MicroRNA: Promising Roles in Cancer Therapy

Author(s): Atieh Hashemi*, Gilar Gorji-bahri

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 12 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


MicroRNAs (miRNA) are small non-coding RNAs that act as one of the main regulators of gene expression. They are involved in maintaining a proper balance of diverse processes, including differentiation, proliferation, and cell death in normal cells. Cancer biology can also be affected by these molecules by modulating the expression of oncogenes or tumor suppressor genes. Thus, miRNA based anticancer therapy is currently being developed either alone or in combination with chemotherapy agents used in cancer management, aiming at promoting tumor regression and increasing cure rate. Access to large quantities of RNA agents can facilitate RNA research and development. In addition to currently used in vitro methods, fermentation-based approaches have recently been developed, which can cost‐effectively produce biological RNA agents with proper folding needed for the development of RNA-based therapeutics. Nevertheless, a major challenge in translating preclinical studies to clinical for miRNA-based cancer therapy is the efficient delivery of these agents to target cells. Targeting miRNAs/anti-miRNAs using antibodies and/or peptides can minimize cellular and systemic toxicity. Here, we provide a brief review of miRNA in the following aspects: biogenesis and mechanism of action of miRNAs, the role of miRNAs in cancer as tumor suppressors or oncogenes, the potential of using miRNAs as novel and promising therapeutics, miRNA-mediated chemo-sensitization, and currently utilized methods for the in vitro and in vivo production of RNA agents. Finally, an update on the viral and non-viral delivery systems is addressed.

Keywords: MicroRNAs, biogenesis, cancer, oncomirs, chemo-sensitization, bioengineered non-coding RNA agent, delivery systems.

Takahashi, R.U.; Prieto-Vila, M.; Kohama, I.; Ochiya, T. Development of miRNA-based therapeutic approaches for cancer patients. Cancer Sci., 2019, 110(4), 1140-1147.
[http://dx.doi.org/10.1111/cas.13965 ] [PMID: 30729639]
Zhao, S.; Chen, H.; Ding, B.; Li, J.; Lv, F.; Han, K.; Zhou, D.; Yu, B.; Yu, Y.; Zhang, W. Construction of a transcription factor-long non-coding RNA-microRNA network for the identification of key regulators in lung adenocarcinoma and lung squamous cell carcinoma. Mol. Med. Rep., 2019, 19(2), 1101-1109.
[PMID: 30569133]
Shah, M.Y.; Ferrajoli, A.; Sood, A.K.; Lopez-Berestein, G.; Calin, G.A. microRNA therapeutics in cancer-an emerging concept. EBioMedicine, 2016, 12, 34-42.
[http://dx.doi.org/10.1016/j.ebiom.2016.09.017 ] [PMID: 27720213]
Trang, P.; Medina, P.P.; Wiggins, J.F.; Ruffino, L.; Kelnar, K.; Omotola, M.; Homer, R.; Brown, D.; Bader, A.G.; Weidhaas, J.B.; Slack, F.J. Regression of murine lung tumors by the let-7 microRNA. Oncogene, 2010, 29(11), 1580-1587.
[http://dx.doi.org/10.1038/onc.2009.445 ] [PMID: 19966857]
Ho, P.Y.; Yu, A.M. Bioengineering of noncoding RNAs for research agents and therapeutics. Wiley Interdiscip. Rev. RNA, 2016, 7(2), 186-197.
[http://dx.doi.org/10.1002/wrna.1324 ] [PMID: 26763749]
Petrek, H.; Batra, N.; Ho, P.Y.; Tu, M-J.; Yu, A-M. Bioengineering of a single long noncoding RNA molecule that carries multiple small RNAs. Appl. Microbiol. Biotechnol., 2019, 103(15), 6107-6117.
[http://dx.doi.org/10.1007/s00253-019-09934-5 ] [PMID: 31187211]
Labatut, A.E.; Mattheolabakis, G. Non-viral based miR delivery and recent developments. Eur. J. Pharm. Biopharm., 2018, 128, 82-90.
[http://dx.doi.org/10.1016/j.ejpb.2018.04.018 ] [PMID: 29679644]
Jin, J.; Martin, M.; Hartley, A-V.; Lu, T. PRMTs and miRNAs: functional cooperation in cancer and beyond. Cell Cycle, 2019, 18(15), 1676-1686.
[http://dx.doi.org/10.1080/15384101.2019.1629791] [PMID: 31234694]
Felekkis, K.; Touvana, E.; Stefanou, Ch.; Deltas, C. microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia, 2010, 14(4), 236-240.
[PMID: 21311629]
Gorji-Bahri, G.; Hashemi, A.; Moghimi, H.R. ExomiRs: A novel strategy in cancer diagnosis and therapy. Curr. Gene Ther., 2018, 18(6), 336-350.
[http://dx.doi.org/10.2174/1566523218666181017163204] [PMID: 30332956]
Grimson, A.; Farh, K.K-H.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell, 2007, 27(1), 91-105.
[http://dx.doi.org/10.1016/j.molcel.2007.06.017 ] [PMID: 17612493]
Broughton, J.P.; Lovci, M.T.; Huang, J.L.; Yeo, G.W.; Pasquinelli, A.E. Pairing beyond the seed supports microRNA targeting specificity. Mol. Cell, 2016, 64(2), 320-333.
[http://dx.doi.org/10.1016/j.molcel.2016.09.004 ] [PMID: 27720646]
Moore, M.J.; Scheel, T.K.; Luna, J.M.; Park, C.Y.; Fak, J.J.; Nishiuchi, E.; Rice, C.M.; Darnell, R.B. miRNA-target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity. Nat. Commun., 2015, 6(1), 8864.
[http://dx.doi.org/10.1038/ncomms9864 ] [PMID: 26602609]
Hwang, H-W.; Wentzel, E.A.; Mendell, J.T. A hexanucleotide element directs microRNA nuclear import. Science, 2007, 315(5808), 97-100.
[http://dx.doi.org/10.1126/science.1136235 ] [PMID: 17204650]
Chaluvally-Raghavan, P.; Jeong, K.J.; Pradeep, S.; Silva, A.M.; Yu, S.; Liu, W.; Moss, T.; Rodriguez-Aguayo, C.; Zhang, D.; Ram, P.; Liu, J.; Lu, Y.; Lopez-Berestein, G.; Calin, G.A.; Sood, A.K.; Mills, G.B. Direct upregulation of STAT3 by microRNA-551b-3p deregulates growth and metastasis of ovarian cancer. Cell Rep., 2016, 15(7), 1493-1504.
