Water-Zeolite Interfaces for Controlling Reaction Routes in Fischer- Tropsch Synthesis of Alternative Fuels

Author(s): Vladimir Z. Mordkovich*, Lilia V. Sineva

Journal Name: Current Catalysis

Volume 9 , Issue 1 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The Fischer-Tropsch Synthesis (FTS) remains an important process for motor fuel production from CO and H2. The composition of the FTS products (hydrocarbon mixtures) depends on the properties of a catalyst and on the process conditions.

Summary: The introduction of zeolites into catalytic systems can alter the molecular weight distribution paving the way to tailor-made fuels, as was revealed by recent research results produced in the laboratories worldwide. The AlO4 and SiO4 tetrahedrons, which constitute the zeolites, are able to transfer electrons and ions in a way, which makes water-zeolite interfaces capable of initiating active carbonium ions. It was shown in a number of works that the water-zeolite interface plays a key role in diverting the FTS from the classical route.

Conclusion: This review gives a critical analysis of literature data on the role of water-zeolite interfaces on FTS cobalt catalysts and on the interactions of hydrophobic and hydrophilic zeolites with water.

Keywords: Zeolite, cobalt, Fischer-tropsch synthesis, alternative fuel, cooperative catalysis, water.

[1]
Catalysis in the Refining of Fischer-Tropsch Syncrude. de Klerk, A., Furimsky, E. Ed. RSC Publishing Cambridge, 2010. Van Steen, E., Claeys, M. Fischer-Tropsch Catalysts for the Biomass‐to‐Liquid (BTL). Process. Chem. Eng. Technol., 2008, 31, 655-667.
[2]
Lapidus, A.L.; Krylova, A.Yu.; Mikhailova, Ya.V.; Sineva, L.V.; Erofeev, A.B. Effect of the nature of the support of a cobalt catalyst on the synthesis of hydrocarbons from CO, H2, and C2H4,
[3]
Rossetti, I.; Gambaro, C.; Calemma, V. Hydrocracking of long chain linear paraffins. Chem. Eng. J., 2009, 154, 295-315. Gamba, S., Pellegrini, L.A., Calemma, V., Gambaro, C. Liquid fuels from Fischer-Tropsch wax hydrocracking: Isomer distribution. Catal. Today, 2016, 156, 58-67. Jiang, J., Yang, C., Lu, Z., Ding, J., Lia, T., Lu, Y., Cao, F. Characterization and application of a Pt/ZSM-5/SSMF catalyst for hydrocracking of paraffin wax. Catal. Commun., 2015, 60, 1-6. Calemma, V., Gambaro, C., Parker Jr., W.O., Carbone, R., Giardino R., Scorletti, P. Middle distillates from hydrocracking of FT waxes: Composition, characteristics and emission properties. Catal. Today, 2010, 149, 40-49.
[4]
Hodala, J.A.; Jung, J-S.; Yang, E-H.; Hong, G.H.; Noh, Y.S.; Moon, D.J. Hydrocracking of FT-wax to fuels over non-noble metal catalysts. Fuel, 2016, 185, 339-347.
[http://dx.doi.org/10.1016/j.fuel.2016.07.124]
[5]
Weitkamp, J.; Ernst, S. Factors Influencing the Selectivity of Hydrocracking in Zeolites. Guidelines for Mastering the Properties of Molecular Sieves, Plenum Press: New York 1990, 4, pp. 343- 354 Weitkamp, J. Catalytic Hydrocracking Mechanisms and Versatility of the Process. ChemCatChem; Plenum Press: New York, 2012, 4, pp. 292-,Kinger, G.; Vinek, H. N-nonane hydroconversion on Ni and Pt containing HMFI, HMOR and HBEA. Appl. Catal; Plenum Press: New York, 2001, 4, pp. 139-.
[6]
Busca, G., Ed.; Heterogeneous Catalytic Materials; Elsevier: Amsterdam, 2014.
[7]
Steynberg, A.P.; Dry, M., Eds.; Fischer-Tropsch Technology; Elsevier: Amsterdam, 2004, Vol. 152, .
