci 2007; 81(17-18): 1339-45.
[http://dx.doi.org/10.1016/j.lfs.2007.08.043] [PMID: 17942126]
[30]
Yang D, Xiao CX, Su ZH, et al. (-)-7(S)-hydroxymatairesinol protects against tumor necrosis factor-α-mediated inflammation response in endothelial cells by blocking the MAPK/NF-κB and activating Nrf2/HO-1. Phytomedicine 2017; 32: 15-23.
[http://dx.doi.org/10.1016/j.phymed.2017.04.005] [PMID: 28732803]
[31]
Choi ES, Yoon JJ, Han BH, et al. Ligustilide attenuates vascular inflammation and activates Nrf2/HO-1 induction and, NO synthesis in HUVECs. Phytomedicine 2018; 38: 12-23.
[http://dx.doi.org/10.1016/j.phymed.2017.09.022] [PMID: 29425644]
[32]
Sheu MJ, Lin HY, Yang YH, et al. Demethoxycurcumin, a major active curcuminoid from Curcuma longa, suppresses balloon injury induced vascular smooth muscle cell migration and neointima formation: an in vitro and in vivo study. Mol Nutr Food Res 2013; 57(9): 1586-97.
[http://dx.doi.org/10.1002/mnfr.201200462] [PMID: 23520190]
[33]
Angel-Morales G, Noratto G, Mertens-Talcott SU. Standardized curcuminoid extract (Curcuma longa l.) decreases gene expression related to inflammation and interacts with associated microRNAs in human umbilical vein endothelial cells (HUVEC). Food Funct 2012; 3(12): 1286-93.
[http://dx.doi.org/10.1039/c2fo30023k] [PMID: 22972459]
[34]
Zhou Y, Zhang T, Wang X, et al. Curcumin Modulates Macrophage Polarization Through the Inhibition of the Toll-Like Receptor 4 Expression and its Signaling Pathways. Cell Physiol Biochem 2015; 36(2): 631-41.
[http://dx.doi.org/10.1159/000430126] [PMID: 25998190]
[35]
Mahfouz MM, Zhou SQ, Kummerow FA. Curcumin prevents the oxidation and lipid modification of LDL and its inhibition of prostacyclin generation by endothelial cells in culture. Prostaglandins Other Lipid Mediat 2009; 90(1-2): 13-20.
[http://dx.doi.org/10.1016/j.prostaglandins.2009.06.005] [PMID: 19549571]
[36]
Gao S, Zhang W, Zhao Q, et al. Curcumin ameliorates atherosclerosis in apolipoprotein E deficient asthmatic mice by regulating the balance of Th2/Treg cells. Phytomedicine 2019; 52: 129-35.
[http://dx.doi.org/10.1016/j.phymed.2018.09.194] [PMID: 30599892]
[37]
Hong JW, Yang GE, Kim YB, Eom SH, Lew JH, Kang H. Anti-inflammatory activity of cinnamon water extract in vivo and in vitro LPS-induced models. BMC Complement Altern Med 2012; 12(1): 237.
[http://dx.doi.org/10.1186/1472-6882-12-237] [PMID: 23190501]
[38]
Yu SM, Wu TS, Teng CM. Pharmacological characterization of cinnamophilin, a novel dual inhibitor of thromboxane synthase and thromboxane A2 receptor. Br J Pharmacol 1994; 111(3): 906-12.
[http://dx.doi.org/10.1111/j.1476-5381.1994.tb14824.x] [PMID: 8019768]
[39]
Hwa JS, Jin YC, Lee YS, et al. 2-methoxycinnamaldehyde from Cinnamomum cassia reduces rat myocardial ischemia and reperfusion injury in vivo due to HO-1 induction. J Ethnopharmacol 2012; 139(2): 605-15.
[http://dx.doi.org/10.1016/j.jep.2011.12.001] [PMID: 22179023]
[40]
Kang H, Park SH, Yun JM, et al. Effect of cinnamon water extract on monocyte-to-macrophage differentiation and scavenger receptor activity. BMC Complement Altern Med 2014; 14(1): 90.
[http://dx.doi.org/10.1186/1472-6882-14-90] [PMID: 24602512]
[41]
Lee JW, Seok JK, Boo YC. Ecklonia cava Extract and Dieckol Attenuate Cellular Lipid Peroxidation in Keratinocytes Exposed to PM10. Evid Based Complement Alternat Med 2018. 20188248323
[http://dx.doi.org/10.1155/2018/8248323] [PMID: 29692858]
[42]
Lee J, Ko J, Oh J, Kim E, Kim C, Jeon Y. Evaluation of phlorofucofuroeckol-A isolated from Ecklonia cava (Phaeophyta) on anti-lipid peroxidation in vitro and in vivo. Algae 2015; 30(4): 313-23.
[http://dx.doi.org/10.4490/algae.2015.30.4.313]
[43]
Jin XH, Ohgami K, Shiratori K, et al. Inhibitory effects of lutein on endotoxin-induced uveitis in Lewis rats. Invest Ophthalmol Vis Sci 2006; 47(6): 2562-8.
[http://dx.doi.org/10.1167/iovs.05-1429] [PMID: 16723471]
[44]
Ashino T, Yamanaka R, Yamamoto M, et al. Negative feedback regulation of lipopolysaccharide-induced inducible nitric oxide synthase gene expression by heme oxygenase-1 induction in macrophages. Mol Immunol 2008; 45(7): 2106-15.
[http://dx.doi.org/10.1016/j.molimm.2007.10.011] [PMID: 18022235]
[45]
Suneetha WJ, Krishnakantha TP. Cardamom extract as inhibitor of human platelet aggregation. Phytother Res 2005; 19(5): 437-40.
[http://dx.doi.org/10.1002/ptr.1681] [PMID: 16106388]
[46]
Lin HC, Li CC, Yang YC, et al. Andrographis paniculata diterpenoids and ethanolic extract inhibit TNFα-induced ICAM-1 expression in EA.hy926 cells. Phytomedicine 2019; 52: 157-67.
[http://dx.doi.org/10.1016/j.phymed.2018.09.205] [PMID: 30599895]
[47]
Pan LL, Dai M. Paeonol from Paeonia suffruticosa prevents TNF-α-induced monocytic cell adhesion to rat aortic endothelial cells by suppression of VCAM-1 expression. Phytomedicine 2009; 16(11): 1027-32.
[http://dx.doi.org/10.1016/j.phymed.2009.04.003] [PMID: 19541467]
[48]
Wan JB, Lee SM, Wang JD, et al. Panax notoginseng reduces atherosclerotic lesions in ApoE-deficient mice and inhibits TNF-α-induced endothelial adhesion molecule expression and monocyte adhesion. J Agric Food Chem 2009; 57(15): 6692-7.
[http://dx.doi.org/10.1021/jf900529w] [PMID: 19722574]
[49]
Rahimi HR, Arastoo M, Ostad SN. A Comprehensive Review of Punica granatum (Pomegranate) Properties in Toxicological, Pharmacological, Cellular and Molecular Biology Researches. Iran J Pharm Res 2012; 11(2): 385-400.
[PMID: 24250463]
[50]
Wang D, Özen C, Abu-Reidah IM, et al. Vasculoprotective Effects of Pomegranate (Punica granatum L.). Front Pharmacol 2018; 9: 544.
[http://dx.doi.org/10.3389/fphar.2018.00544] [PMID: 29881352]
[51]
Palozza P, Parrone N, Simone RE, Catalano A. Lycopene in atherosclerosis prevention: an integrated scheme of the potential mechanisms of action from cell culture studies. Arch Biochem Biophys 2010; 504(1): 26-33.
[http://dx.doi.org/10.1016/j.abb.2010.06.031] [PMID: 20599665]
[52]
Santiago PG, Gasparotto FM, Gebara KS, et al. Mechanisms underlying antiatherosclerotic properties of an enriched fraction obtained from Ilex paraguariensis A. St.-Hil. Phytomedicine 2017; 34: 162-70.
[http://dx.doi.org/10.1016/j.phymed.2017.08.012] [PMID: 28899499]
[53]
Shemshian M, Mousavi SH, Norouzy A, et al. Saffron in metabolic syndrome: its effects on antibody titers to heat-shock proteins 27, 60, 65 and 70. J Complement Integr Med 2014; 11(1): 43-9.
[http://dx.doi.org/10.1515/jcim-2013-0047] [PMID: 24501162]
[54]
Bailly C. Cepharanthine: An update of its mode of action, pharmacological properties and medical applications. Phytomedicine 2019. 62152956
[http://dx.doi.org/10.1016/j.phymed.2019.152956] [PMID: 31132753]
[55]
Christodoulou E, Kadoglou NPE, Stasinopoulou M, et al. Crocus sativus L. aqueous extract reduces atherogenesis, increases atherosclerotic plaque stability and improves glucose control in diabetic atherosclerotic animals. Atherosclerosis 2018; 268: 207-14.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.10.032] [PMID: 29128090]
[56]
Kang OH, Chae HS, Choi JG, et al. Ent-pimara-8(14), 15-dien-19-oic acid isolated from the roots of Aralia cordata inhibits induction of inflammatory mediators by blocking NF-kappaB activation and mitogen-activated protein kinase pathways. Eur J Pharmacol 2008; 601(1-3): 179-85.
[http://dx.doi.org/10.1016/j.ejphar.2008.10.012] [PMID: 18938152]
[57]
Chae IG, Yu MH, Im NK, et al. Effect of Rosemarinus officinalis L. on MMP-9, MCP-1 levels, and cell migration in RAW 264.7 and smooth muscle cells. J Med Food 2012; 15(10): 879-86.
[http://dx.doi.org/10.1089/jmf.2012.2162] [PMID: 22985398]
[58]
Jiang W, Cen Y, Song Y, et al. Artesunate attenuated progression of atherosclerosis lesion formation alone or combined with rosuvastatin through inhibition of pro-inflammatory cytokines and pro-inflammatory chemokines. Phytomedicine 2016; 23(11): 1259-66.
[http://dx.doi.org/10.1016/j.phymed.2016.06.004] [PMID: 27316397]
[59]
Zhang Y, Si Y, Yao S, et al. Celastrus orbiculatus Thunb. decreases athero-susceptibility in lipoproteins and the aorta of guinea pigs fed high fat diet. Lipids 2013; 48(6): 619-31.
