Functional Chitosan-based Materials for Biological Applications

Author(s): Jiliang Ma, Linxin Zhong, Xinwen Peng*, Yongkang Xu, Runcang Sun*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 28 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

Background: Bio-based materials, as the plentiful and renewable resources for natural constituents which are essential for biomedical and pharmaceutical applications, have not been exploited adequately yet. Chitosan is a naturally occurring polysaccharide obtained from chitin, which has recently attracted widespread attention owing to its excellent activity. This review shows the methods of extraction and modification of chitosan and provides recent progress of synthesis and use of chitosan-based materials in biological applications.

Methods: By consulting the research literature of the last decade, the recent progresses of functional chitosan-based materials for biological applications were summarized and divided into the methods of extraction chitosan, the chemical modification of chitosan, chitosan-based materials for biological applications were described and discussed.

Results: Chemical modification of chitosan broadens its applications, leading to developing numerous forms of chitosan-based materials with excellent properties. The excellent bioactivity of chitosan-based material enables it serves potential applications in biomedical fields.

Conclusion: Chitosan-based materials not only exhibit the excellent activities of chitosan but also show other appealing performance of combined materials, even give the good synergistic properties of chitosan and its composite materials. Further studies are needed to define the ideal physicochemical properties of chitosan for each type of biomedical applications. The development of various functional chitosan-based materials for biological applications will be an important field of research, and this kind of material has important commercial value.

Keywords: Chitosan, Chitosan-based materials, Chemical modification, Biomedical, Biological applications, Biobased materials.

[1]
Prashanth, K.V.H.; Tharanathan, R.N. Chitin/chitosan: modifications and their unlimited application potential - an overview. Trends Food Sci. Technol., 2007, 18(3), 117-131.
[http://dx.doi.org/10.1016/j.tifs.2006.10.022]
[2]
Ramesh, H.P.; Tharanathan, R.N. Carbohydrates--the renewable raw materials of high biotechnological value. Crit. Rev. Biotechnol., 2003, 23(2), 149-173.
[http://dx.doi.org/10.1080/713609312] [PMID: 12889744]
[3]
Nakagawa, Y.S.; Oyama, Y.; Kon, N.; Nikaido, M.; Tanno, K.; Kogawa, J.; Inomata, S.; Masui, A.; Yamamura, A.; Kawaguchi, M.; Matahira, Y.; Totani, K. Development of innovative technologies to decrease the environmental burdens associated with using chitin as a biomass resource: Mechanochemical grinding and enzymatic degradation. Carbohydr. Polym., 2011, 83(4), 1843-1849.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.050]
[4]
Tharanathan, R.N.; Kittur, F.S. Chitin--the undisputed biomolecule of great potential. Crit. Rev. Food Sci. Nutr., 2003, 43(1), 61-87.
[http://dx.doi.org/10.1080/10408690390826455] [PMID: 12587986]
[5]
Nidheesh, T.; Kumar, P.G.; Suresh, P.V. Enzymatic degradation of chitosan and production of D-glucosamine by solid substrate fermentation of exo-beta-D-glucosaminidase (exochitosanase) by Penicillium decumbens CFRNT15. Int. Biodeterior. Biodegradation, 2015, 97, 97-106.
[http://dx.doi.org/10.1016/j.ibiod.2014.10.016]
[6]
Muzzarelli, R.A.A.; Boudrant, J.; Meyer, D.; Manno, N.; DeMarchis, M.; Paoletti, M.G. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr. Polym., 2012, 87(2), 995-1012.
[http://dx.doi.org/10.1016/j.carbpol.2011.09.063]
[7]
Thadathil, N.; Velappan, S.P. Recent developments in chitosanase research and its biotechnological applications: a review. Food Chem., 2014, 150, 392-399.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.083] [PMID: 24360467]
[8]
Aider, M. Chitosan application for active bio-based films production and potential in the food industry. Review. Lebensm. Wiss. Technol., 2010, 43(6), 837-842.
[http://dx.doi.org/10.1016/j.lwt.2010.01.021]
[9]
Zhang, H.F.; Shi, Y.P. Magnetic retrieval of chitosan: extraction of bioactive constituents from green tea beverage samples. Analyst (Lond.), 2012, 137(4), 910-916.