[8]
Böhringer, W.; Kotsiopoulos, A.; de Boer, M.; Knottenbelt, C.; Fletcher, J.C.Q. Selective Fischer-Tropsch wax hydrocracking-opportunity for improvement of overall gas-to-liquids processing.Fischer-Tropsch synthesis, catalysts and catalysis; Davis, B.H; Elsevier, B.V., Ed.; Amsterdam, 2007, pp. 345-365.
[http://dx.doi.org/10.1016/S0167-2991(07)80488-5]
[9]
Mordkovich, V.Z.; Ermolaev, V.S.; Mitberg, E.B.; Sineva, L.V.; Solomonik, I.G.; Ermolaev, I.S.; Asalieva, E.Yu. Composite pelletized catalyst for higher one-pass conversion and productivity in Fischer-Tropsch process. Res. Chem. Intermed., 2015, 41, 9539-9537.
[http://dx.doi.org/10.1007/s11164-015-1978-5]
[10]
Shape selective catalysis in industrial applicationsChen, N.Y.; Garwood, W.E.; Dwyer, F.G.; Guisnet, M.; Gilson, J.P., Eds. Zeolites for cleaner technologies, 2nd ed; Imperial College Press: London: Dekker: New York, 2002.
[11]
Wallenstein, D.; Harding, R.H. The dependence of ZSM-5 additive performance on the hydrogen-transfer activity of the ReUSY base catalyst in fluid catalytic cracking. Appl. Catal., 2001, A214, 11-16.
[http://dx.doi.org/10.1016/S0926-860X(01)00482-3]
[12]
Sartipi, S.; Parashar, K.; Valero-Romero, M.J.; Santos, V.P.; der Linden, B.; Makkee, M.; Kapteijn, F.; Gascon, J. Hierarchical H-ZSM-5-supported cobalt for the direct synthesis of gasoline-range hydrocarbons from syngas: Advantages, limitations, and mechanistic insight. J. Catal., 2013, 305, 179-185.
[http://dx.doi.org/10.1016/j.jcat.2013.05.012]
[13]
Oukaci, R.; Wu, J.C.S.; Goodwin, J.G. Effect of SiAl ratio on secondary reactions during CO hydrogenation on zeolite-supported metal catalysts. J. Catal., 1988, 110, 47-55.
[http://dx.doi.org/10.1016/0021-9517(88)90296-5]
[14]
Martínez, A.; Rollán, J.; Arribas, M.A.; Cerqueira, H.S.; Costa, A.F.; Aguiar, E.F.S. A detailed study of the activity and deactivation of zeolites in hybrid Co/SiO2-zeolite Fischer-Tropsch catalysts. J. Catal., 2007, 249, 162-169.
[http://dx.doi.org/10.1016/j.jcat.2007.04.012]
[15]
Freitez, A.; Pabst, K.; Kraushaar-Czarnetzki, B.; Schaub, G. Single-stage fischer-tropsch synthesis and hydroprocessing: The hydroprocessing performance of Ni/ZSM-5/γ-Al2O3 under fischer-tropsch conditions. Ind. Eng. Chem. Res., 2011, 50, 13732-13738.
[http://dx.doi.org/10.1021/ie201913s]
[16]
Kang, J.; Cheng, K.; Zhang, L.; Zhang, Q.; Ding, J.; Hua, W.; Lou, Y.; Zhai, Q.; Wang, Y. Mesoporous Zeolite‐Supported Ruthenium Nanoparticles as Highly Selective Fischer-Tropsch Catalysts for the Production of C5-C11 Isoparaffins. Angew. Chem., Int. Ed., 2011, 50, 5200-5206. Sartipi, S., Parashar, K., Makkee, M., Gascon, J., Kapteijn, F. Breaking the Fischer-Tropsch synthesis selectivity: direct conversion of syngas to gasoline over hierarchical Co/H-ZSM-5 catalysts. Catal. Sci. Technol., 2013, 3, 572-278. Sartipi, S., Makkee, M., Kapteijn, F., Gascon, J. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from the syngas: a review. Catal. Sci. Technol., 2014, 4, 893-905.