[http://dx.doi.org/10.1007/s11745-013-3773-7] [PMID: 23479186]
[60]
Napagoda M, Gerstmeier J, Wesely S, et al. Inhibition of 5-lipoxygenase as anti-inflammatory mode of action of Plectranthus zeylanicus Benth and chemical characterization of ingredients by a mass spectrometric approach. J Ethnopharmacol 2014; 151(2): 800-9.
[http://dx.doi.org/10.1016/j.jep.2013.11.004] [PMID: 24291172]
[61]
He B, Hao J, Sheng W, et al. Fistular onion stalk extract exhibits anti-atherosclerotic effects in rats. Exp Ther Med 2014; 8(3): 785-92.
[http://dx.doi.org/10.3892/etm.2014.1790] [PMID: 25120600]
[62]
Castro C, Lorenzo AG, González A, Cruzado M. Garlic components inhibit angiotensin II-induced cell-cycle progression and migration: Involvement of cell-cycle inhibitor p27(Kip1) and mitogen-activated protein kinase. Mol Nutr Food Res 2010; 54(6): 781-7.
[http://dx.doi.org/10.1002/mnfr.200900108] [PMID: 19904760]
[63]
Zhang HS, Wang SQ. Ginsenoside Rg1 inhibits tumor necrosis factor-α (TNF-α)-induced human arterial smooth muscle cells (HASMCs) proliferation. J Cell Biochem 2006; 98(6): 1471-81.
[http://dx.doi.org/10.1002/jcb.20799] [PMID: 16518841]
[64]
Zhang W, Chen G, Deng CQ. Effects and mechanisms of total Panax notoginseng saponins on proliferation of vascular smooth muscle cells with plasma pharmacology method. J Pharm Pharmacol 2012; 64(1): 139-45.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01379.x] [PMID: 22150681]
[65]
Wu Q, Wang W, Li S, et al. American ginseng inhibits vascular smooth muscle cell proliferation via suppressing Jak/Stat pathway. J Ethnopharmacol 2012; 144(3): 782-5.
[http://dx.doi.org/10.1016/j.jep.2012.09.046] [PMID: 23041701]
[66]
Kim JH. Cardiovascular Diseases and Panax ginseng: A Review on Molecular Mechanisms and Medical Applications. J Ginseng Res 2012; 36(1): 16-26.
[http://dx.doi.org/10.5142/jgr.2012.36.1.16] [PMID: 23717100]
[67]
Yang J, Han Y, Sun H, et al. (-)-Epigallocatechin gallate suppresses proliferation of vascular smooth muscle cells induced by high glucose by inhibition of PKC and ERK1/2 signalings. J Agric Food Chem 2011; 59(21): 11483-90.
[http://dx.doi.org/10.1021/jf2024819] [PMID: 21973165]
[68]
Lee MH, Kwon BJ, Koo MA, You KE, Park JC. Mitogenesis of vascular smooth muscle cell stimulated by platelet-derived growth factor-bb is inhibited by blocking of intracellular signaling by epigallocatechin-3-O-gallate. Oxid Med Cell Longev 2013. 2013827905
[http://dx.doi.org/10.1155/2013/827905] [PMID: 24307927]
[69]
Widowati W, Widyanto RM, Husin W, et al. Green tea extract protects endothelial progenitor cells from oxidative insult through reduction of intracellular reactive oxygen species activity. Iran J Basic Med Sci 2014; 17(9): 702-9.
[PMID: 25691948]
[70]
Lin CM, Hou SW, Wang BW, Ong JR, Chang H, Shyu KG. Molecular mechanism of (-)-epigallocatechin-3-gallate on balloon injury-induced neointimal formation and leptin expression. J Agric Food Chem 2014; 62(6): 1213-20.
[http://dx.doi.org/10.1021/jf404479x] [PMID: 24410132]
[71]
Abe R, Beckett J, Abe R, et al. Olive Oil Polyphenols Differentially Inhibit Smooth Muscle Cell Proliferation through a G1/S Cell Cycle Block Regulated by ERK1/2. Int J Angiol 2012; 21(02): 069-76.
[72]
Liu R, Heiss EH, Sider N, et al. Identification and characterization of [6]-shogaol from ginger as inhibitor of vascular smooth muscle cell proliferation. Mol Nutr Food Res 2015; 59(5): 843-52.
[http://dx.doi.org/10.1002/mnfr.201400791] [PMID: 25631547]
[73]
Zhu X, Li Z, Li C, Zhang J, Zou Z, Wang J. Ginkgo biloba extract and aspirin synergistically attenuate activated platelet-induced ROS production and LOX-1 expression in human coronary artery endothelial cells. Phytomedicine 2013; 20(2): 114-9.
[http://dx.doi.org/10.1016/j.phymed.2012.10.005] [PMID: 23218405]
[74]
Chen YH, Lin SJ, Chen YL, Liu PL, Chen JW. Anti-inflammatory effects of different drugs/agents with antioxidant property on endothelial expression of adhesion molecules. Cardiovasc Hematol Disord Drug Targets 2006; 6(4): 279-304.
[http://dx.doi.org/10.2174/187152906779010737] [PMID: 17378773]
[75]
Maraldi T. Natural compounds as modulators of NADPH oxidases. Oxid Med Cell Longev 2013; 2013 271602
[http://dx.doi.org/10.1155/2013/271602] [PMID: 24381714]
[76]
Mo J, Yang R, Li F, et al. Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation. Phytomedicine 2018; 42: 66-74.
[http://dx.doi.org/10.1016/j.phymed.2018.03.021] [PMID: 29655699]
[77]
Wang F, Bao Y, Shen X, et al. Niazirin from Moringa oleifera Lam. attenuates high glucose-induced oxidative stress through PKCζ/Nox4 pathway. Phytomedicine 2019. In press
[http://dx.doi.org/10.1016/j.phymed.2019.153066] [PMID: 31447278]
[78]
Mahmood MS, Gilani AH, Khwaja A, Rashid A, Ashfaq MK. The in vitro effect of aqueous extract of Nigella sativa seeds on nitric oxide production. Phytother Res 2003; 17(8): 921-4.
[http://dx.doi.org/10.1002/ptr.1251] [PMID: 13680825]
[79]
Bourgou S, Pichette A, Marzouk B, Legault J. Antioxidant, anti inflammatory, anticancer and antibacterial activities of extracts from Nigella Sativa (Black Cumin) plant parts. J Food Biochem 2012; 36(5): 539-46.
[http://dx.doi.org/10.1111/j.1745-4514.2011.00567.x]
[80]
Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care 2013; 40(1): 195-211.
[http://dx.doi.org/10.1016/j.pop.2012.11.003] [PMID: 23402469]
[81]
Castro Cabezas M, Burggraaf B, Klop B. Dyslipidemias in clinical practice. Clin Chim Acta 2018; 487: 117-25.
[http://dx.doi.org/10.1016/j.cca.2018.09.010] [PMID: 30201369]
[82]
Linares S, Bermudez V, Rojas J, et al. Prevalence of dyslipidemia and psychobiological factors associated in adults from Maracaibomunicipality, Venezuela. Síndrome cardiometabólico y enfermedades crónico degenerativas 2013; 3(3): 63-75.
[83]
Robins SJ, Lyass A, Zachariah JP, Massaro JM, Vasan RS. Insulin resistance and the relationship of a dyslipidemia to coronary heart disease: the Framingham Heart Study. Arterioscler Thromb Vasc Biol 2011; 31(5): 1208-14.
[http://dx.doi.org/10.1161/ATVBAHA.110.219055] [PMID: 21311041]
[84]
Ramasamy I. Update on the molecular biology of dyslipidemias. Clin Chim Acta 2016; 454: 143-85.
[http://dx.doi.org/10.1016/j.cca.2015.10.033] [PMID: 26546829]
[85]
Qi Q, Liang L, Doria A, Hu FB, Qi L. Genetic predisposition to dyslipidemia and type 2 diabetes risk in two prospective cohorts. Diabetes 2012; 61(3): 745-52.
[http://dx.doi.org/10.2337/db11-1254] [PMID: 22315312]
[86]
Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 2008; 28(4): 629-36.
[http://dx.doi.org/10.1161/ATVBAHA.107.151092] [PMID: 18174459]
[87]
Santos J. Variación genética de lipoproteínas y lípidos plasmáticos. Rev Chil Cardiol 2010; 29: 88-93.
[http://dx.doi.org/10.4067/S0718-85602010000100009]
[88]
Kopin L, Lowenstein C. Dyslipidemia. Ann Intern Med 2017; 167(11): ITC81-96.
[http://dx.doi.org/10.7326/AITC201712050] [PMID: 29204622]
[89]
Chionchio A, Galmer A, Hirsh B. Primary and Novel Lipid-Lowering Therapies to Reduce Risk in Patients With Peripheral Arterial Disease. Curr Treat Options Cardiovasc Med 2019; 21(12): 94.
[http://dx.doi.org/10.1007/s11936-019-0791-7] [PMID: 31848747]
[90]
Wang Y, Xu D. Effects of aerobic exercise on lipids and lipoproteins. Lipids Health Dis 2017; 16(1): 132.
[http://dx.doi.org/10.1186/s12944-017-0515-5] [PMID: 28679436]
[91]
Toth PP, Patti AM, Giglio RV, et al. Management of Statin Intolerance in 2018: Still More Questions Than Answers. Am J Cardiovasc Drugs 2018; 18(3): 157-73.
[http://dx.doi.org/10.1007/s40256-017-0259-7] [PMID: 29318532]
[92]
Baskaran G, Salvamani S, Ahmad SA, Shaharuddin NA, Pattiram PD, Shukor MY. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia. Drug Des Devel Ther 2015; 9: 509-17.
[http://dx.doi.org/10.2147/DDDT.S75056] [PMID: 25609924]
[93]
Xie Z, Zhang J, Ma S, Huang X, Huang Y. Effect of Chinese herbal medicine treatment on plasma lipid profile and hepatic lipid metabolism in Hetian broiler. Poult Sci 2017; 96(6): 1918-24.
[http://dx.doi.org/10.3382/ps/pew456] [PMID: 28339712]
[94]
Wang Y, Ye J, Li J, et al. Polydatin ameliorates lipid and glucose metabolism in type 2 diabetes mellitus by downregulating proprotein convertase subtilisin/kexin type 9 (PCSK9). Cardiovasc Diabetol 2016; 15: 19.