[http://dx.doi.org/10.1016/j.celrep.2016.04.034 ] [PMID: 27160903]
Zhang, Y.; Liu, D.; Chen, X.; Li, J.; Li, L.; Bian, Z.; Sun, F.; Lu, J.; Yin, Y.; Cai, X.; Sun, Q.; Wang, K.; Ba, Y.; Wang, Q.; Wang, D.; Yang, J.; Liu, P.; Xu, T.; Yan, Q.; Zhang, J.; Zen, K.; Zhang, C.Y. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol. Cell, 2010, 39(1), 133-144.
[http://dx.doi.org/10.1016/j.molcel.2010.06.010 ] [PMID: 20603081]
Das, S.; Ferlito, M.; Kent, O.A.; Fox-Talbot, K.; Wang, R.; Liu, D.; Raghavachari, N.; Yang, Y.; Wheelan, S.J.; Murphy, E.; Steenbergen, C. Nuclear miRNA regulates the mitochondrial genome in the heart. Circ. Res., 2012, 110(12), 1596-1603.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.267732 ] [PMID: 22518031]
He, W.; Xu, J.; Huang, Z.; Zhang, J.; Dong, L. MiRNAs in cancer therapy: Focusing on their bi-directional roles. ExRNA, 2019, 1(1), 7.
Ganju, A.; Khan, S.; Hafeez, B.B.; Behrman, S.W.; Yallapu, M.M.; Chauhan, S.C.; Jaggi, M. miRNA nanotherapeutics for cancer. Drug Discov. Today, 2017, 22(2), 424-432.
[http://dx.doi.org/10.1016/j.drudis.2016.10.014 ] [PMID: 27815139]
Zhou, X.; Ren, Y.; Moore, L.; Mei, M.; You, Y.; Xu, P.; Wang, B.; Wang, G.; Jia, Z.; Pu, P.; Zhang, W.; Kang, C. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab. Invest., 2010, 90(2), 144-155.
[http://dx.doi.org/10.1038/labinvest.2009.126 ] [PMID: 20048743]
Kunz, M.; Göttlich, C.; Walles, T.; Nietzer, S.; Dandekar, G.; Dandekar, T. MicroRNA-21 versus microRNA-34: Lung cancer promoting and inhibitory microRNAs analysed in silico and in vitro and their clinical impact. Tumour Biol., 2017, 39(7), 1010428317706430.
[http://dx.doi.org/10.1177/1010428317706430 ] [PMID: 28705115]
Vannini, I.; Fanini, F.; Fabbri, M. Emerging roles of microRNAs in cancer. Curr. Opin. Genet. Dev., 2018, 48, 128-133.
[http://dx.doi.org/10.1016/j.gde.2018.01.001 ] [PMID: 29429825]
Cui, J. Noncoding RNAs as a Cause of Cancer: Evidence From Genome-Wide Association Studies and Reverse Genetics.Cancer and Noncoding RNAs; Elsevier, 2018, pp. 479-496.
Lee, Y.S.; Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev., 2007, 21(9), 1025-1030.
[http://dx.doi.org/10.1101/gad.1540407 ] [PMID: 17437991]
Mohr, A.M.; Mott, J.L. Overview of microRNA biology. Semin. Liver Dis., 2015, 35(1), 3-11.
[http://dx.doi.org/10.1055/s-0034-1397344 ] [PMID: 25632930]
Banzhaf-Strathmann, J.; Edbauer, D. Good guy or bad guy: The opposing roles of microRNA 125b in cancer. Cell Commun. Signal., 2014, 12, 30.
[http://dx.doi.org/10.1186/1478-811X-12-30 ] [PMID: 24774301]
Nishida, N.; Yokobori, T.; Mimori, K.; Sudo, T.; Tanaka, F.; Shibata, K.; Ishii, H.; Doki, Y.; Kuwano, H.; Mori, M. MicroRNA miR-125b is a prognostic marker in human colorectal cancer. Int. J. Oncol., 2011, 38(5), 1437-1443.
[PMID: 21399871]
Shang, C.; Lu, Y.M.; Meng, L.R. MicroRNA-125b down-regulation mediates endometrial cancer invasion by targeting ERBB2. Med. Sci. Monit., 2012, 18(4), BR149-BR155.
[http://dx.doi.org/10.12659/MSM.882617 ] [PMID: 22460089]
Bracken, C.P.; Scott, H.S.; Goodall, G.J. A network-biology perspective of microRNA function and dysfunction in cancer. Nat. Rev. Genet., 2016, 17(12), 719-732.
[http://dx.doi.org/10.1038/nrg.2016.134 ] [PMID: 27795564]
Ma, Y.; Zhang, P.; Wang, F.; Zhang, H.; Yang, Y.; Shi, C.; Xia, Y.; Peng, J.; Liu, W.; Yang, Z.; Qin, H. Elevated oncofoetal miR-17-5p expression regulates colorectal cancer progression by repressing its target gene P130. Nat. Commun., 2012, 3, 1291.
[http://dx.doi.org/10.1038/ncomms2276 ] [PMID: 23250421]
Shan, S.W.; Fang, L.; Shatseva, T.; Rutnam, Z.J.; Yang, X.; Du, W.; Lu, W-Y.; Xuan, J.W.; Deng, Z.; Yang, B.B. Mature miR-17-5p and passenger miR-17-3p induce hepatocellular carcinoma by targeting PTEN, GalNT7 and vimentin in different signal pathways. J. Cell Sci., 2013, 126(Pt 6), 1517-1530.
[http://dx.doi.org/10.1242/jcs.122895 ] [PMID: 23418359]
Wei, Q.; Li, Y.X.; Liu, M.; Li, X.; Tang, H. MiR-17-5p targets TP53INP1 and regulates cell proliferation and apoptosis of cervical cancer cells. IUBMB Life, 2012, 64(8), 697-704.
[http://dx.doi.org/10.1002/iub.1051 ] [PMID: 22730212]
Bracken, C.P.; Li, X.; Wright, J.A.; Lawrence, D.M.; Pillman, K.A.; Salmanidis, M.; Anderson, M.A.; Dredge, B.K.; Gregory, P.A.; Tsykin, A.; Neilsen, C.; Thomson, D.W.; Bert, A.G.; Leerberg, J.M.; Yap, A.S.; Jensen, K.B.; Khew-Goodall, Y.; Goodall, G.J. Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion. EMBO J., 2014, 33(18), 2040-2056.
[http://dx.doi.org/10.15252/embj.201488641 ] [PMID: 25069772]
Miroshnichenko, S.; Patutina, O. Enhanced inhibition of tumorigenesis using combinations of miRNA-targeted therapeutics. Front. Pharmacol., 2019, 10, 488.