[17]
Maitlis, P.M.; Klerk, A., Eds.; Greener Fischer-Tropsch Processes; Wiley-VCH: Weinheim, 2013.
[http://dx.doi.org/10.1002/9783527656837]
[18]
Martinez, A.; Prieto, G. The Application of Zeolites and Periodic Mesoporous Silicas in the Catalytic Conversion of Synthesis Gas In: Top. Catal; Wiley-VCH: Weinheim, 2009, 52, pp. 75- 84..Cejka, J.; Corma, A.; Zones, S. Zeolites and Catalysis; Wiley- VCH: Weinheim, 2010, 52, pp.
[19]
Zeolite Chemistry and Catalysis. Rabo, J. A., Ed.; Amer; Chemical Society: Washington; , 1976.
[20]
Li, Y.; Wang, T.; Wu, C.; Li, H.; Qin, X.; Tsubaki, N. Gasoline-range hydrocarbon synthesis over Co/SiO2/HZSM-5 catalyst with CO2-containing syngas. Fuel Process. Technol., 2010, 91, 388-395. Bouchy, C., Hastoy, G., Guillon, E., Martens, J.A. Fischer-Tropsch Waxes Upgrading via Hydrocracking and Selective Hydroisomerization. Oil Gas Sci. Technol., 2009, 64, 91-96. Botes, F.G., Böhringer, W. The addition of HZSM-5 to the Fischer-Tropsch process for improved gasoline production. Appl. Catal., 2004, A267, 217-223.
[21]
Sineva, L.V.; Asalieva, E.Yu.; Mordkovich, V.Z. The role of zeolite in the Fischer-Tropsch synthesis over cobalt-zeolite catalysts. Russ. Chem. Rev., 2015, 84, 1176-1189.
[http://dx.doi.org/10.1070/RCR4464]
[22]
Tsubaki, N.; Yoneyama, Y.; Michiki, K.; Fujimoto, K. Three-component hybrid catalyst for direct synthesis of isoparaffin via modified Fischer-Tropsch synthesis. Catal. Commun., 2003, 4, 108-113.
[http://dx.doi.org/10.1016/S1566-7367(03)00003-7]
[23]
Li, X.; Asami, K.; Luo, M.; Michiki, K.; Tsubaki, N.; Fujimoto, K. Direct synthesis of middle iso-paraffins from synthesis gas. Catal. Today, 2003, 84, 59-65.
[http://dx.doi.org/10.1016/S0920-5861(03)00301-8]
[24]
Li, X.; Luo, M.; Asami, K. Direct synthesis of middle iso-paraffins from synthesis gas on hybrid catalysts. Catal. Today, 2004, 89, 439-444.
[http://dx.doi.org/10.1016/j.cattod.2004.03.054]
[25]
Sineva, L.V.; Khatkova, E.Yu.; Kriventceva, E.V.; Mordkovich, V.Z. Effect of introduced zeolite on the Fischer-Tropsch synthesis over a cobalt catalyst. Mendeleev Commun., 2014, 24, 316-318.
[http://dx.doi.org/10.1016/j.mencom.2014.09.024]
[26]
Kulchakovskaya, E.V.; Asalieva, E.Yu.; Gryaznov, K.O.; Sineva, L.V.; Mordkovich, V.Z. Effect of the mode of introduction of cobalt into a composite zeolite catalyst on the product composition of Fischer-Tropsch synthesis. Petrol. Chem., 2015, 55, 45-50.
[http://dx.doi.org/10.1134/S0965544115010089]
[27]
Sartipi, S.; van Dijk, J.E.; Gascon, J.; Kapteijn, F. Toward bifunctional catalysts for the direct conversion of syngas to gasoline range hydrocarbons: H-ZSM-5 coated Co versus H-ZSM-5 supported Co. Appl. Catal., 2013, A456, 11-16.
[http://dx.doi.org/10.1016/j.apcata.2013.02.012]
[28]
Yang, G.; Xing, Ch.; Hirohama, W.; Jin, Y.; Zeng, Ch.; Suehiro, Y.; Wang, T.; Yoneyama, Y.; Tsubaki, N. Tandem catalytic synthesis of light isoparaffin from syngas via Fischer-Tropsch synthesis by newly developed core-shell-like zeolite capsule catalysts. Catal. Today, 2013, 215, 29-34.