[http://dx.doi.org/10.1186/s12933-015-0325-x] [PMID: 26833058]
[95]
Ji X, Shi S, Liu B, et al. Bioactive compounds from herbal medicines to manage dyslipidemia. Biomed Pharmacother 2019. 118109338
[http://dx.doi.org/10.1016/j.biopha.2019.109338] [PMID: 31545238]
[96]
Ahmad S, Beg ZH. Elucidation of mechanisms of actions of thymoquinone-enriched methanolic and volatile oil extracts from Nigella sativa against cardiovascular risk parameters in experimental hyperlipidemia. Lipids Health Dis 2013; 12: 86.
[http://dx.doi.org/10.1186/1476-511X-12-86] [PMID: 23758650]
[97]
Gholamnezhad Z, Havakhah S, Boskabady MH. Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: A review. J Ethnopharmacol 2016; 190: 372-86.
[http://dx.doi.org/10.1016/j.jep.2016.06.061] [PMID: 27364039]
[98]
Gardner CD, Lawson LD, Block E, et al. Effect of raw garlic vs commercial garlic supplements on plasma lipid concentrations in adults with moderate hypercholesterolemia: a randomized clinical trial. Arch Intern Med 2007; 167(4): 346-53.
[http://dx.doi.org/10.1001/archinte.167.4.346] [PMID: 17325296]
[99]
Liu L, Yeh YY. S-alk(en)yl cysteines of garlic inhibit cholesterol synthesis by deactivating HMG-CoA reductase in cultured rat hepatocytes. J Nutr 2002; 132(6): 1129-34.
[http://dx.doi.org/10.1093/jn/132.6.1129] [PMID: 12042421]
[100]
Kwon MJ, Song YS, Choi MS, Park SJ, Jeong KS, Song YO. Cholesteryl ester transfer protein activity and atherogenic parameters in rabbits supplemented with cholesterol and garlic powder. Life Sci 2003; 72(26): 2953-64.
[http://dx.doi.org/10.1016/S0024-3205(03)00234-0] [PMID: 12706483]
[101]
Liu L, Yeh YY. Water-soluble organosulfur compounds of garlic inhibit fatty acid and triglyceride syntheses in cultured rat hepatocytes. Lipids 2001; 36(4): 395-400.
[http://dx.doi.org/10.1007/s11745-001-0734-4] [PMID: 11383692]
[102]
Lin MC, Wang EJ, Lee C, et al. Garlic inhibits microsomal triglyceride transfer protein gene expression in human liver and intestinal cell lines and in rat intestine. J Nutr 2002; 132(6): 1165-8.
[http://dx.doi.org/10.1093/jn/132.6.1165] [PMID: 12042427]
[103]
Ramachandran V, Saravanan R, Senthilraja P. Antidiabetic and antihyperlipidemic activity of asiatic acid in diabetic rats, role of HMG CoA: in vivo and in silico approaches. Phytomedicine 2014; 21(3): 225-32.
[http://dx.doi.org/10.1016/j.phymed.2013.08.027] [PMID: 24075211]
[104]
Wu CH, Yang MY, Chan KC, Chung PJ, Ou TT, Wang CJ. Improvement in high-fat diet-induced obesity and body fat accumulation by a Nelumbo nucifera leaf flavonoid-rich extract in mice. J Agric Food Chem 2010; 58(11): 7075-81.
[http://dx.doi.org/10.1021/jf101415v] [PMID: 20481471]
[105]
Li Y, Jiang L, Jia Z, et al. A meta-analysis of red yeast rice: an effective and relatively safe alternative approach for dyslipidemia. PLoS One 2014; 9(6) e98611
[http://dx.doi.org/10.1371/journal.pone.0098611] [PMID: 24897342]
[106]
Ma J, Li Y, Ye Q, et al. Constituents of red yeast rice, a traditional Chinese food and medicine. J Agric Food Chem 2000; 48(11): 5220-5.
[http://dx.doi.org/10.1021/jf000338c] [PMID: 11087463]
[107]
Arunachalam C, Narmadhapriya D. Monascus fermented rice and its beneficial aspects: a new review. Asian J Pharm Clin Res 2011; 4: 29-31.
[108]
Chen CH, Yang JC, Uang YS, Lin CJ. Improved dissolution rate and oral bioavailability of lovastatin in red yeast rice products. Int J Pharm 2013; 444(1-2): 18-24.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.028] [PMID: 23352857]
[109]
Man RY, Lynn EG, Cheung F, Tsang PS. O K. Cholestin inhibits cholesterol synthesis and secretion in hepatic cells (HepG2). Mol Cell Biochem 2002; 233(1-2): 153-8.
[http://dx.doi.org/10.1023/A:1017487815091] [PMID: 12083370]
[110]
Cicero AF, Colletti A. Combinations of phytomedicines with different lipid lowering activity for dyslipidemia management: The available clinical data. Phytomedicine 2016; 23(11): 1113-8.
[http://dx.doi.org/10.1016/j.phymed.2015.10.011] [PMID: 26621556]
[111]
Yeo AR, Lee J, Tae IH, et al. Anti-hyperlipidemic Effect of Polyphenol Extract (Seapolynol™) and Dieckol Isolated from Ecklonia cava in in vivo and in vitro Models. Prev Nutr Food Sci 2012; 17(1): 1-7.
[http://dx.doi.org/10.3746/pnf.2012.17.1.001] [PMID: 24471056]
[112]
Yeh WT, Jeon YJ, Kang YH, Kang JS. Effect of Ecklonia cava on plasma and liver lipids, platelet aggregation and RBC-membrane stability in rats fed cholesterol diets. FASEB J 2019; 24: 921.
[113]
Choi HS, Jeon HJ, Lee OH, Lee BY. Dieckol, a major phlorotannin in Ecklonia cava, suppresses lipid accumulation in the adipocytes of high-fat diet-fed zebrafish and mice: Inhibition of early adipogenesis via cell-cycle arrest and AMPKα activation. Mol Nutr Food Res 2015; 59(8): 1458-71.
[http://dx.doi.org/10.1002/mnfr.201500021] [PMID: 25944759]
[114]
Bang CY, Byun JH, Choi HK, Choi JS, Choung SY. Protective Effects of Ecklonia stolonifera Extract on Ethanol-Induced Fatty Liver in Rats. Biomol Ther (Seoul) 2016; 24(6): 650-8.
[http://dx.doi.org/10.4062/biomolther.2016.176] [PMID: 27795452]
[115]
Sultan Alvi S, Ansari IA, Khan I, Iqbal J, Khan MS. Potential role of lycopene in targeting proprotein convertase subtilisin/kexin type-9 to combat hypercholesterolemia. Free Radic Biol Med 2017; 108: 394-403.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.012] [PMID: 28412198]
[116]
Mozos I, Stoian D, Caraba A, Malainer C, Horbańczuk JO, Atanasov AG. Lycopene and Vascular Health. Front Pharmacol 2018; 9: 521.
[http://dx.doi.org/10.3389/fphar.2018.00521] [PMID: 29875663]
[117]
McEneny J, Wade L, Young IS, et al. Lycopene intervention reduces inflammation and improves HDL functionality in moderately overweight middle-aged individuals. J Nutr Biochem 2013; 24(1): 163-8.
[http://dx.doi.org/10.1016/j.jnutbio.2012.03.015] [PMID: 22819555]
[118]
Xu KZ, Zhu C, Kim MS, Yamahara J, Li Y. Pomegranate flower ameliorates fatty liver in an animal model of type 2 diabetes and obesity. J Ethnopharmacol 2009; 123(2): 280-7.
[http://dx.doi.org/10.1016/j.jep.2009.03.035] [PMID: 19429373]
[119]
Lei F, Zhang XN, Wang W, et al. Evidence of anti-obesity effects of the pomegranate leaf extract in high-fat diet induced obese mice. Int J Obes 2007; 31(6): 1023-9.
[http://dx.doi.org/10.1038/sj.ijo.0803502] [PMID: 17299386]
[120]
Mirmiran P, Fazeli MR, Asghari G, Shafiee A, Azizi F. Effect of pomegranate seed oil on hyperlipidaemic subjects: a double-blind placebo-controlled clinical trial. Br J Nutr 2010; 104(3): 402-6.
[http://dx.doi.org/10.1017/S0007114510000504] [PMID: 20334708]
[121]
Sadeghipour A, Eidi M, Ilchizadeh Kavgani A, Ghahramani R, Shahabzadeh S, Anissian A. Lipid Lowering Effect of Punica granatum L. Peel in High Lipid Diet Fed Male Rats. Evid Based Complement Alternat Med 2014. 2014432650
[http://dx.doi.org/10.1155/2014/432650] [PMID: 25295067]
[122]
Xiao HB, Sun ZL, Zhang HB, Zhang DS. Berberine inhibits dyslipidemia in C57BL/6 mice with lipopolysaccharide induced inflammation. Pharmacol Rep 2012; 64(4): 889-95.
[http://dx.doi.org/10.1016/S1734-1140(12)70883-6] [PMID: 23087140]
[123]
Brusq JM, Ancellin N, Grondin P, et al. Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine. J Lipid Res. 2006; 47: 1281.. e8.
[124]
Cao Y, Bei W, Hu Y, et al. Hypocholesterolemia of Rhizoma Coptidis alkaloids is related to the bile acid by up-regulated CYP7A1 in hyperlipidemic rats. Phytomedicine 2012; 19(8-9): 686-92.
[http://dx.doi.org/10.1016/j.phymed.2012.03.011] [PMID: 22554715]
[125]
Han X, Wu CA, Wang W, Liu S, Wang LY. Mechanism research of stibene glucoside from Polygonum multiflorum. Zhonghua Zhongyiyao Xuekan 2008; 26(8): 1687-9.
[126]
Cheng Y, Tang K, Wu S, et al. Astragalus polysaccharides lowers plasma cholesterol through mechanisms distinct from statins. PLoS One 2011; 6(11): e27437.
[http://dx.doi.org/10.1371/journal.pone.0027437] [PMID: 22110652]
[127]
Ulbricht C, Basch E, Szapary P, et al. Natural Standard Research Collaboration. Guggul for hyperlipidemia: a review by the Natural Standard Research Collaboration. Complement Ther Med 2005; 13(4): 279-90.
[http://dx.doi.org/10.1016/j.ctim.2005.08.003] [PMID: 16338199]
[128]
Shin SK, Ha TY, McGregor RA, Choi MS. Long-term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism. Mol Nutr Food Res 2011; 55(12): 1829-40.