[http://dx.doi.org/10.1039/C1AN15873B] [PMID: 22167525]
[10]
Kohsari, I.; Shariatinia, Z.; Pourmortazavi, S.M. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing bioactive silver nanoparticles. Carbohydr. Polym., 2016, 140, 287-298.
[http://dx.doi.org/10.1016/j.carbpol.2015.12.075] [PMID: 26876856]
[11]
Shukla, S.K.; Mishra, A.K.; Arotiba, O.A.; Mamba, B.B. Chitosan-based nanomaterials: a state-of-the-art review. Int. J. Biol. Macromol., 2013, 59, 46-58.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.043] [PMID: 23608103]
[12]
Uriarte-Montoya, M.H.; Arias-Moscoso, J.L.; Plascencia-Jatomea, M.; Santacruz-Ortega, H.; Rouzaud-Sández, O.; Cardenas-Lopez, J.L.; Marquez-Rios, E.; Ezquerra-Brauer, J.M. Jumbo squid (Dosidicus gigas) mantle collagen: extraction, characterization, and potential application in the preparation of chitosan-collagen biofilms. Bioresour. Technol., 2010, 101(11), 4212-4219.
[http://dx.doi.org/10.1016/j.biortech.2010.01.008] [PMID: 20097560]
[13]
Choi, C.; Nam, J.P.; Nah, J.W. Application of chitosan and chitosan derivatives as biomaterials. J. Ind. Eng. Chem., 2016, 33, 1-10.
[http://dx.doi.org/10.1016/j.jiec.2015.10.028]
[14]
Cahu, T.B.; Santos, S.D.; Mendes, A.; Cordula, C.R.; Chavante, S.F.; Carvalho, L.B.; Nader, H.B.; Bezerra, R.S. Recovery of protein, chitin, carotenoids and glycosaminoglycans from Pacific white shrimp (Litopenaeus vannamei) processing waste. Process Biochem., 2012, 47(4), 570-577.
[http://dx.doi.org/10.1016/j.procbio.2011.12.012]
[15]
Palma-Guerrero, J.; Gomez-Vidal, S.; Tikhonov, V.E.; Salinas, J.; Jansson, H.B.; Lopez-Llorca, L.V. Comparative analysis of extracellular proteins from Pochonia chlamydosporia grown with chitosan or chitin as main carbon and nitrogen sources. Enzyme Microb. Technol., 2010, 46(7), 568-574.
[http://dx.doi.org/10.1016/j.enzmictec.2010.02.009]
[16]
Phuvasate, S.; Su, Y.C. Comparison of lactic acid bacteria fermentation with acid treatments for chitosan production from shrimp waste. J. Aquat. Food Prod. Technol., 2010, 19(3), 170-179.
[http://dx.doi.org/10.1080/10498850.2010.504324]
[17]
Jung, J.; Zhao, Y. Characteristics of deacetylation and depolymerization of β-chitin from jumbo squid (Dosidicus gigas) pens. Carbohydr. Res., 2011, 346(13), 1876-1884.
[http://dx.doi.org/10.1016/j.carres.2011.05.021] [PMID: 21700271]
[18]
Nidheesh, T.; Pal, G.K.; Suresh, P.V. Chitooligomers preparation by chitosanase produced under solid state fermentation using shrimp by-products as substrate. Carbohydr. Polym., 2015, 121, 1-9.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.017] [PMID: 25659665]
[19]
Nwe, N.; Stevens, W.F.; Montet, D.; Tokura, S.; Tamura, H. Decomposition of myceliar matrix and extraction of chitosan from Gongronella butleri USDB 0201 and Absidia coerulea ATCC 14076. Int. J. Biol. Macromol., 2008, 43(1), 2-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2007.09.018] [PMID: 17996289]
[20]
Abdou, E.S.; Nagy, K.S.A.; Elsabee, M.Z. Extraction and characterization of chitin and chitosan from local sources. Bioresour. Technol., 2008, 99(5), 1359-1367.