[http://dx.doi.org/10.3389/fphar.2019.00488 ] [PMID: 31156429]
Zhang, T.; Hu, Y.; Ju, J.; Hou, L.; Li, Z.; Xiao, D.; Li, Y.; Yao, J.; Wang, C.; Zhang, Y.; Zhang, L. Downregulation of miR-522 suppresses proliferation and metastasis of non-small cell lung cancer cells by directly targeting DENN/MADD domain containing 2D. Sci. Rep., 2016, 6(6), 19346.
[http://dx.doi.org/10.1038/srep19346 ] [PMID: 26783084]
Ma, L.; Young, J.; Prabhala, H.; Pan, E.; Mestdagh, P.; Muth, D.; Teruya-Feldstein, J.; Reinhardt, F.; Onder, T.T.; Valastyan, S.; Westermann, F.; Speleman, F.; Vandesompele, J.; Weinberg, R.A. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat. Cell Biol., 2010, 12(3), 247-256.
[http://dx.doi.org/10.1038/ncb2024 ] [PMID: 20173740]
Fang, Y.; Zhou, Y.; Zhang, Y.; He, L.; Xue, C.; Cao, Y. Design of miRNA sponges for MDV-1 as a therapeutic strategy against lymphomas. Oncotarget, 2017, 9(3), 3842-3852.
[PMID: 29423087]
Garzon, R.; Marcucci, G.; Croce, C.M. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat. Rev. Drug Discov., 2010, 9(10), 775-789.
[http://dx.doi.org/10.1038/nrd3179 ] [PMID: 20885409]
Mekuria, A.; Abdi, A.; Mishore, K. micrornas as a potential target for cancer therapy. J. Cancer Sci. Ther., 2018.
Hutvágner, G.; Simard, M.J.; Mello, C.C.; Zamore, P.D. Sequence-specific inhibition of small RNA function. PLoS Biol., 2004, 2(4), E98.
[http://dx.doi.org/10.1371/journal.pbio.0020098 ] [PMID: 15024405]
Mollaei, H.; Safaralizadeh, R.; Rostami, Z. MicroRNA replacement therapy in cancer. J. Cell. Physiol., 2019, 234(8), 12369-12384.
[http://dx.doi.org/10.1002/jcp.28058 ] [PMID: 30605237]
Griveau, A.; Bejaud, J.; Anthiya, S.; Avril, S.; Autret, D.; Garcion, E. Silencing of miR-21 by locked nucleic acid-lipid nanocapsule complexes sensitize human glioblastoma cells to radiation-induced cell death. Int. J. Pharm., 2013, 454(2), 765-774.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.049 ] [PMID: 23732394]
Lima, J.F.; Carvalho, J.; Pinto-Ribeiro, I.; Almeida, C.; Wengel, J.; Cerqueira, L.; Figueiredo, C.; Oliveira, C.; Azevedo, N.F. Targeting miR-9 in gastric cancer cells using locked nucleic acid oligonucleotides. BMC Mol. Biol., 2018, 19(1), 6.
[http://dx.doi.org/10.1186/s12867-018-0107-6 ] [PMID: 29879907]
Mirihana Arachchilage, G.; Kharel, P.; Reid, J.; Basu, S. Targeting of G-Quadruplex Harboring Pre-miRNA 92b by LNA rescues PTEN Expression in NSCL cancer cells. ACS Chem. Biol., 2018, 13(4), 909-914.
[http://dx.doi.org/10.1021/acschembio.7b00749 ] [PMID: 29529863]
Cantafio, M.E.G.; Nielsen, B.S.; Mignogna, C.; Arbitrio, M.; Botta, C.; Frandsen, N.M.; Rolfo, C.; Tagliaferri, P.; Tassone, P.; Di Martino, M.T. Pharmacokinetics and pharmacodynamics of a 13-mer LNA-inhibitor-miR-221 in mice and non-human primates. Mol. Ther. Nucleic Acids, 2016.
Atri, C.; Guerfali, F.Z.; Laouini, D. MicroRNAs in diagnosis and therapeutics. AGO-Driven Non-Coding RNAs; Elsevier, 2019, pp. 137-177.
Velu, C.S.; Grimes, H.L. Utilizing antagomiR (antisense microRNA) to knock down microRNA in murine bone marrow cells. Methods Mol. Biol., 2012, 928, 185-195.
[http://dx.doi.org/10.1007/978-1-62703-008-3_15 ] [PMID: 22956143]
Krützfeldt, J.; Rajewsky, N.; Braich, R.; Rajeev, K.G.; Tuschl, T.; Manoharan, M.; Stoffel, M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 2005, 438(7068), 685-689.
[http://dx.doi.org/10.1038/nature04303 ] [PMID: 16258535]
Mondal, I.; Sharma, S.; Kulshreshtha, R. MicroRNA therapeutics in glioblastoma: Candidates and targeting strategies. AGO-Driven Non-Coding RNAs; Elsevier, 2019, pp. 261-292.
Gumireddy, K.; Young, D.D.; Xiong, X.; Hogenesch, J.B.; Huang, Q.; Deiters, A. Small-molecule inhibitors of microrna miR-21 function. Angew. Chem. Int. Ed. Engl., 2008, 47(39), 7482-7484.
[http://dx.doi.org/10.1002/anie.200801555 ] [PMID: 18712719]
Melo, S.; Villanueva, A.; Moutinho, C.; Davalos, V.; Spizzo, R.; Ivan, C.; Rossi, S.; Setien, F.; Casanovas, O.; Simo-Riudalbas, L.; Carmona, J.; Carrere, J.; Vidal, A.; Aytes, A.; Puertas, S.; Ropero, S.; Kalluri, R.; Croce, C.M.; Calin, G.A.; Esteller, M. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc. Natl. Acad. Sci. USA, 2011, 108(11), 4394-4399.
[http://dx.doi.org/10.1073/pnas.1014720108 ] [PMID: 21368194]
Watashi, K.; Yeung, M.L.; Starost, M.F.; Hosmane, R.S.; Jeang, K-T. Identification of small molecules that suppress microRNA function and reverse tumorigenesis. J. Biol. Chem., 2010, 285(32), 24707-24716.
[http://dx.doi.org/10.1074/jbc.M109.062976 ] [PMID: 20529860]
Bonci, D.; Coppola, V.; Musumeci, M.; Addario, A.; Giuffrida, R.; Memeo, L.; D’Urso, L.; Pagliuca, A.; Biffoni, M.; Labbaye, C.; Bartucci, M.; Muto, G.; Peschle, C.; De Maria, R. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat. Med., 2008, 14(11), 1271-1277.
[http://dx.doi.org/10.1038/nm.1880 ] [PMID: 18931683]
Esposito, C.L.; Cerchia, L.; Catuogno, S.; De Vita, G.; Dassie, J.P.; Santamaria, G.; Swiderski, P.; Condorelli, G.; Giangrande, P.H.; de Franciscis, V. Multifunctional aptamer-miRNA conjugates for targeted cancer therapy. Mol. Ther., 2014, 22(6), 1151-1163.