[http://dx.doi.org/10.1002/mnfr.201100440] [PMID: 22058071]
[129]
Dou XB, Wo XD, Fan CL, et al. Effect of curcumin on the expression of low density lipoprotein receptor in HepG2 cell line. Chung Kuo Yao Hsueh Tsa Chih 2007; 42(8): 572-5.
[130]
Zhu R, Ou Z, Ruan X, Gong J. Role of liver X receptors in cholesterol efflux and inflammatory signaling. (review) Mol Med Rep 2012; 5(4): 895-900.
[http://dx.doi.org/10.3892/mmr.2012.758] [PMID: 22267249]
[131]
Feng D, Ohlsson L, Duan RD. Curcumin inhibits cholesterol uptake in Caco-2 cells by down-regulation of NPC1L1 expression. Lipids Health Dis 2010; 9: 40.
[http://dx.doi.org/10.1186/1476-511X-9-40] [PMID: 20403165]
[132]
Ontawong A, Duangjai A, Muanprasat C, et al. Lipid-lowering effects of Coffea arabica pulp aqueous extract in Caco-2 cells and hypercholesterolemic rats. Phytomedicine 2019; 52: 187-97.
[http://dx.doi.org/10.1016/j.phymed.2018.06.021] [PMID: 30599898]
[133]
Aggarwal M, Aggarwal B, Rao J. Integrative Medicine for Cardiovascular Disease and Prevention. Med Clin North Am 2017; 101(5): 895-923.
[http://dx.doi.org/10.1016/j.mcna.2017.04.007] [PMID: 28802470]
[134]
Klingberg S, Andersson H, Mulligan A, et al. Food sources of plant sterols in the EPIC Norfolk population. Eur J Clin Nutr 2008; 62(6): 695-703.
[http://dx.doi.org/10.1038/sj.ejcn.1602765] [PMID: 17440516]
[135]
Valsta LM, Lemström A, Ovaskainen ML, et al. Estimation of plant sterol and cholesterol intake in Finland: quality of new values and their effect on intake. Br J Nutr 2004; 92(4): 671-8.
[http://dx.doi.org/10.1079/BJN20041234] [PMID: 15522137]
[136]
Nissinen M, Gylling H, Vuoristo M, Miettinen TA. Micellar distribution of cholesterol and phytosterols after duodenal plant stanol ester infusion. Am J Physiol Gastrointest Liver Physiol 2002; 282(6): G1009-15.
[http://dx.doi.org/10.1152/ajpgi.00446.2001] [PMID: 12016126]
[137]
Marangoni F, Poli A. Phytosterols and cardiovascular health. Pharmacol Res 2010; 61(3): 193-9.
[http://dx.doi.org/10.1016/j.phrs.2010.01.001] [PMID: 20067836]
[138]
De Smet E, Mensink RP, Plat J. Effects of plant sterols and stanols on intestinal cholesterol metabolism: suggested mechanisms from past to present. Mol Nutr Food Res 2012; 56(7): 1058-72.
[http://dx.doi.org/10.1002/mnfr.201100722] [PMID: 22623436]
[139]
Calandra S, Tarugi P, Speedy HE, Dean AF, Bertolini S, Shoulders CC. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: implications for classification and disease risk. J Lipid Res 2011; 52(11): 1885-926.
[http://dx.doi.org/10.1194/jlr.R017855] [PMID: 21862702]
[140]
Guo M, Liu Y, Gao ZY, Shi DZ. Chinese herbal medicine on dyslipidemia: progress and perspective. Evid Based Complement Alternat Med 2014. 2014163036
[http://dx.doi.org/10.1155/2014/163036] [PMID: 24688589]
[141]
Kooti W, Ghasemiboroon M, Asadi-Samani M, et al. The effects of hydro-alcoholic extract of celery on lipid profile of rats fed a high fat diet. Adv Environ Biol 2014; 6: 325-31.
[142]
Al-Asmari AK, Athar MT, Kadasah SG. An Updated Phytopharmacological Review on Medicinal Plant of Arab Region: Apium graveolens Linn. Pharmacogn Rev 2017; 11(21): 13-8.
[http://dx.doi.org/10.4103/phrev.phrev_35_16] [PMID: 28503047]
[143]
Zhou R, Wang L, Xu X, et al. Danthron activates AMP-activated protein kinase and regulates lipid and glucose metabolism in vitro. Acta Pharmacol Sin 2013; 34(8): 1061-9.
[http://dx.doi.org/10.1038/aps.2013.39] [PMID: 23770982]
[144]
Yang MY, Peng CH, Chan KC, Yang YS, Huang CN, Wang CJ. The hypolipidemic effect of Hibiscus sabdariffa polyphenols via inhibiting lipogenesis and promoting hepatic lipid clearance. J Agric Food Chem 2010; 58(2): 850-9.
[http://dx.doi.org/10.1021/jf903209w] [PMID: 20017484]
[145]
Kim DY, Yuan HD, Chung IK, Chung SH. Compound K, intestinal metabolite of ginsenoside, attenuates hepatic lipid accumulation via AMPK activation in human hepatoma cells. J Agric Food Chem 2009; 57(4): 1532-7.
[http://dx.doi.org/10.1021/jf802867b] [PMID: 19182950]
[146]
Fernández-Martínez E, Lira-Islas IG, Cariño-Cortés R, Soria-Jasso LE, Pérez-Hernández E, Pérez-Hernández N. Dietary chia seeds (Salvia hispanica) improve acute dyslipidemia and steatohepatitis in rats. J Food Biochem 2019; 43(9) e12986
[http://dx.doi.org/10.1111/jfbc.12986] [PMID: 31489674]
[147]
Hosaka T, Sasaga S, Yamasaka Y, et al. Treatment with buckwheat bran extract prevents the elevation of serum triglyceride levels and fatty liver in KK-A(y) mice. J Med Invest 2014; 61(3-4): 345-52.
[http://dx.doi.org/10.2152/jmi.61.345] [PMID: 25264053]
[148]
Kim H, Hiraishi A, Tsuchiya K, Sakamoto K. (-) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c. Cytotechnology 2010; 62(3): 245-55.
[http://dx.doi.org/10.1007/s10616-010-9285-x] [PMID: 20596890]
[149]
Keske MA, Ng HL, Premilovac D, et al. Vascular and metabolic actions of the green tea polyphenol epigallocatechin gallate. Curr Med Chem 2015; 22(1): 59-69.
[http://dx.doi.org/10.2174/0929867321666141012174553] [PMID: 25312214]
[150]
Koo SI, Noh SK. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect. J Nutr Biochem 2007; 18(3): 179-83.
[http://dx.doi.org/10.1016/j.jnutbio.2006.12.005] [PMID: 17296491]
[151]
Lee HJ, Le B, Lee DR, Choi BK, Yang SH. Cissus quadrangularis extract (CQR-300) inhibits lipid accumulation by downregulating adipogenesis and lipogenesis in 3T3-L1 cells. Toxicol Rep 2018; 5: 608-14.
[http://dx.doi.org/10.1016/j.toxrep.2018.02.008] [PMID: 29854631]
[152]
Chavez-Santoscoy RA, Gutierrez-Uribe JA, Granados O, et al. Flavonoids and saponins extracted from black bean (Phaseolus vulgaris L.) seed coats modulate lipid metabolism and biliary cholesterol secretion in C57BL/6 mice. Br J Nutr 2014; 112(6): 886-99.
[http://dx.doi.org/10.1017/S0007114514001536] [PMID: 25201301]
[153]
Wang Y, Jones PJ, Ausman LM, Lichtenstein AH. Soy protein reduces triglyceride levels and triglyceride fatty acid fractional synthesis rate in hypercholesterolemic subjects. Atherosclerosis 2004; 173(2): 269-75.
[http://dx.doi.org/10.1016/j.atherosclerosis.2003.12.015] [PMID: 15064101]
[154]
Rajasekaran S, Ravi K, Sivagnanam K, Subramanian S. Beneficial effects of aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes. Clin Exp Pharmacol Physiol 2006; 33(3): 232-7.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04351.x] [PMID: 16487267]
[155]
Sahebkar A, Beccuti G, Simental-Mendía LE, Nobili V, Bo S. Nigella sativa (black seed) effects on plasma lipid concentrations in humans: A systematic review and meta-analysis of randomized placebo-controlled trials. Pharmacol Res 2016; 106: 37-50.
[http://dx.doi.org/10.1016/j.phrs.2016.02.008] [PMID: 26875640]
[156]
Lee JJ, Lee HJ, Oh SW. Antiobesity Effects of Sansa (Crataegi fructus) on 3T3-L1 Cells and on High-Fat-High-Cholesterol Diet-Induced Obese Rats. J Med Food 2017; 20(1): 19-29.
[http://dx.doi.org/10.1089/jmf.2016.3791] [PMID: 28098517]
[157]
Pourmasoumi M, Hadi A, Rafie N, Najafgholizadeh A, Mohammadi H, Rouhani MH. The effect of ginger supplementation on lipid profile: A systematic review and meta-analysis of clinical trials. Phytomedicine 2018; 43: 28-36.
[http://dx.doi.org/10.1016/j.phymed.2018.03.043] [PMID: 29747751]
[158]
Wen SY, Chen YY, Lu JX, et al. Modulation of hepatic lipidome by rhodioloside in high-fat diet fed apolipoprotein E knockout mice. Phytomedicine 2020; 69 152690
[http://dx.doi.org/10.1016/j.phymed.2018.09.225] [PMID: 30389273]
[159]
Ren J, Fu L, Nile SH, Zhang J, Kai G. Salvia miltiorrhiza in Treating Cardiovascular Diseases: A Review on Its Pharmacological and Clinical Applications. Front Pharmacol 2019; 10: 753.
[http://dx.doi.org/10.3389/fphar.2019.00753] [PMID: 31338034]
[160]
Xiong C, Wang N, Wang SM, et al. The study on the general pharmacology of polysaccharides from semen plantaginis. Journal of Bethune Military Medical College 2008; 6(4): 196-8.
[161]
Razavi BM, Hosseinzadeh H. Saffron: a promising natural medicine in the treatment of metabolic syndrome. J Sci Food Agric 2017; 97(6): 1679-85.
[http://dx.doi.org/10.1002/jsfa.8134] [PMID: 27861946]
[162]
Cullinen K. Olive oil in the treatment of hypercholesterolemia. Med Health R I 2006; 89(3): 113.
[PMID: 16596937]
[163]
Wang GF, Shi CG, Sun MZ, et al. Tetramethylpyrazine attenuates atherosclerosis development and protects endothelial cells from ox-LDL. Cardiovasc Drugs Ther 2013; 27(3): 199-210.