[http://dx.doi.org/10.1016/j.cattod.2013.01.010]
[29]
He, J.; Yoneyama, Y.; Xu, B.; Nishiyama, N.; Tsubaki, N. Designing a capsule catalyst and its application for direct synthesis of middle isoparaffins. Langmuir, 2005, 21(5), 1699-1702.
[http://dx.doi.org/10.1021/la047217h PMID: 15723460]
[30]
He, J.; Liu, Z.; Yoneyama, Y.; Nishiyama, N.; Tsubaki, N. Multiple-functional capsule catalysts: A tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas. Chemistry, 2006, 12(32), 8296-8304.
[http://dx.doi.org/10.1002/chem.200501295 PMID: 16850512]
[31]
Yang, G.; He, J.; Yoneyama, Y.; Tan, Y.; Han, Y.; Tsubaki, N. Preparation, characterization and reaction performance of H-ZSM-5/cobalt/silica capsule catalysts with different sizes for direct synthesis of isoparaffins. Appl. Catal., 2007, A329, 99-106. Yang, G., He, J., Zhang, Y., Yoneyama, Y., Tan, Y., Han, Y., Vitidsant, Th., Tsubaki, N. Design and Modification of Zeolite Capsule Catalyst, A Confined Reaction Field, and its Application in One-Step Isoparaffin Synthesis from Syngas. Energy Fuels, 2008, 22, 1463-1468. Jin, Yu., Yang, R., Mori, Y., Sun, J., Taguchi, A., Yoneyama, Y., Abe, T., Tsubaki, N. Preparation and performance of Co based capsule catalyst with the zeolite shell sputtered by Pd for direct isoparaffin synthesis from syngas. Appl. Catal., 2013, A456, 75-81.
[32]
Kang, S.H.; Ryu, J.H.; Kim, J.H.; Prasad, P.S.S.; Bae, J.W.; Cheon, J.Y.; Jun, K.W. ZSM-5 Supported Cobalt Catalyst for the Direct Production of Gasoline Range Hydrocarbons by Fischer-Tropsch Synthesis. Catal. Lett., 2011, 141, 1464-1469. den Breejen, J.P., Radstake, P.B., Bezemer, G.L., Bitter, J.H., Froseth, V., Holmen, A., de Jong, K.P. On the Origin of the Cobalt Particle Size Effects in Fischer-Tropsch Catalysis. J. Am. Chem. Soc., 2009, 131, 7197-7204.
[33]
Espinosa, G.; Dominguez, J.M.; Morales-Pacheco, P.; Tobon, A.; Aguilar, M.; Benitez, J. Catalytic behavior of Co/(Nanoβ-Zeolite) bifunctional catalysts for Fischer-Tropsch reactions. Catal. Today, 2011, 166, 47-52. Pereira, A.L.C., Gonzalez-Carballo, J.M., Perez-Alonso, F.J., Rojas, S., Fierro, J.L.G., do Carmo Rangel, M. Effect of the Mesostructuration of the Beta Zeolite Support on the Properties of Cobalt Catalysts for Fischer-Tropsch Synthesis. Top. Catal., 2011, 54, 179-185.
[34]
Kibby, C.; Jothimurugesan, K.; Das, T.; Lacheen, H.S.; Rea, T.; Saxton, R.J. Chevron’s gas conversion catalysis-hybrid catalysts for wax-free Fischer-Tropsch synthesis. Catal. Today, 2013, 215, 131-137.
[http://dx.doi.org/10.1016/j.cattod.2013.03.009]
[35]
Bessel, S. Investigation of bifunctional zeolite supported cobalt Fischer-Tropsch catalysts. Appl. Catal., 1995, A126, 235-242.
[http://dx.doi.org/10.1016/0926-860X(95)00040-2]
[36]
Ngamcharussrivichai, C.; Liu, X.; Li, X.; Vitidsant, T.; Fujimoto, K. An active and selective production of gasoline-range hydrocarbons over bifunctional Co-based catalysts. Fuel, 2007, 86, 50-56.