[http://dx.doi.org/10.1016/j.biortech.2007.01.051] [PMID: 17383869]
[21]
Chandumpai, A.; Singhpibulporn, N.; Faroongsarng, D.; Sornprasit, P. Preparation and physico-chemical characterization of chitin and chitosan from the pens of the squid species, Loligo lessoniana and Loligo formosana. Carbohydr. Polym., 2004, 58(4), 467-474.
[http://dx.doi.org/10.1016/j.carbpol.2004.08.015]
[22]
Jung, J.; Zhao, Y. Alkali- or acid-induced changes in structure, moisture absorption ability and deacetylating reaction of β-chitin extracted from jumbo squid (Dosidicus gigas) pens. Food Chem., 2014, 152, 355-362.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.165] [PMID: 24444948]
[23]
Wang, W.P.; Du, Y.M.; Qiu, Y.L.; Wang, X.Y.; Hu, Y.; Yang, J.H.; Cai, J.; Kennedy, J.F. A new green technology for direct production of low molecular weight chitosan. Carbohydr. Polym., 2008, 74(1), 127-132.
[http://dx.doi.org/10.1016/j.carbpol.2008.01.025]
[24]
Jiang, L.F.; Pan, S.K.; Kim, J.M. Influence of nitrogen source on chitosan production carried out by Absidia coerulea CTCC AF 93105. Carbohydr. Polym., 2011, 86(1), 359-361.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.045]
[25]
Dhillon, G.S.; Kaur, S.; Sarma, S.J.; Brar, S.K. Integrated process for fungal citric acid fermentation using apple processing wastes and sequential extraction of chitosan from waste stream. Ind. Crops Prod., 2013, 50, 346-351.
[http://dx.doi.org/10.1016/j.indcrop.2013.08.010]
[26]
Wang, S.L.; Liang, T.W.; Yen, Y.H. Bioconversion of chitin-containing wastes for the production of enzymes and bioactive materials. Carbohydr. Polym., 2011, 84(2), 732-742.
[http://dx.doi.org/10.1016/j.carbpol.2010.06.022]
[27]
Liang, T.W.; Hsieh, J.L.; Wang, S.L. Production and purification of a protease, a chitosanase, and chitin oligosaccharides by Bacillus cereus TKU022 fermentation. Carbohydr. Res., 2012, 362, 38-46.
[http://dx.doi.org/10.1016/j.carres.2012.08.004] [PMID: 23079238]
[28]
Kjartansson, G.T.; Zivanovic, S.; Kristbergsson, K.; Weiss, J. Sonication-assisted extraction of chitin from North Atlantic shrimps (Pandalus borealis). J. Agric. Food Chem., 2006, 54(16), 5894-5902.
[http://dx.doi.org/10.1021/jf060646w] [PMID: 16881692]
[29]
Mahlous, M.; Tahtat, D.; Benamer, S.; Khodja, A.N. Gamma irradiation-aided chitin/chitosan extraction from prawn shells. Nucl. Instrum. Methods Phys. Res. B, 2007, 265(1), 414-417.
[http://dx.doi.org/10.1016/j.nimb.2007.09.015]
[30]
Sini, T.K.; Santhosh, S.; Mathew, P.T. Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydr. Res., 2007, 342(16), 2423-2429.
[http://dx.doi.org/10.1016/j.carres.2007.06.028] [PMID: 17707781]
[31]
Liu, W.; Sun, S.; Cao, Z.; Zhang, X.; Yao, K.; Lu, W.W.; Luk, K.D.K. An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials, 2005, 26(15), 2705-2711.
[http://dx.doi.org/10.1016/j.biomaterials.2004.07.038] [PMID: 15585274]
[32]
Du, Y.Z.; Lu, P.; Zhou, J.P.; Yuan, H.; Hu, F.Q. Stearic acid grafted chitosan oligosaccharide micelle as a promising vector for gene delivery system: factors affecting the complexation. Int. J. Pharm., 2010, 391(1-2), 260-266.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.017] [PMID: 20170716]
[33]
Hu, F.Q.; Zhao, M.D.; Yuan, H.; You, J.; Du, Y.Z.; Zeng, S. A novel chitosan oligosaccharide-stearic acid micelles for gene delivery: properties and in vitro transfection studies. Int. J. Pharm., 2006, 315(1-2), 158-166.