[http://dx.doi.org/10.1007/s10557-013-6440-6] [PMID: 23371796]
[164]
Ma JQ, Ding J, Zhao H, Liu CM. Puerarin attenuates carbon tetrachloride-induced liver oxidative stress and hyperlipidaemia in mouse by JNK/c-Jun/CYP7A1 pathway. Basic Clin Pharmacol Toxicol 2014; 115(5): 389-95.
[http://dx.doi.org/10.1111/bcpt.12245] [PMID: 24698568]
[165]
Megalli S, Aktan F, Davies NM, Roufogalis BD. Phytopreventative anti-hyperlipidemic effects of gynostemma pentaphyllum in rats. J Pharm Pharm Sci 2005; 8(3): 507-15.
[PMID: 16401396]
[166]
Li XL, Tong L. The study progress of chemical components and pharmacological role of Scutellaria baicalensis stem leaf. Journal of Chengde Medical College 2006; 23(3): 284-6.
[167]
Du J, Sun LN, Xing WW, et al. Lipid-lowering effects of polydatin from Polygonum cuspidatum in hyperlipidemic hamsters. Phytomedicine 2009; 16(6-7): 652-8.
[http://dx.doi.org/10.1016/j.phymed.2008.10.001] [PMID: 19106037]
[168]
Emejulu A, Alisi C, Asiwe E, et al. Hypolipidemic effect of Irvingia gabonensis fruits juice on sodium fluoride induced dyslipidemia in rats. AJBR 2014; 8(8): 151-7.
[169]
Ramachandran S, Asokkumar K, Uma Maheswari M, et al. Investigation of Antidiabetic, Antihyperlipidemic, and In Vivo Antioxidant Properties of Sphaeranthus indicus Linn. in Type 1 Diabetic Rats: An Identification of Possible Biomarkers. Evid Based Complement Alternat Med 2011; 2011: 1-8.
[http://dx.doi.org/10.1155/2011/571721] [PMID: 20953435]
[170]
Gebauer SK, West SG, Kay CD, Alaupovic P, Bagshaw D, Kris-Etherton PM. Effects of pistachios on cardiovascular disease risk factors and potential mechanisms of action: a dose-response study. Am J Clin Nutr 2008; 88(3): 651-9.
[http://dx.doi.org/10.1093/ajcn/88.3.651] [PMID: 18779280]
[171]
Jung UJ, Baek NI, Chung HG, et al. Antilipogenic and hypolipidemic effects of ethanol extracts from two variants of Artemisia princeps Pampanini in obese diabetic mice. J Med Food 2009; 12(6): 1238-44.
[http://dx.doi.org/10.1089/jmf.2009.0039] [PMID: 20041776]
[172]
Valero-Muñoz M, Ballesteros S, Ruiz-Roso B, et al. Supplementation with an insoluble fiber obtained from carob pod (Ceratonia siliqua L.) rich in polyphenols prevents dyslipidemia in rabbits through SIRT1/PGC-1α pathway. Eur J Nutr 2019; 58(1): 357-66.
[http://dx.doi.org/10.1007/s00394-017-1599-4] [PMID: 29274033]
[173]
Sripradha R, Sridhar MG, Maithilikarpagaselvi N. Antihyperlipidemic and antioxidant activities of the ethanolic extract of Garcinia cambogia on high fat diet-fed rats. J Complement Integr Med 2016; 13(1): 9-16.
[http://dx.doi.org/10.1515/jcim-2015-0020] [PMID: 26595408]
[174]
Kusmayadi A, Bachtiar KR, Prayitno CH. The effects of mangosteen peel (Garcinia mangostana L.) and Turmeric (Curcuma domestica Val) flour dietary supplementation on the growth performance, lipid profile, and abdominal fat content in Cihateup ducks. Vet World 2019; 12(3): 402-8.
[http://dx.doi.org/10.14202/vetworld.2019.402-408] [PMID: 31089310]
[175]
Abidov MT, del Rio MJ, Ramazanov TZ, Klimenov AL, Dzhamirze Sh, Kalyuzhin OV. Effects of Aralia mandshurica and Engelhardtia chrysolepis extracts on some parameters of lipid metabolism in women with nondiabetic obesity. Bull Exp Biol Med 2006; 141(3): 343-6.
[http://dx.doi.org/10.1007/s10517-006-0167-3] [PMID: 17073156]
[176]
Lawes CM, Vander Hoorn S, Rodgers A. International Society of Hypertension. Global burden of blood-pressure-related disease, 2001. Lancet 2008; 371(9623): 1513-8.
[http://dx.doi.org/10.1016/S0140-6736(08)60655-8] [PMID: 18456100]
[177]
Hernández O, Torres K, Ávila E, Livingston J, Pinzón M. Consumos y Costos de Medicamentos: Herramienta para la Gestión de Suministro del Servicio Farmacéutico. Ciencia e Innovación en Salud 2015; 3(1): 45-52.
[178]
Kintscher U. The burden of hypertension. EuroIntervention 2013; 9(Suppl. R): R12-5.
[http://dx.doi.org/10.4244/EIJV9SRA3] [PMID: 23732143]
[179]
Sinha N, Dabla PK. Oxidative stress and antioxidants in hypertension-a current review. Curr Hypertens Rev 2015; 11(2): 132-42.
[http://dx.doi.org/10.2174/1573402111666150529130922] [PMID: 26022210]
[180]
Ried K, Travica N, Sali A. The Effect of Kyolic Aged Garlic Extract on Gut Microbiota, Inflammation, and Cardiovascular Markers in Hypertensives: The GarGIC Trial. Front Nutr 2018; 5: 122.
[http://dx.doi.org/10.3389/fnut.2018.00122] [PMID: 30619868]
[181]
Gao X, Xue Z, Ma Q, et al. Antioxidant and antihypertensive effects of garlic protein and its hydrolysates and the related mechanism. J Food Biochem 2020; 44(2) e13126
[http://dx.doi.org/10.1111/jfbc.13126] [PMID: 31877235]
[182]
Takashima M, Kanamori Y, Kodera Y, Morihara N, Tamura K. Aged garlic extract exerts endothelium-dependent vasorelaxant effect on rat aorta by increasing nitric oxide production. Phytomedicine 2017; 24: 56-61.
[http://dx.doi.org/10.1016/j.phymed.2016.11.016] [PMID: 28160862]
[183]
Sarna LK, Wu N, Hwang SY, Siow YL. O K. Berberine inhibits NADPH oxidase mediated superoxide anion production in macrophages. Can J Physiol Pharmacol 2010; 88(3): 369-78.
[http://dx.doi.org/10.1139/Y09-136] [PMID: 20393601]
[184]
Jalalyazdi M, Ramezani J, Izadi-Moud A, Madani-Sani F, Shahlaei S, Ghiasi SS. Effect of hibiscus sabdariffa on blood pressure in patients with stage 1 hypertension. J Adv Pharm Technol Res 2019; 10(3): 107-11.
[http://dx.doi.org/10.4103/japtr.JAPTR_402_18] [PMID: 31334091]
[185]
Bello I, Usman NS, Dewa A, et al. Blood pressure lowering effect and vascular activity of Phyllanthus niruri extract: The role of NO/cGMP signaling pathway and β-adrenoceptor mediated relaxation of isolated aortic rings. J Ethnopharmacol 2020. 250112461
[http://dx.doi.org/10.1016/j.jep.2019.112461] [PMID: 31830549]
[186]
Bogdanski P, Suliburska J, Szulinska M, Stepien M, Pupek-Musialik D, Jablecka A. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res 2012; 32(6): 421-7.
[http://dx.doi.org/10.1016/j.nutres.2012.05.007] [PMID: 22749178]
[187]
Faria AM, Papadimitriou A, Silva KC, Lopes de Faria JM, Lopes de Faria JB. Uncoupling endothelial nitric oxide synthase is ameliorated by green tea in experimental diabetes by re-establishing tetrahydrobiopterin levels. Diabetes 2012; 61(7): 1838-47.
[http://dx.doi.org/10.2337/db11-1241] [PMID: 22586583]
[188]
Shi W, Yuan R, Chen X, et al. Puerarin Reduces Blood Pressure in Spontaneously Hypertensive Rats by Targeting eNOS. Am J Chin Med 2019; 47(1): 19-38.
[http://dx.doi.org/10.1142/S0192415X19500022] [PMID: 30612457]
[189]
Brixius K, Willms S, Napp A, et al. Crataegus special extract WS 1442 induces an endothelium-dependent, NO-mediated vasorelaxation via eNOS-phosphorylation at serine 1177. Cardiovasc Drugs Ther 2006; 20(3): 177-84.
[http://dx.doi.org/10.1007/s10557-006-8723-7] [PMID: 16779533]
[190]
Topal G, Koç E, Karaca C, et al. Effects of Crataegus microphylla on vascular dysfunction in streptozotocin-induced diabetic rats. Phytother Res 2013; 27(3): 330-7.
[http://dx.doi.org/10.1002/ptr.4726] [PMID: 22585450]
[191]
Wang Y, Liu Y, Zhang X-Y, et al. Ginsenoside Rg1 regulates innate immune responses in macrophages through differentially modulating the NF-κB and PI3K/Akt/mTOR pathways. Int Immunopharmacol 2014; 23(1): 77-84.
[http://dx.doi.org/10.1016/j.intimp.2014.07.028] [PMID: 25179784]
[192]
Doh KC, Lim SW, Piao SG, et al. Ginseng treatment attenuates chronic cyclosporine nephropathy via reducing oxidative stress in an experimental mouse model. Am J Nephrol 2013; 37(5): 421-33.
[http://dx.doi.org/10.1159/000349921] [PMID: 23594788]
[193]
Aekthammarat D, Pannangpetch P, Tangsucharit P. Moringa oleifera leaf extract lowers high blood pressure by alleviating vascular dysfunction and decreasing oxidative stress in L-NAME hypertensive rats. Phytomedicine 2019; 54: 9-16.
[http://dx.doi.org/10.1016/j.phymed.2018.10.023] [PMID: 30668387]
[194]
Chan Sun M, Ruhomally ZB, Boojhawon R, Neergheen-Bhujun VS. Consumption of Moringa oleifera Lam Leaves Lowers Postprandial Blood Pressure. J Am Coll Nutr 2020; 39(1): 54-62.