[http://dx.doi.org/10.1016/j.fuel.2006.06.021]
[37]
Sineva, L.V.; Mordkovich, V.Z.; Khatkova, E.Yu. Fischer-tropsch synthesis in the presence of composite catalysts with different types of active cobalt. Mendeleev Commun., 2013, 23, 44-45.
[http://dx.doi.org/10.1016/j.mencom.2013.01.016]
[38]
Mordkovich, V.Z.; Mitberg, E.B.; Ermolaev, V.S.; Sineva, L.V.; Solomonik, I.G.; Asalieva, E.Yu.; Ermolaev, I.S. Advanced Catalytic Science and Technology Proceedings of The Seventh Tokyo Conference (TOCAT7), Kyoto, Japan2014 1-6June;, p. 40..
[39]
Subiranas, A.; Schaub, G. Combining Fischer-Tropsch Synthesis (FTS) and Hydrocarbon Reactions in one Reactor. Int. J. Chem. React. Eng., 2009, 7, A31-A36.
[40]
Bao, J.; He, J.; Zhang, Y.; Yoneyama, Y.; Tsubaki, N. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction. Angew. Chem. Int. Ed. Engl., 2008, 47(2), 353-356.
[http://dx.doi.org/10.1002/anie.200703335 PMID: 18000999]
[41]
Khatkova, E.Yu.; Sineva, L.V.; Mordkovich, V.Z. Zeolite Conference Proceedings of The 17th International ConferenceMoscow, Russia2013.7-12June;, p. 144.
[42]
Breck, D.W., Ed.; Zeolite molecular sieves: structure, chemistry and use; Wiley: New York, 1974.
[43]
Patarin, J.; Gies, H. Crystalline and organized porous solids. C. R. Chim., 2005, 8, 243-249.
[http://dx.doi.org/10.1016/j.crci.2005.03.001]
[44]
Loewenstein, W. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral., 1954, 39, 92-100.
[45]
Database of Zeolite Structures. http://www.iza-structure.org/databases/ [April 26, 2019]
[46]
Kubasov, A.A. Zeolites — boiling stones. Sorosovsky Edu. J., 1998, 7, 70-74. [in Russian]
[47]
Tagliabue, M.; Farrusseng, D.; Valencia, S.; Aguado, S.; Ravon, U.; Rizzo, C.; Corma, A.; Mirodatos, C. Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chem. Eng. J., 2009, 155, 553-560.
[http://dx.doi.org/10.1016/j.cej.2009.09.010]
[48]
Breck, D.W., Ed.; Zeolite Molecular Sieves; R.E. Krieger Pub. Co.: Florida, 1984.
[49]
Jacobs, W.P.J.H.; Jobic, H.; van Wolput, J.H.M.C.; van Santen, R.A. Fourier transform infrared and inelastic neutron scattering study of HY zeolites. Zeolites, 1992, 12, 315-322. Paze, C., Bordiga, S., Lamberti, C., Salvalaggio, M., Zecchina, A., Bellussi, G. Acidic Properties of H−β Zeolite As Probed by Bases with Proton Affinity in the 118−204 kcal mol-1 Range: A FTIR Investigation. J. Phys. Chem., 1997, B101, 4740-4749.
[50]
Guzman, A.; Zuazo, I.; Feller, A.; Olindo, R.; Sievers, C.; Lercher, J.A. On the formation of the acid sites in lanthanum exchanged X zeolites used for isobutane/cis-2-butene alkylation. Microporous Mesoporous Mater., 2005, 83, 309-314.
[http://dx.doi.org/10.1016/j.micromeso.2005.04.024]
[51]
Huang, J.; Jiang, Y.; Ramana, V.; Marthala, R.; Hunger, M. Characterization and acidic properties of aluminum-exchanged zeolites X and Y. J. Phys. Chem., 2008, C112, 3811-3817.