[http://dx.doi.org/10.1038/mt.2014.5 ] [PMID: 24441398]
Tazawa, H.; Tsuchiya, N.; Izumiya, M.; Nakagama, H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc. Natl. Acad. Sci. USA, 2007, 104(39), 15472-15477.
[http://dx.doi.org/10.1073/pnas.0707351104 ] [PMID: 17875987]
Esquela-Kerscher, A.; Trang, P.; Wiggins, J.F.; Patrawala, L.; Cheng, A.; Ford, L.; Weidhaas, J.B.; Brown, D.; Bader, A.G.; Slack, F.J. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle, 2008, 7(6), 759-764.
[http://dx.doi.org/10.4161/cc.7.6.5834 ] [PMID: 18344688]
Noyan, S.; Gurdal, H.; Gur Dedeoglu, B. Involvement of miR-770-5p in trastuzumab response in HER2 positive breast cancer cells. PLoS One, 2019, 14(4), e0215894.
[http://dx.doi.org/10.1371/journal.pone.0215894 ] [PMID: 31009516]
Li, D.; Wang, X.; Yang, M.; Kan, Q.; Duan, Z. miR3609 sensitizes breast cancer cells to adriamycin by blocking the programmed death-ligand 1 immune checkpoint. Exp. Cell Res., 2019, 380(1), 20-28.
[http://dx.doi.org/10.1016/j.yexcr.2019.03.025 ] [PMID: 30904483]
Goeppert, B.; Truckenmueller, F.; Ori, A.; Fritz, V.; Albrecht, T.; Fraas, A.; Scherer, D.; Silos, R.G.; Sticht, C.; Gretz, N.; Mehrabi, A.; Bewerunge-Hudler, M.; Pusch, S.; Bermejo, J.L.; Dietrich, P.; Schirmacher, P.; Renner, M.; Roessler, S. Profiling of gallbladder carcinoma reveals distinct miRNA profiles and activation of STAT1 by the tumor suppressive miRNA-145-5p. Sci. Rep., 2019, 9(1), 4796.
[http://dx.doi.org/10.1038/s41598-019-40857-3 ] [PMID: 30886199.]
Tang, L.; Yang, B.; Cao, X.; Li, Q.; Jiang, L.; Wang, D. MicroRNA-377-3p inhibits growth and invasion through sponging JAG1 in ovarian cancer. Genes Genomics, 2019, 41(8), 919-926.
[http://dx.doi.org/10.1007/s13258-019-00822-w ] [PMID: 31041680.]
Wang, S.; Gao, B.; Yang, H.; Liu, X.; Wu, X.; Wang, W. MicroRNA-432 is downregulated in cervical cancer and directly targets FN1 to inhibit cell proliferation and invasion. Oncol. Lett., 2019, 18(2), 1475-1482.
[http://dx.doi.org/10.3892/ol.2019.10403 ] [PMID: 31423213]
Das, M.K.; Evensen, H.S.F.; Furu, K.; Haugen, T.B. miRNA-302s may act as oncogenes in human testicular germ cell tumours. Sci. Rep., 2019, 9(1), 9189.
[http://dx.doi.org/10.1038/s41598-019-45573-6 ] [PMID: 31235829]
Zhu, Z.; Yang, Q.; Zhang, B.; Wu, W.; Yuan, F.; Zhu, Z. miR-106b Promotes metastasis of early gastric cancer by targeting ALEX1 in vitro and in vivo. Cell. Physiol. Biochem., 2019, 52(3), 606-616.
[http://dx.doi.org/10.33594/000000043 ] [PMID: 30907988.]
Wang, W.; He, Y.; Rui, J.; Xu, M.Q. miR-410 acts as an oncogene in colorectal cancer cells by targeting dickkopf-related protein 1 via the Wnt/β-catenin signaling pathway. Oncol. Lett., 2019, 17(1), 807-814.
[PMID: 30655833.]
Wu, D.; Zhang, H.; Ji, F.; Ding, W. MicroRNA-17 promotes osteosarcoma cells proliferation and migration and inhibits apoptosis by regulating SASH1 expression. Pathol. Res. Pract., 2019, 215(1), 115-120.
[http://dx.doi.org/10.1016/j.prp.2018.10.012 ] [PMID: 30396754.]
Tian, F.; Yu, C.; Wu, M.; Wu, X.; Wan, L.; Zhu, X. MicroRNA-191 promotes hepatocellular carcinoma cell proliferation by has_circ_0000204/miR-191/KLF6 axis. Cell Prolif., 2019, 52(5), e12635.
[http://dx.doi.org/10.1111/cpr.12635 ] [PMID: 31334580.]
Tu, J.; Zhao, Z.; Xu, M.; Chen, M.; Weng, Q.; Ji, J. LINC00460 promotes hepatocellular carcinoma development through sponging miR-485-5p to up-regulate PAK1. Biomed. Pharmacother., 2019, 118, 109213.
[http://dx.doi.org/10.1016/j.biopha.2019.109213 ] [PMID: 31376654]
Li, D.; Jiang, X.; Zhang, X.; Cao, G.; Wang, D.; Chen, Z. Long noncoding RNA FGD5-AS1 promotes colorectal cancer cell proliferation, migration, and invasion through upregulating CDCA7 via sponging miR-302e. In Vitro Cell. Dev. Biol. Anim., 2019, 55(8), 577-585.
Zhang, Y.; Yang, H.; Du, Y.; Liu, P.; Zhang, J.; Li, Y.; Shen, H.; Xing, L.; Xue, X.; Chen, J.; Zhang, X. Long noncoding RNA TP53TG1 promotes pancreatic ductal adenocarcinoma development by acting as a molecular sponge of microRNA-96. Cancer Sci., 2019, 110(9), 2760-2772.
[http://dx.doi.org/10.1111/cas.14136 ] [PMID: 31325400.]
Zhang, Y.; Zhu, Z.; Huang, S.; Zhao, Q.; Huang, C.; Tang, Y.; Sun, C.; Zhang, Z.; Wang, L.; Chen, H.; Chen, M.; Ju, W.; He, X. lncRNA XIST regulates proliferation and migration of hepatocellular carcinoma cells by acting as miR-497-5p molecular sponge and targeting PDCD4. Cancer Cell Int., 2019, 19, 198.
[http://dx.doi.org/10.1186/s12935-019-0909-8 ] [PMID: 31384173]
Shi, S.; Han, L.; Deng, L.; Zhang, Y.; Shen, H.; Gong, T.; Zhang, Z.; Sun, X. Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. J. Control. Release, 2014, 194, 228-237.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.005 ] [PMID: 25220161.]