[http://dx.doi.org/10.1080/07315724.2019.1608602] [PMID: 31063434]
[195]
Adefegha S, Oboh G, Iyoha A, et al. Comparative effects of horseradish (Moringa oleifera) leaves and seeds on blood pressure and crucial enzymes relevant to hypertension in rat. PharmaNutrition 2019. 9100152
[http://dx.doi.org/10.1016/j.phanu.2019.100152]
[196]
Wang L, Wu W. Angiotensin-converting enzyme inhibiting ability of ethanol extracts, steviol glycosides and protein hydrolysates from stevia leaves. Food Funct 2019; 10(12): 7967-72.
[http://dx.doi.org/10.1039/C9FO02127B] [PMID: 31750488]
[197]
Dos Santos RL, Dellacqua LO, Delgado NT, et al. Pomegranate peel extract attenuates oxidative stress by decreasing coronary angiotensin-converting enzyme (ACE) activity in hypertensive female rats. J Toxicol Environ Health A 2016; 79(21): 998-1007.
[http://dx.doi.org/10.1080/15287394.2016.1213690] [PMID: 27710705]
[198]
He YM, Yang HJ, Yang Q, et al. Yiqi Huaju formula, a Chinese herbal medicine, reduces arterial pressure in saltsensitive hypertension by inhibiting reninangiotensin system activation. Mol Med Rep 2015; 12(4): 5321-7.
[http://dx.doi.org/10.3892/mmr.2015.4095] [PMID: 26238503]
[199]
Khosravi-Boroujeni H, Nikbakht E, Natanelov E, Khalesi S. Can sesame consumption improve blood pressure? A systematic review and meta-analysis of controlled trials. J Sci Food Agric 2017; 97(10): 3087-94.
[http://dx.doi.org/10.1002/jsfa.8361] [PMID: 28387047]
[200]
Huang Y, Chen Y, Cai H, et al. Herbal medicine (Zhengan Xifeng Decoction) for essential hypertension protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2019; 98(6) e14292
[http://dx.doi.org/10.1097/MD.0000000000014292] [PMID: 30732144]
[201]
Chen C, Guo C, Gao J, et al. Vasorelaxant and antihypertensive effects of Tianshu Capsule on rats: An in vitro and in vivo approach. Biomed Pharmacother 2019; 111: 188-97.
[http://dx.doi.org/10.1016/j.biopha.2018.12.061] [PMID: 30583226]
[202]
Revuelta-Iniesta R, Al-Dujaili EA. Consumption of green coffee reduces blood pressure and body composition by influencing 11β-HSD1 enzyme activity in healthy individuals: a pilot crossover study using green and black coffee. BioMed Res Int 2014. 2014482704
[http://dx.doi.org/10.1155/2014/482704] [PMID: 25133164]
[203]
Huzaifah S, Siddiqi H, Gilani A. Pharmacological basis for the medicinal use of Artemisia dracunculus in hypertension. 2012. In press
[204]
Niazmand S, Fereidouni E, Mahmoudabady M, Mousavi SM. Endothelium-independent vasorelaxant effects of hydroalcoholic extract from Nigella sativa seed in rat aorta: the roles of Ca2+ and K+ channels. BioMed Res Int 2014. 2014247054
[http://dx.doi.org/10.1155/2014/247054] [PMID: 24900958]
[205]
Boskabady MH, Shafei MN, Shakiba A, Sefidi HS. Effect of aqueous-ethanol extract from Crocus sativus (saffron) on guinea-pig isolated heart. Phytother Res 2008; 22(3): 330-4.
[http://dx.doi.org/10.1002/ptr.2317] [PMID: 18058985]
[206]
Bharti S, Golechha M, Kumari S, Siddiqui KM, Arya DS. Akt/GSK-3β/eNOS phosphorylation arbitrates safranal-induced myocardial protection against ischemia-reperfusion injury in rats. Eur J Nutr 2012; 51(6): 719-27.
[http://dx.doi.org/10.1007/s00394-011-0251-y] [PMID: 21983875]
[207]
Payab M, Hasani-Ranjbar S, Shahbal N, et al. Effect of the herbal medicines in obesity and metabolic syndrome: A systematic review and meta-analysis of clinical trials. Phytother Res 2019.
[PMID: 31793087]
[208]
Hadi A, Askarpour M, Salamat S, Ghaedi E, Symonds ME, Miraghajani M. Effect of flaxseed supplementation on lipid profile: An updated systematic review and dose-response meta-analysis of sixty-two randomized controlled trials. Pharmacol Res 2020. 152104622
[http://dx.doi.org/10.1016/j.phrs.2019.104622] [PMID: 31899314]
[209]
Li Z, Song R, Nguyen C, et al. Pistachio nuts reduce triglycerides and body weight by comparison to refined carbohydrate snack in obese subjects on a 12-week weight loss program. J Am Coll Nutr 2010; 29(3): 198-203.
[http://dx.doi.org/10.1080/07315724.2010.10719834] [PMID: 20833992]
[210]
Choi M-S, Ryu R, Seo YR, et al. The beneficial effect of soybean (Glycine max (L.) Merr.) leaf extracts in adults with prediabetes: a randomized placebo controlled trial. Food Funct 2014; 5(7): 1621-30.
[http://dx.doi.org/10.1039/c4fo00199k] [PMID: 24873894]
[211]
Vafa M, Mohammadi F, Shidfar F, et al. Effects of cinnamon consumption on glycemic status, lipid profile and body composition in type 2 diabetic patients. Int J Prev Med 2012; 3(8): 531-6.
[PMID: 22973482]
[212]
Gupta Jain S, Puri S, Misra A, Gulati S, Mani K. Effect of oral cinnamon intervention on metabolic profile and body composition of Asian Indians with metabolic syndrome: a randomized double -blind control trial. Lipids Health Dis 2017; 16(1): 113.
[http://dx.doi.org/10.1186/s12944-017-0504-8] [PMID: 28606084]
[213]
Hosseini B, Saedisomeolia A, Wood LG, Yaseri M, Tavasoli S. Effects of pomegranate extract supplementation on inflammation in overweight and obese individuals: A randomized controlled clinical trial. Complement Ther Clin Pract 2016; 22: 44-50.
[http://dx.doi.org/10.1016/j.ctcp.2015.12.003] [PMID: 26850805]
[214]
Chu S-L, Fu H, Yang J-X, et al. A randomized double-blind placebo-controlled study of Pu’er tea extract on the regulation of metabolic syndrome. Chin J Integr Med 2011; 17(7): 492-8.
[http://dx.doi.org/10.1007/s11655-011-0781-4] [PMID: 21725873]
[215]
Asgary S, Soltani R, Zolghadr M, Keshvari M, Sarrafzadegan N. Evaluation of the effects of roselle (Hibiscus sabdariffa L.) on oxidative stress and serum levels of lipids, insulin and hs-CRP in adult patients with metabolic syndrome: a double-blind placebo-controlled clinical trial. J Complement Integr Med 2016; 13(2): 175-80.
[http://dx.doi.org/10.1515/jcim-2015-0030] [PMID: 26982618]
[216]
Ross SM. African mango (IGOB131): a proprietary seed extract of Irvingia gabonensis is found to be effective in reducing body weight and improving metabolic parameters in overweight humans. Holist Nurs Pract 2011; 25(4): 215-7.
[http://dx.doi.org/10.1097/HNP.0b013e318222735a] [PMID: 21697664]
[217]
Lee J, Chung M, Fu Z, Choi J, Lee H-J. The Effects of Irvingia gabonensis Seed Extract Supplementation on Anthropometric and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. J Am Coll Nutr 2020; 39(5): 388-96.
[http://dx.doi.org/10.1080/07315724.2019.1691956] [PMID: 31855111]
[218]
Tavares Toscano L, Tavares Toscano L, Leite Tavares R, da Oliveira Silva CS, Silva AS. Chia induces clinically discrete weight loss and improves lipid profile only in altered previous values. Nutr Hosp 2014; 31(3): 1176-82.
[PMID: 25726210]
[219]
Vasques CAR, Schneider R, Klein-Júnior LC, Falavigna A, Piazza I, Rossetto S. Hypolipemic effect of Garcinia cambogia in obese women. Phytother Res 2014; 28(6): 887-91.
[http://dx.doi.org/10.1002/ptr.5076] [PMID: 24133059]
[220]
Stern JS, Peerson J, Mishra AT, Mathukumalli VSR, Konda PR. Efficacy and tolerability of an herbal formulation for weight management. J Med Food 2013; 16(6): 529-37.
[http://dx.doi.org/10.1089/jmf.2012.0178] [PMID: 23767862]
[221]
Shin H-C, Kim SH, Park Y, Lee BH, Hwang HJ. Effects of 12-week oral supplementation of Ecklonia cava polyphenols on anthropometric and blood lipid parameters in overweight Korean individuals: a double-blind randomized clinical trial. Phytother Res 2012; 26(3): 363-8.
[PMID: 21717516]
[222]
Hongu N, Kitts DD, Zawistowski J, et al. Pigmented rice bran and plant sterol combination reduces serum lipids in overweight and obese adults. J Am Coll Nutr 2014; 33(3): 231-8.
[http://dx.doi.org/10.1080/07315724.2013.869772] [PMID: 24955613]
[223]
Ito Y, Nakashima Y, Matsuoka S. Rice bran extract containing acylated steryl glucoside fraction decreases elevated blood LDL cholesterol level in obese Japanese men. J Med Invest 2015; 62(1-2): 80-4.
[http://dx.doi.org/10.2152/jmi.62.80] [PMID: 25817289]
[224]
Latiff LA, Parhizkar S, Dollah MA, Hassan STS. Alternative supplement for enhancement of reproductive health and metabolic profile among perimenopausal women: a novel role of Nigella sativa. Iran J Basic Med Sci 2014; 17(12): 980-5.
[PMID: 25859301]
[225]
Kuriyan R, Kumar DR. R R, Kurpad AV. An evaluation of the hypolipidemic effect of an extract of Hibiscus Sabdariffa leaves in hyperlipidemic Indians: a double blind, placebo controlled trial. BMC Complement Altern Med 2010; 10: 27.
[http://dx.doi.org/10.1186/1472-6882-10-27] [PMID: 20553629]
[226]
Ngondi JL, Oben JE, Minka SR. The effect of Irvingia gabonensis seeds on body weight and blood lipids of obese subjects in Cameroon. Lipids Health Dis 2005; 4: 12.