[52]
Schallmoser, S.; Ikuno, T.; Wagenhofer, M.F.; Kolvenbach, R.; Haller, G.L.; Sanchez-Sanchez, M.; Lercher, J.A. Impact of the local environment of Brønsted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking. J. Catal., 2014, 316, 93-98.
[http://dx.doi.org/10.1016/j.jcat.2014.05.004]
[53]
Almutairi, S.M.T.; Pidko, E.A.; Magusin, P.C.M.M.; Hensen, E.J.M. Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite. J. Catal., 2013, 307, 194-199.
[http://dx.doi.org/10.1016/j.jcat.2013.07.021]
[54]
Velichkina, L.M.; Korobitsyna, L.L.; Vosmerikov, A.V.; Radomskaya, V.I. The synthesis and physicochemical and catalytic properties of SHS zeolites. Russ. J. Phys. Chem, 2007, A81, 1618-1624.
[http://dx.doi.org/10.1134/S0036024407100135]
[55]
Korobitsyna, L.L. Synthesis, acid and catalytic properties of high-silica zeolites of the ZSM type in hydrocarbon production processes., PhD Thesis., Tomsk Polytechnic University: Tomsk, Russia, 1998. (in Russian).
[56]
Senchenya, I.N. The nature of Lewis acid sites in oxide and zeolite catalysts and their role in heterogeneous acid catalysis, PhD Thesis., N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences Moscow, Russia. 1996.
[57]
Srivastava, R.; Iwasa, N.; Fujita, Sh.; Arai, M. Dealumination of zeolite beta catalyst under controlled conditions for enhancing its activity in acylation and esterification. Catal. Lett., 2009, 130, 655-660.
[http://dx.doi.org/10.1007/s10562-009-9992-0]
[58]
Fan, Y.; Bao, X.; Lin, X.; Shi, G.; Liu, H. Acidity adjustment of HZSM-5 zeolites by dealumination and realumination with steaming and citric acid treatments. J. Phys. Chem., 2006, B110, 15411-15415. Niwa, M., Katada, N. New Method for the Temperature‐Programmed Desorption (TPD) of Ammonia Experiment for Characterization of Zeolite Acidity. A Review. Chem. Rec., 2013, 13, 432-443.
[59]
Bordiga, S.; Palomino, G.T.; Paze’, C.; Zecchina, A. Vibrational spectroscopy of H2, N2, CO and NO adsorbed on H, Li, Na, K-exchanged ferrierite. Microporous Mesoporous Mater., 2000, 34, 67-72.
[http://dx.doi.org/10.1016/S1387-1811(99)00160-2]
[60]
Klyachko, A.L.; Mishin, I.V. Regulation of catalytic, acidic and structural properties of zeolites by changing the composition of the carcass. Neftekhimia, 1990, 30, 339-343 (in Russian). Camiloti, A.M., Jahn, S.L., Velasco, N.D., Moura, L.F., Cardoso, D. Acidity of Beta zeolite determined by TPD of ammonia and ethylbenzene disproportionation. Appl. Catal., 1999, A182, 107-112.
[61]
Rodríguez-González, L.; Rodríguez-Castellón, E.; Jiménez-López, A.; Simon, U. Correlation of TPD and impedance measurements on the desorption of NH3 from zeolite H-ZSM-5. Solid State Ion., 2008, 179, 1968-1973.
[http://dx.doi.org/10.1016/j.ssi.2008.06.007]
[62]
Jentoft, F.C.; Gates, B.C. Solid-acid-catalyzed alkane cracking mechanisms: evidence from reactions of small probe molecules. Top. Catal., 1997, 4, 1-6.
[http://dx.doi.org/10.1023/A:1019184004885]
[63]
Stepanov, A.G.; Luzgin, M.V.; Romannikov, V.N.; Zamaraev, K.I. Carbenium ion properties of octene-1 adsorbed on zeolite H-ZSM-5. Catal. Lett., 1994, 24, 271-277.
[http://dx.doi.org/10.1007/BF00811800]
[64]
Rahimi, N.; Karimzadeh, R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review. Appl. Catal., 2011, A398, 1-15.