Mittal, A.; Chitkara, D.; Behrman, S.W.; Mahato, R.I. Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials, 2014, 35(25), 7077-7087.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.053] [PMID: 24836307]
Park, E.Y.; Chang, E.; Lee, E.J.; Lee, H-W.; Kang, H-G.; Chun, KH.; Woo, Y.M.; Kong, H.K.; Ko, J.Y.; Suzuki, H.; Song, E.; Park, J.H. Targeting of miR34a-NOTCH1 axis reduced breast cancer stemness and chemoresistance. Cancer Res., 2014, 74(24), 7573-7582.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-1140] [PMID: 25368020]
Liu, Q.; Li, R-T.; Qian, H-Q.; Wei, J.; Xie, L.; Shen, J.; Yang, M.; Qian, X-P.; Yu, L-X.; Jiang, X-Q.; Liu, B.R. Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli nanoparticles. Biomaterials, 2013, 34(29), 7191-7203.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.004] [PMID: 23806972]
Gao, M.; Miao, L.; Liu, M.; Li, C.; Yu, C.; Yan, H.; Yin, Y.; Wang, Y.; Qi, X.; Ren, J. miR-145 sensitizes breast cancer to doxorubicin by targeting multidrug resistance-associated protein-1. Oncotarget, 2016, 7(37), 59714-59726.
[http://dx.doi.org/10.18632/oncotarget.10845 ] [PMID: 27487127.]
Ou, H.; Li, Y.; Kang, M. Activation of miR-21 by STAT3 induces proliferation and suppresses apoptosis in nasopharyngeal carcinoma by targeting PTEN gene. PLoS One, 2014, 9(11), e109929.
[http://dx.doi.org/10.1371/journal.pone.0109929 ] [PMID: 25365510]
Chen, J.; Zhou, C.; Li, J.; Xiang, X.; Zhang, L.; Deng, J.; Xiong, J. miR-21-5p confers doxorubicin resistance in gastric cancer cells by targeting PTEN and TIMP3. Int. J. Mol. Med., 2018, 41(4), 1855-1866.
[http://dx.doi.org/10.3892/ijmm.2018.3405 ] [PMID: 29393355]
Ren, Y.; Kang, C-S.; Yuan, X-B.; Zhou, X.; Xu, P.; Han, L.; Wang, G.X.; Jia, Z.; Zhong, Y.; Yu, S.; Sheng, J.; Pu, P.Y. Co-delivery of as-miR-21 and 5-FU by poly(amidoamine) dendrimer attenuates human glioma cell growth in vitro. J. Biomater. Sci. Polym. Ed., 2010, 21(3), 303-314.
[http://dx.doi.org/10.1163/156856209X415828 ] [PMID: 20178687. ]
Gao, S.; Tian, H.; Guo, Y.; Li, Y.; Guo, Z.; Zhu, X.; Chen, X. miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. Acta Biomater., 2015, 25, 184-193.
[http://dx.doi.org/10.1016/j.actbio.2015.07.020 ] [PMID: 26169933.]
Zhi, F.; Dong, H.; Jia, X.; Guo, W.; Lu, H.; Yang, Y.; Ju, H.; Zhang, X.; Hu, Y. Functionalized graphene oxide mediated adriamycin delivery and miR-21 gene silencing to overcome tumor multidrug resistance in vitro. PLoS One, 2013, 8(3), e60034.
Sharp, P.A. RNA interference--2001. Genes Dev., 2001, 15(5), 485-490.
[http://dx.doi.org/10.1101/gad.880001 ] [PMID: 11238371]
Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669), 806-811.
Marshall, W.S.; Kaiser, R.J. Recent advances in the high-speed solid phase synthesis of RNA. Curr. Opin. Chem. Biol., 2004, 8(3), 222-229.
[http://dx.doi.org/10.1016/j.cbpa.2004.04.012 ] [PMID: 15183319]
Burnett, J.C.; Rossi, J.J. RNA-based therapeutics: Current progress and future prospects. Chem. Biol., 2012, 19(1), 60-71.
[http://dx.doi.org/10.1016/j.chembiol.2011.12.008 ] [PMID: 22284355]
van Rooij, E.; Olson, E.N. MicroRNA therapeutics for cardiovascular disease: Opportunities and obstacles. Nat. Rev. Drug Discov., 2012, 11(11), 860-872.
[http://dx.doi.org/10.1038/nrd3864 ] [PMID: 23080337]
Shin, H.; Park, S.J.; Yim, Y.; Kim, J.; Choi, C.; Won, C.; Min, D.H. Recent advances in RNA therapeutics and RNA delivery systems based on nanoparticles. Adv. Therap, 2018, 1(7), 1800065.
Corey, D.R. Chemical modification: The key to clinical application of RNA interference? J. Clin. Invest., 2007, 117(12), 3615-3622.
[http://dx.doi.org/10.1172/JCI33483 ] [PMID: 18060019]
Beaucage, S.L.; Reese, C.B. Recent advances in the chemical synthesis of RNA. Curr. Protoc. Nucleic Acid Chem., 2009, Chapter 2(16), 1-31.
[http://dx.doi.org/10.1002/0471142700.nc0216s38] [PMID: 19746354]
Lennox, K.A.; Behlke, M.A. A direct comparison of anti-microRNA oligonucleotide potency. Pharm. Res., 2010, 27(9), 1788-1799.
[http://dx.doi.org/10.1007/s11095-010-0156-0 ] [PMID: 20424893]
Levin, A.A. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim. Biophys. Acta, 1999, 1489(1), 69-84.
[http://dx.doi.org/10.1016/S0167-4781(99)00140-2] [PMID: 10806998]
Hall, A.H.; Wan, J.; Shaughnessy, E.E.; Ramsay Shaw, B.; Alexander, K.A. RNA interference using boranophosphate siRNAs: Structure-activity relationships. Nucleic Acids Res., 2004, 32(20), 5991-6000.
[http://dx.doi.org/10.1093/nar/gkh936 ] [PMID: 15545637]
Hudziak, R.M.; Barofsky, E.; Barofsky, D.F.; Weller, D.L.; Huang, S-B.; Weller, D.D. Resistance of morpholino phosphorodiamidate oligomers to enzymatic degradation. Antisense Nucleic Acid Drug Dev., 1996, 6(4), 267-272.
[http://dx.doi.org/10.1089/oli.1.1996.6.267 ] [PMID: 9012862]
Gasparello, J.; Manicardi, A.; Casnati, A.; Corradini, R.; Gambari, R.; Finotti, A.; Sansone, F. Efficient cell penetration and delivery of peptide nucleic acids by an argininocalix[4]arene. Sci. Rep., 2019, 9(1), 3036.