[http://dx.doi.org/10.1016/j.ijpharm.2006.02.026] [PMID: 16632285]
[34]
Yoo, H.S.; Lee, J.E.; Chung, H.; Kwon, I.C.; Jeong, S.Y. Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. J. Control. Release, 2005, 103(1), 235-243.
[http://dx.doi.org/10.1016/j.jconrel.2004.11.033] [PMID: 15710514]
[35]
Wang, W.; Yao, J.; Zhou, J.P.; Lu, Y.; Wang, Y.; Tao, L.; Li, Y.P. Urocanic acid-modified chitosan-mediated p53 gene delivery inducing apoptosis of human hepatocellular carcinoma cell line HepG2 is involved in its antitumor effect in vitro and in vivo. Biochem. Biophys. Res. Commun., 2008, 377(2), 567-572.
[http://dx.doi.org/10.1016/j.bbrc.2008.10.023] [PMID: 18929532]
[36]
Rafique, A.; Mahmood Zia, K.; Zuber, M.; Tabasum, S.; Rehman, S. Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review. Int. J. Biol. Macromol., 2016, 87, 141-154.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.035] [PMID: 26893051]
[37]
Yui, T.; Taki, N.; Sugiyama, J.; Hayashi, S. Exhaustive crystal structure search and crystal modeling of beta-chitin. Int. J. Biol. Macromol., 2007, 40(4), 336-344.
[http://dx.doi.org/10.1016/j.ijbiomac.2006.08.017] [PMID: 17010423]
[38]
Kurita, K. Controlled functionalization of the polysaccharide chitin. Prog. Polym. Sci., 2001, 26(9), 1921-1971.
[http://dx.doi.org/10.1016/S0079-6700(01)00007-7]
[39]
Dumitriu, S. Polysaccharides in Medicinal Application; Marcel Dekker: New York, 1996.
[40]
Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci., 2009, 34(7), 641-678.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001]
[41]
Gorochovceva, N.; Makuska, R. Synthesis and study of water-soluble chitosan-O-poly(ethylene glycol) graft copolymers. Eur. Polym. J., 2004, 40(4), 685-691.
[http://dx.doi.org/10.1016/j.eurpolymj.2003.12.005]
[42]
Zhang, M.; Ren, H.X. Structural modification and application of chitosan. Zhongguo Zu Zhi Gong Cheng Yan Jiu Yu Lin Chuang Kang Fu, 2007, 11(48), 9817-9820.
[43]
Badawy, M.E.I.; Rabea, E.I.; Rogge, T.M.; Stevens, C.V.; Smagghe, G.; Steurbaut, W.; Höfte, M. Synthesis and fungicidal activity of new N,O-acyl chitosan derivatives. Biomacromolecules, 2004, 5(2), 589-595.
[http://dx.doi.org/10.1021/bm0344295] [PMID: 15003025]
[44]
Jayakumar, R.; Prabaharan, M.; Reis, R.L.; Mano, J.F. Graft copolymerized chitosan - present status and applications. Carbohydr. Polym., 2005, 62(2), 142-158.
[http://dx.doi.org/10.1016/j.carbpol.2005.07.017]
[45]
Jenkins, D.W.; Hudson, S.M. Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers. Chem. Rev., 2001, 101(11), 3245-3273.
[http://dx.doi.org/10.1021/cr000257f] [PMID: 11840986]
[46]
Yoshifuji, A.; Noishiki, Y.; Wada, M.; Heux, L.; Kuga, S. Esterification of beta-chitin via intercalation by carboxylic anhydrides. Biomacromolecules, 2006, 7(10), 2878-2881.
[http://dx.doi.org/10.1021/bm060516w] [PMID: 17025365]
[47]
Dung, P.L.; Milas, M.; Rinaudo, M.; Desbrières, J. Water soluble derivatives obtained by controlled chemical modifications of chitosan. Carbohydr. Polym., 2008, 24(3), 209-214.
[http://dx.doi.org/10.1016/0144-8617(94)90132-5]
[48]
Ahmed, T.A.; Aljaeid, B.M. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Devel. Ther., 2016, 10(1), 483-507.