[http://dx.doi.org/10.1186/1476-511X-4-12] [PMID: 15916709]
[227]
Hayamizu K, Ishii Y, Kaneko I, et al. Effects of garcinia cambogia (Hydroxycitric Acid) on visceral fat accumulation: a double-blind, randomized, placebo-controlled trial. Curr Ther Res Clin Exp 2003; 64(8): 551-67.
[http://dx.doi.org/10.1016/j.curtheres.2003.08.006] [PMID: 24944404]
[228]
Oben JE, Ngondi JL, Momo CN, Agbor GA, Sobgui CSM. The use of a Cissus quadrangularis/Irvingia gabonensis combination in the management of weight loss: a double-blind placebo-controlled study. Lipids Health Dis 2008; 7: 12.
[http://dx.doi.org/10.1186/1476-511X-7-12] [PMID: 18377661]
[229]
Birketvedt GS, Travis A, Langbakk B, Florholmen JR. Dietary supplementation with bean extract improves lipid profile in overweight and obese subjects. Nutrition 2002; 18(9): 729-33.
[http://dx.doi.org/10.1016/S0899-9007(02)00831-6] [PMID: 12297207]
[230]
Tsai ChH, Chiu W-C, Yang N-C, Ouyang C-M, Yen Y-H. A novel green tea meal replacement formula for weight loss among obese individuals: a randomized controlled clinical trial. Int J Food Sci Nutr 2009; 60(Suppl. 6): 151-9.
[http://dx.doi.org/10.1080/09637480903136667] [PMID: 19736596]
[231]
Saxena S, Katare C. Evaluation of flaxseed formulation as a potential therapeutic agent in mitigation of dyslipidemia. Biomed J 2014; 37(6): 386-90.
[http://dx.doi.org/10.4103/2319-4170.126447] [PMID: 25163498]
[232]
Baxheinrich A, Stratmann B, Lee-Barkey YH, Tschoepe D, Wahrburg U. Effects of a rapeseed oil-enriched hypoenergetic diet with a high content of α-linolenic acid on body weight and cardiovascular risk profile in patients with the metabolic syndrome. Br J Nutr 2012; 108(4): 682-91.
[http://dx.doi.org/10.1017/S0007114512002875] [PMID: 22894911]
[233]
Coffey CS, Steiner D, Baker BA, Allison DB. A randomized double-blind placebo-controlled clinical trial of a product containing ephedrine, caffeine, and other ingredients from herbal sources for treatment of overweight and obesity in the absence of lifestyle treatment. Int J Obes Relat Metab Disord 2004; 28(11): 1411-9.
[http://dx.doi.org/10.1038/sj.ijo.0802784] [PMID: 15356670]
[234]
Allen RW, Schwartzman E, Baker WL, Coleman CI, Phung OJ. Cinnamon use in type 2 diabetes: an updated systematic review and meta-analysis. Ann Fam Med 2013; 11(5): 452-9.
[http://dx.doi.org/10.1370/afm.1517] [PMID: 24019277]
[235]
Bui TN, Le TH, Nguyen H, et al. Pre-germinated brown rice reduced both blood glucose concentration and body weight in Vietnamese women with impaired glucose tolerance. J Nutr Sci Vitaminol (Tokyo) 2014; 60(3): 183-7.
[http://dx.doi.org/10.3177/jnsv.60.183] [PMID: 25078374]
[236]
Balsan G, Pellanda LC, Sausen G, et al. Effect of yerba mate and green tea on paraoxonase and leptin levels in patients affected by overweight or obesity and dyslipidemia: a randomized clinical trial. Nutr J 2019; 18(1): 5.
[http://dx.doi.org/10.1186/s12937-018-0426-y] [PMID: 30660196]
[237]
Arora E, Khajuria V, Tandon VR, et al. To evaluate efficacy and safety of Caralluma fimbriata in overweight and obese patients: A randomized, single blinded, placebo control trial. Perspect Clin Res 2015; 6(1): 39-44.
[http://dx.doi.org/10.4103/2229-3485.148812] [PMID: 25657901]
[238]
Chuengsamarn S, Rattanamongkolgul S, Phonrat B, Tungtrongchitr R, Jirawatnotai S. Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: a randomized controlled trial. J Nutr Biochem 2014; 25(2): 144-50.
[http://dx.doi.org/10.1016/j.jnutbio.2013.09.013] [PMID: 24445038]
[239]
Akazawa N, Choi Y, Miyaki A, et al. Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women. Nutr Res 2012; 32(10): 795-9.
[http://dx.doi.org/10.1016/j.nutres.2012.09.002] [PMID: 23146777]
[240]
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm 2007; 4(6): 807-18.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[241]
Funamoto M, Sunagawa Y, Katanasaka Y, et al. Highly absorptive curcumin reduces serum atherosclerotic low-density lipoprotein levels in patients with mild COPD. Int J Chron Obstruct Pulmon Dis 2016; 11: 2029-34.
[http://dx.doi.org/10.2147/COPD.S104490] [PMID: 27616885]
[242]
Gajendragadkar PR, Hubsch A, Mäki-Petäjä KM, Serg M, Wilkinson IB, Cheriyan J. Effects of oral lycopene supplementation on vascular function in patients with cardiovascular disease and healthy volunteers: a randomised controlled trial. PLoS One 2014; 9(6) e99070
[http://dx.doi.org/10.1371/journal.pone.0099070] [PMID: 24911964]
[243]
Affuso F, Ruvolo A, Micillo F, Saccà L, Fazio S. Effects of a nutraceutical combination (berberine, red yeast rice and policosanols) on lipid levels and endothelial function randomized, double-blind, placebo-controlled study. Nutr Metab Cardiovasc Dis 2010; 20(9): 656-61.
[http://dx.doi.org/10.1016/j.numecd.2009.05.017] [PMID: 19699071]
[244]
Choi E-Y, Lee H, Woo JS, et al. Effect of onion peel extract on endothelial function and endothelial progenitor cells in overweight and obese individuals. Nutrition 2015; 31(9): 1131-5.
[http://dx.doi.org/10.1016/j.nut.2015.04.020] [PMID: 26233871]
[245]
Zou Z-Y, Xu X-R, Lin X-M, et al. Effects of lutein and lycopene on carotid intima-media thickness in Chinese subjects with subclinical atherosclerosis: a randomised, double-blind, placebo-controlled trial. Br J Nutr 2014; 111(3): 474-80.
[http://dx.doi.org/10.1017/S0007114513002730] [PMID: 24047757]
[246]
Kim OY, Yoe HY, Kim HJ, et al. Independent inverse relationship between serum lycopene concentration and arterial stiffness. Atherosclerosis 2010; 208(2): 581-6.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.08.009] [PMID: 19767001]
[247]
Thies F, Masson LF, Rudd A, et al. Effect of a tomato-rich diet on markers of cardiovascular disease risk in moderately overweight, disease-free, middle-aged adults: a randomized controlled trial. Am J Clin Nutr 2012; 95(5): 1013-22.
[http://dx.doi.org/10.3945/ajcn.111.026286] [PMID: 22492370]
[248]
Kim SY, Seo SK, Choi YM, et al. Effects of red ginseng supplementation on menopausal symptoms and cardiovascular risk factors in postmenopausal women: a double-blind randomized controlled trial. Menopause 2012; 19(4): 461-6.
[http://dx.doi.org/10.1097/gme.0b013e3182325e4b] [PMID: 22027944]
[249]
Liu LT, Wu M, Wang HX. Zhongguo Zhong Xi Yi Jie He Za Zhi 2011; 31(9): 1196-200. Clinical study on the treatment of abnormal blood lipids complicated with carotid atherosclerosis with lipid-reducing red rice minute powder: a randomized controlled trial
[PMID: 22013794]
[250]
Azimi P, Ghiasvand R, Feizi A, et al. Effect of cinnamon, cardamom, saffron and ginger consumption on blood pressure and a marker of endothelial function in patients with type 2 diabetes mellitus: A randomized controlled clinical trial. Blood Press 2016; 25(3): 133-40.
[http://dx.doi.org/10.3109/08037051.2015.1111020] [PMID: 26758574]
[251]
Gong B, Chen X, Lin R, et al. Safety and Efficacy of the C-117 Formula for Vulnerable Carotid Artery Plaques (Spchim): A Randomized Double-Blind Controlled Pilot Study. Evid Based Complement Alternat Med 2019. 20199746492
[http://dx.doi.org/10.1155/2019/9746492] [PMID: 31391862]
[252]
Du WT, Ming G, Liu P, Tang JY, Deng B, Tang N. Treatment of Chronic Heart Failure with Carotid Plaque Patients by Yiqi Huoxue Tongyang Xezhuo Recipe. Zhongguo Zhong Xi Yi Jie He Za Zhi 2015; 35(11): 1322-5.
[PMID: 26775478]
[253]
Kwok T, Leung PC, Lam C, et al. A randomized placebo controlled trial of an innovative herbal formula in the prevention of atherosclerosis in postmenopausal women with borderline hypercholesterolemia. Complement Ther Med 2014; 22(3): 473-80.
[http://dx.doi.org/10.1016/j.ctim.2014.03.010] [PMID: 24906587]
[254]
Al Disi SS, Anwar MA, Eid AH. Anti-hypertensive Herbs and their Mechanisms of Action: Part I. Front Pharmacol 2016; 6: 323.
[http://dx.doi.org/10.3389/fphar.2015.00323] [PMID: 26834637]
[255]
Anwar MA, Al Disi SS, Eid AH. Anti-Hypertensive Herbs and Their Mechanisms of Action: Part II. Front Pharmacol 2016; 7: 50.
[http://dx.doi.org/10.3389/fphar.2016.00050] [PMID: 27014064]
[256]
Xiong XJ, Wang PQ, Li SJ, Li XK, Zhang YQ, Wang J. Garlic for hypertension: A systematic review and meta-analysis of randomized controlled trials. Phytomedicine 2015; 22(3): 352-61.
[http://dx.doi.org/10.1016/j.phymed.2014.12.013] [PMID: 25837272]
[257]
Ried K, Frank OR, Stocks NP. Aged garlic extract reduces blood pressure in hypertensives: a dose-response trial. Eur J Clin Nutr 2013; 67(1): 64-70.
[http://dx.doi.org/10.1038/ejcn.2012.178] [PMID: 23169470]
[258]
Ried K, Frank OR, Stocks NP. Aged garlic extract lowers blood pressure in patients with treated but uncontrolled hypertension: a randomised controlled trial. Maturitas 2010; 67(2): 144-50.