[http://dx.doi.org/10.1038/s41598-019-39211-4 ] [PMID: 30816154]
Saadati, A.; Hassanpour, S.; de la Guardia, M.; Mosafer, J.; Hashemzaei, M.; Mokhtarzadeh, A.; Baradaran, B. Recent advances on application of peptide nucleic acids as a bioreceptor in biosensors development. Trends Analyt. Chem., 2019, 56-68.
Good, L.; Nielsen, P.E. Progress in developing PNA as a gene-targeted drug. Antisense Nucleic Acid Drug Dev., 1997, 7(4), 431-437.
[http://dx.doi.org/10.1089/oli.1.1997.7.431 ] [PMID: 9303195]
Judge, A.D.; Bola, G.; Lee, A.C.; MacLachlan, I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther., 2006, 13(3), 494-505.
[http://dx.doi.org/10.1016/j.ymthe.2005.11.002 ] [PMID: 16343994]
Judge, A.; MacLachlan, I. Overcoming the innate immune response to small interfering RNA. Hum. Gene Ther., 2008, 19(2), 111-124.
[http://dx.doi.org/10.1089/hum.2007.179 ] [PMID: 18230025]
James, A.; Ruckman, J.; Pestano, L.; Hopkins, R.; Rodgers, R.; Marshall, W.; Rubin, P.; Escolar, D. SOLAR: A phase 2, global, randomized, active comparator study to investigate the efficacy and safety of cobomarsen in subjects with Mycosis Fungoides (MF). Hematol. Oncol., 2019, 37(S2), 562-563.
Yahyanejad, S.; de Gunst, T.; Schultz, I.; den Boer, H.; Raimo, M.; Telford, B.; Vos, R.; van Pinxteren, L.; Schaapveld, R.; Janicot, M. Pharmacologic profile of INT-1B3: A novel synthetic microRNA 193a-3p mimic for therapeutic intervention in oncology; AACR, 2018.
van Rooij, E.; Kauppinen, S. Development of microRNA therapeutics is coming of age. EMBO Mol. Med., 2014, 6(7), 851-864.
[http://dx.doi.org/10.15252/emmm.201100899 ] [PMID: 24935956]
Summerton, J.E. Morpholino, siRNA, and S-DNA compared: Impact of structure and mechanism of action on off-target effects and sequence specificity. Curr. Top. Med. Chem., 2007, 7(7), 651-660.
[http://dx.doi.org/10.2174/156802607780487740 ] [PMID: 17430206]
Nielsen, P.E. Applications of peptide nucleic acids. Curr. Opin. Biotechnol., 1999, 10(1), 71-75.
[http://dx.doi.org/10.1016/S0958-1669(99)80013-5 ] [PMID: 10047504]
Milligan, J.F.; Uhlenbeck, O.C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol., 1989, 180, 51-62.
[http://dx.doi.org/10.1016/0076-6879(89)80091-6 ] [PMID: 2482430]
Krieg, P.A.; Melton, D.A. In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol., 1987, 155, 397-415.
[http://dx.doi.org/10.1016/0076-6879(87)55027-3 ] [PMID: 2828872]
Melton, D.A.; Krieg, P.A.; Rebagliati, M.R.; Maniatis, T.; Zinn, K.; Green, M.R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res., 1984, 12(18), 7035-7056.
[http://dx.doi.org/10.1093/nar/12.18.7035 ] [PMID: 6091052]
Beckert, B.; Masquida, B. Synthesis of RNA by in vitro transcription. Methods Mol. Biol., 2011, 703, 29-41.
[http://dx.doi.org/10.1007/978-1-59745-248-9_3 ] [PMID: 21125481]
Borkotoky, S.; Murali, A. The highly efficient T7 RNA polymerase: A wonder macromolecule in biological realm. Int. J. Biol. Macromol., 2018, 118(Pt A), 49-56.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.198] [PMID: 29847782]
Koscielniak, D.; Wons, E.; Wilkowska, K.; Sektas, M. Non-programmed transcriptional frameshifting is common and highly RNA polymerase type-dependent. Microb. Cell Fact., 2018, 17(1), 184.
[http://dx.doi.org/10.1186/s12934-018-1034-4 ] [PMID: 30474557]
Kim, D-H.; Longo, M.; Han, Y.; Lundberg, P.; Cantin, E.; Rossi, J.J. Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat. Biotechnol., 2004, 22(3), 321-325.
[http://dx.doi.org/10.1038/nbt940 ] [PMID: 14990954]
Huang, L.; Jin, J.; Deighan, P.; Kiner, E.; McReynolds, L.; Lieberman, J. Efficient and specific gene knockdown by small interfering RNAs produced in bacteria. Nat. Biotechnol., 2013, 31(4), 350-356.
[http://dx.doi.org/10.1038/nbt.2537 ] [PMID: 23475073]
D’Souza, L.M.; Larios-Sanz, M.; Setterquist, R.A.; Willson, R.C.; Fox, G.E. Small RNA sequences are readily stabilized by inclusion in a carrier rRNA. Biotechnol. Prog., 2003, 19(3), 734-738.
[http://dx.doi.org/10.1021/bp025755j ] [PMID: 12790632]
Duan, Z.; Yu, A-M. Bioengineered non-coding RNA agent (BERA) in action. Bioengineered, 2016, 7(6), 411-417.
[http://dx.doi.org/10.1080/21655979.2016.1207011] [PMID: 27415469]
Ponchon, L.; Beauvais, G.; Nonin-Lecomte, S.; Dardel, F. A generic protocol for the expression and purification of recombinant RNA in Escherichia coli using a tRNA scaffold. Nat. Protoc., 2009, 4(6), 947-959.
[http://dx.doi.org/10.1038/nprot.2009.67 ] [PMID: 19478810]
Li, M-M.; Addepalli, B.; Tu, M-J.; Chen, Q-X.; Wang, W-P.; Limbach, P.A.; LaSalle, J.M.; Zeng, S.; Huang, M.; Yu, A-M. Chimeric microRNA-1291 biosynthesized efficiently in Escherichia coli is effective to reduce target gene expression in human carcinoma cells and improve chemosensitivity. Drug Metab. Dispos., 2015, 43(7), 1129-1136.
[http://dx.doi.org/10.1124/dmd.115.064493 ] [PMID: 25934574]
Li, X.; Tian, Y.; Tu, M-J.; Ho, P.Y.; Batra, N.; Yu, A-M. Bioengineered miR-27b-3p and miR-328-3p modulate drug metabolism and disposition via the regulation of target ADME gene expression. Acta Pharm. Sin. B, 2019, 9(3), 639-647.