[http://dx.doi.org/10.2147/DDDT.S99651] [PMID: 26869768]
[49]
Muzzarelli, R.A.A. Chitin; Pergamon: Oxford, UK, 1977.
[50]
Hon, D.N.S. Chitin and chitiosan: medical applications. In: Polysaccharides in medicinal application; Dumitriu, S., Ed.; Marcel Dekker: New York, 1996; pp. 631-649.
[http://dx.doi.org/]
[51]
Muzzarelli, R.A.A.; Muzzarelli, C. Chitosan chemistry: Relevance to the biomedical sciences. Polysaccharides 1: Structure. Adv. Pol. Sci., 2005, 186, 151-209.
[http://dx.doi.org/10.1007/b136820]
[52]
Khor, E. Chitin: a biomaterial in waiting. Curr. Opin. Solid State Mater. Sci., 2002, 6(4), 313-317.
[http://dx.doi.org/10.1016/S1359-0286(02)00002-5]
[53]
Jayakumar, R.; Nwe, N.; Tokura, S.; Tamura, H. Sulfated chitin and chitosan as novel biomaterials. Int. J. Biol. Macromol., 2007, 40(3), 175-181.
[http://dx.doi.org/10.1016/j.ijbiomac.2006.06.021] [PMID: 16893564]
[54]
Zohuriaan-Mehr, M.J. Advances in chitin and chitosan modification through graft copolymerization: A comprehensive review. Iran. Polym. J., 2005, 14(3), 235-265.
[55]
Kumar, M.N.V.R.; Muzzarelli, R.A.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev., 2004, 104(12), 6017-6084.
[http://dx.doi.org/10.1021/cr030441b] [PMID: 15584695]
[56]
Kurita, K. Chitin and chitosan: functional biopolymers from marine crustaceans. Mar. Biotechnol. (NY), 2006, 8(3), 203-226.
[http://dx.doi.org/10.1007/s10126-005-0097-5] [PMID: 16532368]
[57]
Yi, H.; Wu, L.Q.; Bentley, W.E.; Ghodssi, R.; Rubloff, G.W.; Culver, J.N.; Payne, G.F. Biofabrication with chitosan. Biomacromolecules, 2005, 6(6), 2881-2894.
[http://dx.doi.org/10.1021/bm050410l] [PMID: 16283704]
[58]
Mourya, V.K.; Inamdar, N.N. Chitosan-modifications and applications: Opportunities galore. React. Funct. Polym., 2008, 68(6), 1013-1051.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2008.03.002]
[59]
Jayakumar, R.; Reis, R.L.; Mano, J.F. Chemistry and applications of phosphorylated chitin and chitosan. E-Polymers, 2006, 035, 1-16.
[60]
Jayakumar, R.; Prabaharan, M.; Reis, R.L.; Mano, J.F. Graft copolymerized chitosan-present status and applications. Carbohydr. Polym., 2005, 62, 142-215.
[http://dx.doi.org/10.1016/j.carbpol.2005.07.017]
[61]
Sashiwa, H.; Aiba, S.I. Chemically modified chitin and chitosan as biomaterials. Prog. Polym. Sci., 2004, 29(9), 887-908.
[http://dx.doi.org/10.1016/j.progpolymsci.2004.04.001]
[62]
Ning, M.; Wang, Q.; Sun, S.L.; Wang, A.Q. Progress in chemical modification of chitin and chitosan. Huaxue Jinzhan, 2004, 16(4), 643-653.
[63]
Morimoto, M.; Saimoto, H.; Usui, H.; Okamoto, Y.; Minami, S.; Shigemasa, Y. Biological activities of carbohydrate-branched chitosan derivatives. Biomacromolecules, 2001, 2(4), 1133-1136.
[http://dx.doi.org/10.1021/bm010063p] [PMID: 11777384]
[64]
Morimoto, M.; Saimoto, H.; Shigemasa, Y. Control of functions of chitin and chitosan by chemical modification. Trends Glycosci. Glycotechnol., 2002, 14(78), 205-222.