[http://dx.doi.org/10.1016/j.maturitas.2010.06.001] [PMID: 20594781]
[259]
Ashraf R, Khan RA, Ashraf I, Qureshi AA. Effects of Allium sativum (garlic) on systolic and diastolic blood pressure in patients with essential hypertension. Pak J Pharm Sci 2013; 26(5): 859-63.
[PMID: 24035939]
[260]
Nakasone Y, Nakamura Y, Yamamoto T, Yamaguchi H. Effect of a traditional Japanese garlic preparation on blood pressure in prehypertensive and mildly hypertensive adults. Exp Ther Med 2013; 5(2): 399-405.
[http://dx.doi.org/10.3892/etm.2012.819] [PMID: 23404465]
[261]
Greyling A, Ras RT, Zock PL, et al. The effect of black tea on blood pressure: a systematic review with meta-analysis of randomized controlled trials. PLoS One 2014; 9(7) e103247
[http://dx.doi.org/10.1371/journal.pone.0103247] [PMID: 25079225]
[262]
Hartley L, Flowers N, Holmes J, et al. Green and black tea for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 2013; (6): CD009934
[http://dx.doi.org/10.1002/14651858.CD009934.pub2] [PMID: 23780706]
[263]
Yarmolinsky J, Gon G, Edwards P. Effect of tea on blood pressure for secondary prevention of cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2015; 73(4): 236-46.
[http://dx.doi.org/10.1093/nutrit/nuv001] [PMID: 26024546]
[264]
Liu G, Mi X-N, Zheng X-X, Xu Y-L, Lu J, Huang X-H. Effects of tea intake on blood pressure: a meta-analysis of randomised controlled trials. Br J Nutr 2014; 112(7): 1043-54.
[http://dx.doi.org/10.1017/S0007114514001731] [PMID: 25137341]
[265]
Khalesi S, Sun J, Buys N, Jamshidi A, Nikbakht-Nasrabadi E, Khosravi-Boroujeni H. Green tea catechins and blood pressure: a systematic review and meta-analysis of randomised controlled trials. Eur J Nutr 2014; 53(6): 1299-311.
[http://dx.doi.org/10.1007/s00394-014-0720-1] [PMID: 24861099]
[266]
Onakpoya I, Spencer E, Heneghan C, Thompson M. The effect of green tea on blood pressure and lipid profile: a systematic review and meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis 2014; 24(8): 823-36.
[http://dx.doi.org/10.1016/j.numecd.2014.01.016] [PMID: 24675010]
[267]
Peng X, Zhou R, Wang B, et al. Effect of green tea consumption on blood pressure: a meta-analysis of 13 randomized controlled trials. Sci Rep 2014; 4: 6251.
[http://dx.doi.org/10.1038/srep06251] [PMID: 25176280]
[268]
Herrera-Arellano A, Flores-Romero S, Chávez-Soto MA, Tortoriello J. Effectiveness and tolerability of a standardized extract from Hibiscus sabdariffa in patients with mild to moderate hypertension: a controlled and randomized clinical trial. Phytomedicine 2004; 11(5): 375-82.
[http://dx.doi.org/10.1016/j.phymed.2004.04.001] [PMID: 15330492]
[269]
Herrera-Arellano A, Miranda-Sánchez J, Avila-Castro P, et al. Clinical effects produced by a standardized herbal medicinal product of Hibiscus sabdariffa on patients with hypertension. A randomized, double-blind, lisinopril-controlled clinical trial. Planta Med 2007; 73(1): 6-12.
[http://dx.doi.org/10.1055/s-2006-957065] [PMID: 17315307]
[270]
McKay DL, Chen C-YO, Saltzman E, Blumberg JB. Hibiscus sabdariffa L. tea (tisane) lowers blood pressure in prehypertensive and mildly hypertensive adults. J Nutr 2010; 140(2): 298-303.
[http://dx.doi.org/10.3945/jn.109.115097] [PMID: 20018807]
[271]
Kafeshani M, Entezari MH, Karimian J, et al. A comparative study of the effect of green tea and sour tea on blood pressure and lipid profile in healthy adult men. ARYA Atheroscler 2017; 13(3): 109-16.
[PMID: 29147120]
[272]
Mozaffari-Khosravi H, Ahadi Z, Barzegar K. The effect of green tea and sour tea on blood pressure of patients with type 2 diabetes: a randomized clinical trial. J Diet Suppl 2013; 10(2): 105-15.
[http://dx.doi.org/10.3109/19390211.2013.790333] [PMID: 23725524]
[273]
Mozaffari-Khosravi H, Jalali-Khanabadi B-A, Afkhami-Ardekani M, Fatehi F, Noori-Shadkam M. The effects of sour tea (Hibiscus sabdariffa) on hypertension in patients with type II diabetes. J Hum Hypertens 2009; 23(1): 48-54.
[http://dx.doi.org/10.1038/jhh.2008.100] [PMID: 18685605]
[274]
Asgary S, Naderi GH, Sadeghi M, Kelishadi R, Amiri M. Antihypertensive effect of Iranian Crataegus curvisepala Lind.: a randomized, double-blind study. Drugs Exp Clin Res 2004; 30(5-6): 221-5.
[PMID: 15700749]
[275]
Modaghegh M-H, Shahabian M, Esmaeili H-A, Rajbai O, Hosseinzadeh H. Safety evaluation of saffron (Crocus sativus) tablets in healthy volunteers. Phytomedicine 2008; 15(12): 1032-7.
[http://dx.doi.org/10.1016/j.phymed.2008.06.003] [PMID: 18693099]
[276]
Dehkordi FR, Kamkhah AF. Antihypertensive effect of Nigella sativa seed extract in patients with mild hypertension. Fundam Clin Pharmacol 2008; 22(4): 447-52.
[http://dx.doi.org/10.1111/j.1472-8206.2008.00607.x] [PMID: 18705755]
[277]
Fallah Huseini H, Amini M, Mohtashami R, et al. Blood pressure lowering effect of Nigella sativa L. seed oil in healthy volunteers: a randomized, double-blind, placebo-controlled clinical trial. Phytother Res 2013; 27(12): 1849-53.
[http://dx.doi.org/10.1002/ptr.4944] [PMID: 23436437]
[278]
Sahebkar A, Soranna D, Liu X, et al. A systematic review and meta-analysis of randomized controlled trials investigating the effects of supplementation with Nigella sativa (black seed) on blood pressure. J Hypertens 2016; 34(11): 2127-35.
[http://dx.doi.org/10.1097/HJH.0000000000001049] [PMID: 27512971]
[279]
Lan J, Zhao Y, Dong F, et al. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. J Ethnopharmacol 2015; 161: 69-81.
[http://dx.doi.org/10.1016/j.jep.2014.09.049] [PMID: 25498346]
[280]
Lee HW, Lim H-J, Jun JH, Choi J, Lee MS. Ginseng for Treating Hypertension: A Systematic Review and Meta-Analysis of Double Blind, Randomized, Placebo-Controlled Trials. Curr Vasc Pharmacol 2017; 15(6): 549-56.
[http://dx.doi.org/10.2174/1570161115666170713092701] [PMID: 28707603]
[281]
Rhee M-Y, Cho B, Kim K-I, et al. Blood pressure lowering effect of Korea ginseng derived ginseol K-g1. Am J Chin Med 2014; 42(3): 605-18.
[http://dx.doi.org/10.1142/S0192415X14500396] [PMID: 24871654]
[282]
Mucalo I, Jovanovski E, Rahelić D, Božikov V, Romić Z, Vuksan V. Effect of American ginseng (Panax quinquefolius L.) on arterial stiffness in subjects with type-2 diabetes and concomitant hypertension. J Ethnopharmacol 2013; 150(1): 148-53.
[http://dx.doi.org/10.1016/j.jep.2013.08.015] [PMID: 23973636]
[283]
Jovanovski E, Bateman EA, Bhardwaj J, et al. Effect of Rg3-enriched Korean red ginseng (Panax ginseng) on arterial stiffness and blood pressure in healthy individuals: a randomized controlled trial. J Am Soc Hypertens 2014; 8(8): 537-41.
[http://dx.doi.org/10.1016/j.jash.2014.04.004] [PMID: 24997863]
[284]
Méndez-Del Villar M, Puebla-Pérez AM, Sánchez-Peña MJ, González-Ortiz LJ, Martínez-Abundis E, González-Ortiz M. Effect of Artemisia dracunculus Administration on Glycemic Control, Insulin Sensitivity, and Insulin Secretion in Patients with Impaired Glucose Tolerance. J Med Food 2016; 19(5): 481-5.
[http://dx.doi.org/10.1089/jmf.2016.0005] [PMID: 27097076]
[285]
Roshan H, Nikpayam O, Sedaghat M, Sohrab G. Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: a randomised clinical trial. Br J Nutr 2018; 119(3): 250-8.
[http://dx.doi.org/10.1017/S0007114517003439] [PMID: 29307310]
[286]
Chen Y, Fu DY, Fu XD, He YM, Wang WJ. Zhongguo Zhong Xi Yi Jie He Za Zhi 2014; 34(6): 680-7. Effect of yiqi huaju recipe combined with routine therapy in treating hypertension patients with metabolic syndrome: a clinical study
[PMID: 25046949]
[287]
Lou L-X, Wu A-M, Zhang D-M, et al. Yiqi Huoxue Recipe Improves Heart Function through Inhibiting Apoptosis Related to Endoplasmic Reticulum Stress in Myocardial Infarction Model of Rats. Evid Based Complement Alternat Med 2014. 2014745919
[http://dx.doi.org/10.1155/2014/745919] [PMID: 24864159]
[288]
Xiong X, Wang P, Li S. Meta-analysis of the effectiveness of traditional Chinese herbal formula Zhen Wu Decoction for the treatment of hypertension. BMJ Open 2015; 5(12) e007291
[http://dx.doi.org/10.1136/bmjopen-2014-007291] [PMID: 26656978]
[289]
Tang Q, Wang Y, Li K. Zhenwu decoction for chronic heart failure: Protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2018; 97(29) e11559
[http://dx.doi.org/10.1097/MD.0000000000011559] [PMID: 30024553]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 35
Year: 2020
Published on: 15 October, 2020
Page: [4410 - 4429]
Pages: 20
DOI: 10.2174/1381612826666200420160422
Price: $65

Article Metrics

PDF: 22
HTML: 3
EPUB: 1
PRC: 1