[http://dx.doi.org/10.1016/j.apsb.2018.12.002 ] [PMID: 31193825]
Ho, P.Y.; Duan, Z.; Batra, N.; Jilek, J.L.; Tu, M-J.; Qiu, J-X.; Hu, Z.; Wun, T.; Lara, P.N.; DeVere White, R.W.; Chen, H.W.; Yu, A.M. Bioengineered noncoding RNAs selectively change cellular miRNome profiles for cancer therapy. J. Pharmacol. Exp. Ther., 2018, 365(3), 494-506.
[http://dx.doi.org/10.1124/jpet.118.247775 ] [PMID: 29602831]
Chen, Q-X.; Wang, W-P.; Zeng, S.; Urayama, S.; Yu, A-M. A general approach to high-yield biosynthesis of chimeric RNAs bearing various types of functional small RNAs for broad applications. Nucleic Acids Res., 2015, 43(7), 3857-3869.
[http://dx.doi.org/10.1093/nar/gkv228 ] [PMID: 25800741]
Jilek, J.L.; Zhang, Q-Y.; Tu, M-J.; Ho, P.Y.; Duan, Z.; Qiu, J-X.; Yu, A-M. Bioengineered let-7c inhibits orthotopic hepatocellular carcinoma and improves overall survival with minimal immunogenicity. Mol. Ther. Nucleic Acids, 2019, 14, 498-508.
[http://dx.doi.org/10.1016/j.omtn.2019.01.007 ] [PMID: 30753993]
Wang, W-P.; Ho, P.Y.; Chen, Q-X.; Addepalli, B.; Limbach, P.A.; Li, M-M.; Wu, W-J.; Jilek, J.L.; Qiu, J-X.; Zhang, H-J.; Li, T.; Wun, T.; White, R.D.; Lam, K.S.; Yu, A.M. Bioengineering novel chimeric microRNA-34a for prodrug cancer therapy: high-yield expression and purification, and structural and functional characterization. J. Pharmacol. Exp. Ther., 2015, 354(2), 131-141.
[http://dx.doi.org/10.1124/jpet.115.225631 ] [PMID: 26022002]
Tu, M-J.; Ho, P.Y.; Zhang, Q-Y.; Jian, C.; Qiu, J-X.; Kim, E.J.; Bold, R.J.; Gonzalez, F.J.; Bi, H.; Yu, A-M. Bioengineered miRNA-1291 prodrug therapy in pancreatic cancer cells and patient-derived xenograft mouse models. Cancer Lett., 2019, 442, 82-90.
[http://dx.doi.org/10.1016/j.canlet.2018.10.038 ] [PMID: 30389433]
Mokhlis, H.; Ozpolat, B. Nanoparticle delivery of miRNA in cancer. RSC Pubs. 2019, 452-472.
Yang, N. An overview of viral and nonviral delivery systems for microRNA. Int. J. Pharm. Investig., 2015, 5(4), 179-181.
[http://dx.doi.org/10.4103/2230-973X.167646 ] [PMID: 26682187]
Fu, Y.; Chen, J.; Huang, Z. Recent progress in microRNA-based delivery systems for the treatment of human disease. ExRNA, 2019, 1(1), 1-14.
Schnell, M.A.; Zhang, Y.; Tazelaar, J.; Gao, G.P.; Yu, Q.C.; Qian, R.; Chen, S-J.; Varnavski, A.N.; LeClair, C.; Raper, S.E.; Wilson, J.M. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol. Ther., 2001, 3(5 Pt 1), 708-722.
[http://dx.doi.org/10.1006/mthe.2001.0330 ] [PMID: 11356076]
Liu, Y.P.; Berkhout, B. miRNA cassettes in viral vectors: Problems and solutions. Biochim. Biophys. Acta, 2011, 1809(11-12), 732-745.
[http://dx.doi.org/10.1016/j.bbagrm.2011.05.014 ] [PMID: 21679781]
Sun, X.; Guo, Q.; Wei, W.; Robertson, S.; Yuan, Y.; Luo, X. Current progress on MicroRNA-based gene delivery in the treatment of osteoporosis and osteoporotic fracture. Int. J. Endocrinol., 2019, 2019, 6782653.
[http://dx.doi.org/10.1155/2019/6782653 ] [PMID: 30962808]
Yin, L.; Keeler, G.D.; Zhang, Y.; Hoffman, B.E.; Ling, C.; Qing, K.; Srivastava, A. AAV3-miRNA vectors for growth suppression of human hepatocellular carcinoma cells in vitro and human liver tumors in a murine xenograft model in vivo. Gene Ther., 2020.
[http://dx.doi.org/10.1038/s41434-020-0140-1 ] [PMID: 32152434]
Moshiri, F.; Callegari, E.; D’Abundo, L.; Corrà, F.; Lupini, L.; Sabbioni, S.; Negrini, M. Inhibiting the oncogenic mir-221 by microRNA sponge: Toward microRNA-based therapeutics for hepatocellular carcinoma. Gastroenterol. Hepatol. Bed Bench, 2014, 7(1), 43-54.
[PMID: 25436097]
Yu, B.; Chen, X.; Li, J.; Gu, Q.; Zhu, Z.; Li, C.; Su, L.; Liu, B. MicroRNA-29c inhibits cell proliferation by targeting NASP in human gastric cancer. BMC Cancer, 2017, 17(1), 109.
[http://dx.doi.org/10.1186/s12885-017-3096-9 ] [PMID: 28173777]
Lu, J.; Gu, X.; Liu, F.; Rui, Z.; Liu, M.; Zhao, L. Antitumor effects of hsa-miR661-3p on non-small cell lung cancer in vivo and in vitro. Oncol. Rep., 2019, 41(5), 2987-2996.
[http://dx.doi.org/10.3892/or.2019.7084 ] [PMID: 30896844]
Bai, Z.; Wei, J.; Yu, C.; Han, X.; Zhang, C.; Qin, X.; Liao, W.; Li, L.; Huang, W. Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. J. Mater. Chem. B Mater. Biol. Med., 2019, 7, 1209-1225.
Zakeri, A.; Kouhbanani, M.A.J.; Beheshtkhoo, N.; Beigi, V.; Mousavi, S.M.; Hashemi, S.A.R.; Karimi Zade, A.; Amani, A.M.; Savardashtaki, A.; Mirzaei, E.; Jahandideh, S.; Movahedpour, A. Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Rev. Exp., 2018, 9(1), 1488497.
[http://dx.doi.org/10.1080/20022727.2018.1488497] [PMID: 30410712]
Kafil, V.; Omidi, Y. Cytotoxic impacts of linear and branched polyethylenimine nanostructures in a431 cells. Bioimpacts, 2011, 1(1), 23-30.