[http://dx.doi.org/10.4052/tigg.14.205]
[65]
Li, X.B.; Morimoto, M.; Sashiwa, H.; Saimoto, H.; Okamoto, Y.; Minami, S.; Shigemasa, Y. Synthesis of chitosan sugar hybrid and evaluation of its bioactivity. Polym. Adv. Technol., 1999, 10(7), 455-458.
[http://dx.doi.org/10.1002/(SICI)1099- 1581(199907)10:7<455::AID-PAT895>3.0.CO;2-E]
[66]
Wang, H.; Qian, J.; Ding, F. Recent advances in engineered chitosan-based nanogels for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(34), 6986-7007.
[http://dx.doi.org/10.1039/C7TB01624G] [PMID: 32263890]
[67]
Guaresti, O.; García-Astrain, C.; Palomares, T.; Alonso-Varona, A.; Eceiza, A.; Gabilondo, N. Synthesis and characterization of a biocompatible chitosan-based hydrogel cross-linked via ‘click’ chemistry for controlled drug release. Int. J. Biol. Macromol., 2017, 102, 1-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.003] [PMID: 28380333]
[68]
Wen, Y.; Li, F.; Li, C.; Yin, Y.; Li, J. High mechanical strength chitosan-based hydrogels cross-linked with poly(ethylene glycol)/polycaprolactone micelles for the controlled release of drugs/growth factors. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(5), 961-971.
[http://dx.doi.org/10.1039/C6TB02201D ] [PMID: 32263874]
[69]
Liu, H.; Wang, C.Y.; Li, C.; Qin, Y.G.; Wang, Z.H.; Yang, F.; Li, Z.H.; Wang, J.C. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances, 2018, 8(14), 7533-7549.
[http://dx.doi.org/10.1039/C7RA13510F]
[70]
Li, Y.S.; Wang, X.; Wei, Y.; Tao, L. Chitosan-based self healing hydrogel for bioapplications. Chin. Chem. Lett., 2017, 28(11), 2053-2057.
[http://dx.doi.org/10.1016/j.cclet.2017.09.004]
[71]
Wu, T.; Li, Y.; Lee, D.S. Chitosan-based composite hydrogels for biomedical applications. Macromol. Res., 2017, 25(6), 480-488.
[http://dx.doi.org/10.1007/s13233-017-5066-0]
[72]
Jayakumar, R.; Prabaharan, M.; Sudheesh Kumar, P.T.; Nair, S.V.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv., 2011, 29(3), 322-337.
[http://dx.doi.org/10.1016/j.biotechadv.2011.01.005] [PMID: 21262336]
[73]
Tang, Q.; Luo, C.; Lu, B.; Fu, Q.; Yin, H.; Qin, Z.; Lyu, D.; Zhang, L.; Fang, Z.; Zhu, Y.; Yao, K. Thermosensitive chitosan-based hydrogels releasing stromal cell derived factor-1 alpha recruit MSC for corneal epithelium regeneration. Acta Biomater., 2017, 61, 101-113.
[http://dx.doi.org/10.1016/j.actbio.2017.08.001] [PMID: 28780431]
[74]
Li, Z.; Shim, H.; Cho, M.O.; Cho, I.S.; Lee, J.H.; Kang, S.W.; Kwon, B.; Huh, K.M. Thermo-sensitive injectable glycol chitosan-based hydrogel for treatment of degenerative disc disease. Carbohydr. Polym., 2018, 184, 342-353.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.006] [PMID: 29352928]
[75]
Salama, A. Chitosan based hydrogel assisted spongelike calcium phosphate mineralization for in-vitro BSA release. Int. J. Biol. Macromol., 2018, 108, 471-476.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.035] [PMID: 29225177]
[76]
Guaresti, O.; García-Astrain, C.; Aguirresarobe, R.H.; Eceiza, A.; Gabilondo, N. Synthesis of stimuli-responsive chitosan-based hydrogels by Diels-Alder cross-linking `click´ reaction as potential carriers for drug administration. Carbohydr. Polym., 2018, 183, 278-286.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.034] [PMID: 29352885]
[77]
Zhao, X.W.; Zou, X.; Ye, L. Controlled pH- and glucose responsive drug release behavior of cationic chitosan based nano-composite hydrogels by using graphene oxide as drug nanocarrier. J. Ind. Eng. Chem., 2017, 49, 36-45.
[http://dx.doi.org/10.1016/j.jiec.2016.12.023]
[78]
Zhu, K.; Duan, J.; Guo, J.; Wu, S.; Lu, A.; Zhang, L. High strength films consisted of oriented chitosan nanofibers for guiding cell growth. Biomacromolecules, 2017, 18(12), 3904-3912.
[http://dx.doi.org/10.1021/acs.biomac.7b00936] [PMID: 28992405]
[79]
Khajuria, D.K.; Zahra, S.F.; Razdan, R. Effect of locally administered novel biodegradable chitosan based risedronate/zinc-hydroxyapatite intra-pocket dental film on alveolar bone density in rat model of periodontitis. J. Biomater. Sci. Polym. Ed., 2018, 29(1), 74-91.
[http://dx.doi.org/10.1080/09205063.2017.1400145] [PMID: 29088987]
[80]
Shao, J.; Yu, N.; Kolwijck, E.; Wang, B.; Tan, K.W.; Jansen, J.A.; Walboomers, X.F.; Yang, F. Biological evaluation of silver nanoparticles incorporated into chitosan-based membranes. Nanomedicine (Lond.), 2017, 12(22), 2771-2785.
[http://dx.doi.org/10.2217/nnm-2017-0172] [PMID: 28967828]
[81]
Chetouani, A.; Follain, N.; Marais, S.; Rihouey, C.; Elkolli, M.; Bounekhel, M.; Benachour, D.; Le Cerf, D. Physicochemical properties and biological activities of novel blend films using oxidized pectin/chitosan. Int. J. Biol. Macromol., 2017, 97, 348-356.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.018] [PMID: 28065750]
[82]
Mahmoudi, N.; Simchi, A. On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide. Mater. Sci. Eng. C, 2017, 70(Pt 1), 121-131.
[http://dx.doi.org/10.1016/j.msec.2016.08.063] [PMID: 27770871]
[83]
Moghadas, B.; Dashtimoghadam, E.; Mirzadeh, H.; Seidi, F.; Hasani-Sadrabadi, M.M. Novel chitosan-based nanobiohybrid membranes for wound dressing applications. RSC Advances, 2016, 6(10), 7701-7711.
[http://dx.doi.org/10.1039/C5RA23875G]
[84]
Pavinatto, F.J.; Caseli, L.; Oliveira, O.N. Chitosan in nanostructured thin films. Biomacromolecules, 2010, 11(8), 1897-1908.
[http://dx.doi.org/10.1021/bm1004838] [PMID: 20590156]
[85]
Ribeiro, J.C.V.; Vieira, R.S.; Melo, I.M.; Araújo, V.M.A.; Lima, V. Versatility of chitosan-based biomaterials and their use as scaffolds for tissue regeneration. ScientificWorldJournal, 2017, 2017, 8639898
[http://dx.doi.org/10.1155/2017/8639898] [PMID: 28567441]
[86]
Langer, R.; Vacanti, J.P. Tissue engineering. Science, 1993, 260(5110), 920-926.
[http://dx.doi.org/10.1126/science.8493529] [PMID: 8493529]
[87]
Lanza, R.; Langer, R.; Vacanti, J. Principles of tissue engineering; Elsevier: San Diego, Calif, USA, 2014.
[88]
Dvir, T.; Timko, B.P.; Kohane, D.S.; Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol., 2011, 6(1), 13-22.
[http://dx.doi.org/10.1038/nnano.2010.246] [PMID: 21151110]
[89]
Sivashankari, P.R.; Prabaharan, M. Prospects of chitosan based scaffolds for growth factor release in tissue engineering. Int. J. Biol. Macromol., 2016, 93(Pt B), 1382-1389.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.043] [PMID: 26899174]
[90]
Begum, E.R.A.; Bhavani, K.; Kumari, S.S.; Devi, S.M.; Priya, C.G.; Shenbagarathai, R. Evaluation of extracted beta-chitosan from Loligo duvauceli for the preparation of tissue engineering scaffolds. J. Polym. Environ., 2018, 26(3), 1231-1238.