[PMID: 23678404]
Wen, Y.; Pan, S.; Luo, X.; Zhang, X.; Zhang, W.; Feng, M. A biodegradable low molecular weight polyethylenimine derivative as low toxicity and efficient gene vector. Bioconjug. Chem., 2009, 20(2), 322-332.
[http://dx.doi.org/10.1021/bc800428y ] [PMID: 19152330]
Morimoto, K.; Nishikawa, M.; Kawakami, S.; Nakano, T.; Hattori, Y.; Fumoto, S.; Yamashita, F.; Hashida, M. Molecular weight dependent gene transfection activity of unmodified and galactosylated polyethyleneimine on hepatoma cells and mouse liver. Mol. Ther., 2003, 7(2), 254-261.
[http://dx.doi.org/10.1016/S1525-0016(02)00053-9] [PMID: 12597914]
Wang, S.; Zhang, J.; Wang, Y.; Chen, M. Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine (Lond.), 2016, 12(2), 411-420.
[http://dx.doi.org/10.1016/j.nano.2015.09.014 ] [PMID: 26711968]
Hu, Q.L.; Jiang, Q.Y.; Jin, X.; Shen, J.; Wang, K.; Li, Y.B.; Xu, F.J.; Tang, G.P.; Li, Z.H. Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model. Biomaterials, 2013, 34(9), 2265-2276.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.016] [PMID: 23298779]
Ban, E.; Kwon, T-H.; Kim, A. Delivery of therapeutic miRNA using polymer-based formulation. Drug Deliv. Transl. Res., 2019, 9(6), 1043-1056.
[http://dx.doi.org/10.1007/s13346-019-00645-y ] [PMID: 31049843]
Lü, J-M.; Wang, X.; Marin-Muller, C.; Wang, H.; Lin, P.H.; Yao, Q.; Chen, C. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev. Mol. Diagn., 2009, 9(4), 325-341.
[http://dx.doi.org/10.1586/erm.09.15 ] [PMID: 19435455]
Cai, C.; Xie, Y.; Wu, L.; Chen, X.; Liu, H.; Zhou, Y.; Zou, H.; Liu, D.; Zhao, Y.; Kong, X.; Liu, P. PLGA-based dual targeted nanoparticles enhance miRNA transfection efficiency in hepatic carcinoma. Sci. Rep., 2017, 7, 46250.
[http://dx.doi.org/10.1038/srep46250 ] [PMID: 28387375]
Mignani, S.; Shi, X.; Zablocka, M.; Majoral, J.P. Dendrimer-enabled therapeutic antisense delivery systems as innovation in medicine. Bioconjug. Chem., 2019, 30(7), 1938-1950.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00385] [PMID: 31246431]
Conde, J.; Oliva, N.; Atilano, M.; Song, H.S.; Artzi, N. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nat. Mater., 2016, 15(3), 353-363.
[http://dx.doi.org/10.1038/nmat4497 ] [PMID: 26641016]
Franiak-Pietryga, I.; Ziemba, B.; Messmer, B.; Skowronska-Krawczyk, D. Dendrimers as drug nanocarriers: The future of gene therapy and targeted therapies in cancer. Dendrimers; IntechOpen, 2018.
Vaughan, H.J.; Green, J.J.; Tzeng, S.Y. Cancer‐targeting nanoparticles for combinatorial nucleic acid delivery. Adv. Mater., 2020, 32(13), e1901081.
[http://dx.doi.org/10.1002/adma.201901081 ] [PMID: 31222852]
Bhatti, J.S.; Vijayvergiya, R.; Singh, B.; Bhatti, G.K. Exosome nanocarriers: A natural, novel, and perspective approach in drug delivery system. Nanoarchitectonics in Biomedicine; Elsevier, 2019, pp. 189-218.
Romøren, K.; Thu, B.J.; Bols, N.C.; Evensen, Ø. Transfection efficiency and cytotoxicity of cationic liposomes in salmonid cell lines of hepatocyte and macrophage origin. Biochim. Biophys. Acta, 2004, 1663(1-2), 127-134.
[http://dx.doi.org/10.1016/j.bbamem.2004.02.007 ] [PMID: 15157615]
Wu, J.; Lizarzaburu, M.E.; Kurth, M.J.; Liu, L.; Wege, H.; Zern, M.A.; Nantz, M.H. Cationic lipid polymerization as a novel approach for constructing new DNA delivery agents. Bioconjug. Chem., 2001, 12(2), 251-257.
[http://dx.doi.org/10.1021/bc000097e ] [PMID: 11312686]
Sharma, S.; Rajendran, V.; Kulshreshtha, R.; Ghosh, P.C. Enhanced efficacy of anti-miR-191 delivery through stearylamine liposome formulation for the treatment of breast cancer cells. Int. J. Pharm., 2017, 530(1-2), 387-400.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.079 ] [PMID: 28774852]
Huang, Z.; Gan, J.; Long, Z.; Guo, G.; Shi, X.; Wang, C.; Zang, Y.; Ding, Z.; Chen, J.; Zhang, J.; Dong, L. Targeted delivery of let-7b to reprogramme tumor-associated macrophages and tumor infiltrating dendritic cells for tumor rejection. Biomaterials, 2016, 90, 72-84.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.009] [PMID: 26994345]
Marquez, J.; Fernandez-Piñeiro, I.; Araúzo-Bravo, M.J.; Poschmann, G.; Stühler, K.; Khatib, A.M.; Sanchez, A.; Unda, F.; Ibarretxe, G.; Bernales, I.; Badiola, I. Targeting liver sinusoidal endothelial cells with miR-20a-loaded nanoparticles reduces murine colon cancer metastasis to the liver. Int. J. Cancer, 2018, 143(3), 709-719.
[http://dx.doi.org/10.1002/ijc.31343 ] [PMID: 29492958]
Varshney, A.; Panda, J.J.; Singh, A.K.; Yadav, N.; Bihari, C.; Biswas, S.; Sarin, S.K.; Chauhan, V.S. Targeted delivery of microRNA-199a-3p using self-assembled dipeptide nanoparticles efficiently reduces hepatocellular carcinoma in mice. Hepatology, 2018, 67(4), 1392-1407.
[http://dx.doi.org/10.1002/hep.29643 ] [PMID: 29108133]
Li, Y.; Duo, Y.; Bi, J.; Zeng, X.; Mei, L.; Bao, S.; He, L.; Shan, A.; Zhang, Y.; Yu, X. Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. Int. J. Nanomedicine, 2018, 13, 1241-1256.
[http://dx.doi.org/10.2147/ijn.s158290] [PMID: 29535520]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 22 October, 2020
Page: [1186 - 1203]
Pages: 18
DOI: 10.2174/1389201021666200420101613
Price: $65

Article Metrics

PDF: 31
PRC: 1