[http://dx.doi.org/10.1007/s10924-017-1020-7]
[91]
Agarwal, T.; Narayan, R.; Maji, S.; Behera, S.; Kulanthaivel, S.; Maiti, T.K.; Banerjee, I.; Pal, K.; Giri, S. Gelatin/Carboxymethyl chitosan based scaffolds for dermal tissue engineering applications. Int. J. Biol. Macromol., 2016, 93(Pt B), 1499-1506.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.028] [PMID: 27086289]
[92]
Saravanan, S.; Leena, R.S.; Selvamurugan, N. Chitosan based biocomposite scaffolds for bone tissue engineering. Int. J. Biol. Macromol., 2016, 93(Pt B), 1354-1365.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.112] [PMID: 26845481]
[93]
Balagangadharan, K.; Dhivya, S.; Selvamurugan, N. Chitosan based nanofibers in bone tissue engineering. Int. J. Biol. Macromol., 2017, 104(Pt B), 1372-1382.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.046] [PMID: 27993655]
[94]
Arkoun, M.; Daigle, F.; Heuzey, M.C.; Ajji, A. Antibacterial electrospun chitosan-based nanofibers: A bacterial membrane perforator. Food Sci. Nutr., 2017, 5(4), 865-874.
[http://dx.doi.org/10.1002/fsn3.468] [PMID: 28748074]
[95]
Rijal, N.P.; Adhikari, U.; Khanal, S.; Pai, D.; Sankar, J.; Bhattarai, N. Magnesium oxide-poly(epsilon-caprolactone)-chitosan-based composite nanofiber for tissue engineering applications. Mat. Sci. Eng. B-Adv. Func. Solid-State Mat., 2018, 228, 18-27.
[http://dx.doi.org/10.1016/j.mseb.2017.11.006]
[96]
Sathiyaseelan, A.; Shajahan, A.; Kalaichelvan, P.T.; Kaviyarasan, V. Fungal chitosan based nanocomposites sponges-An alternative medicine for wound dressing. Int. J. Biol. Macromol., 2017, 104(Pt B), 1905-1915.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.188] [PMID: 28373049]
[97]
Harris, M.; Ahmed, H.; Barr, B.; LeVine, D.; Pace, L.; Mohapatra, A.; Morshed, B.; Bumgardner, J.D.; Jennings, J.A. Magnetic stimuli-responsive chitosan-based drug delivery biocomposite for multiple triggered release. Int. J. Biol. Macromol., 2017, 104(Pt B), 1407-1414.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.141] [PMID: 28365285]
[98]
Lal, N.; Dubey, J.; Gaur, P.; Verma, N.; Verma, A. Chitosan based in situ forming polyelectrolyte complexes: A potential sustained drug delivery polymeric carrier for high dose drugs. Mater. Sci. Eng. C, 2017, 79, 491-498.
[http://dx.doi.org/10.1016/j.msec.2017.05.051] [PMID: 28629045]
[99]
Di Martino, A.; Kucharczyk, P.; Capakova, Z.; Humpolicek, P.; Sedlarik, V. Chitosan-based nanocomplexes for simultaneous loading, burst reduction and controlled release of doxorubicin and 5-fluorouracil. Int. J. Biol. Macromol., 2017, 102, 613-624.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.004] [PMID: 28431942]
[100]
Raja, M.A.; Arif, M.; Feng, C.; Zeenat, S.; Liu, C.G. Synthesis and evaluation of pH-sensitive, self-assembled chitosan-based nanoparticles as efficient doxorubicin carriers. J. Biomater. Appl., 2017, 31(8), 1182-1195.
[http://dx.doi.org/10.1177/0885328216681184] [PMID: 28081668]
[101]
Delezuk, J.A.M.; Ramírez-Herrera, D.E.; Esteban-Fernández de Ávila, B.; Wang, J. Chitosan-based water-propelled micromotors with strong antibacterial activity. Nanoscale, 2017, 9(6), 2195-2200.
[http://dx.doi.org/10.1039/C6NR09799E] [PMID: 28134392]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 28
Year: 2020
Published on: 06 August, 2020
Page: [4660 - 4672]
Pages: 13
DOI: 10.2174/0929867327666200420091312
Price: $65

Article Metrics

PDF: 26
HTML: 4