[65]
Anderson, B.G.; Schumacher, R.R.; van Duren, R.; Singh, A.P.; van Santen, R.A. An attempt to predict the optimum zeolite-based catalyst for selective cracking of naphtha-range hydrocarbons to light olefins. J. Mol. Catal. A, 2002, 181, 291-301.
[http://dx.doi.org/10.1016/S1381-1169(01)00374-0]
[66]
Jacobs, G.; Das, T.K.; Li, J.L.; Luo, M.S.; Patterson, P.M.; Davis, B.H. Fischer-tropsch synthesis: Influence of support on the impact of co-fed water for cobalt-based catalysts. Stud. Surf. Sci. Catal., 2007, 163, 217-225.
[http://dx.doi.org/10.1016/S0167-2991(07)80481-2]
[67]
Caeiro, G.; Carvalho, R.H.; Wang, X.; Lemos, M.A.N.D.A.; Lemos, F.; Guisnet, M.; Ribeiro, F.R. Activation of C2-C4 alkanes over acid and bifunctional zeolite catalysts. J. Mol. Catal. Chem., 2006, 255, 131-138.
[http://dx.doi.org/10.1016/j.molcata.2006.03.068]
[68]
Whitmore, F.C. Mechanism of the Polymerization of Olefins by Acid Catalysts. Ind. Eng. Chem., 1934, 26, 94-102.
[http://dx.doi.org/10.1021/ie50289a023]
[69]
Haag, W.O.; Dessau, R.M.; Lago, R.M. Kinetics and mechanism of paraffin cracking with zeolite catalysts. Stud. Surf. Sci. Catal., 1991, 60, 255-261.
[http://dx.doi.org/10.1016/S0167-2991(08)61903-5]
[70]
Corma, A.; Orchilles, A.V. Current views on the mechanism of catalytic cracking. Microporous Mesoporous Mater., 2000, 35-36, 21-27.
[http://dx.doi.org/10.1016/S1387-1811(99)00205-X]
[71]
Narbeshuber, T.F.; Brait, A.; Seshan, K.; Lercher, J.A. The influence of extraframework aluminum on H-FAU catalyzed cracking of light alkanes. Appl. Catal., 1996, A146, 119-124. Brait, A., Koopmans, A., Weinstabe, H., Ecker, A., Seshan, K., Lercher, J.A. Hexadecane Conversion in the Evaluation of Commercial Fluid Catalytic Cracking Catalysts. Ind. Eng. Chem. Res., 1998, 37, 873-878.
[72]
McVicker, G.B.; Kramer, G.M.; Ziemiak, J.J. Conversion of isobutane over solid acids — A sensitive mechanistic probe reaction. J. Catal., 1983, 83, 286-291. Mikhailov, M.N., Chuvylkin, N.D., Mishin, I.V., Kustov, L.M. On the possibility of the detachment of hydrogen as a result of electron capture by a Bronsted center on zeolites. Russ. J. Phys. Chem., 2009, A83, 752-758.
[73]
Weitkamp, J. Isomerization of long-chain n-alkanes on a Pt/CaY zeolite catalyst. Ind. Eng. Chem. Prod. Res. Dev., 1982, 21(4), 550.
[http://dx.doi.org/10.1021/i300008a008]
[74]
Wakayama, T.; Matsuhashi, H. Reaction of linear, branched, and cyclic alkanes catalyzed by Brönsted and Lewis acids on H-mordenite, H-beta, and sulfated zirconia. J. Mol. Catal. Chem., 2005, 239, 32-39.
[http://dx.doi.org/10.1016/j.molcata.2005.05.031]
[75]
Fonseca, N.; Lemos, F.; Laforge, S.; Magnoux, P.; Ribeiro, F.R. Influence of acidity on the H-Y zeolite performance in n-decane catalytic cracking: evidence of a series/parallel mechanism. React. Kinet. Mech. Catal., 2010, 100, 249-255.
[http://dx.doi.org/10.1007/s11144-010-0197-8]
[76]
Kazansky, V.B. Adsorbed carbocations as transition states in heterogeneous acid catalyzed transformations of hydrocarbons. Catal. Today., 1999, 51, 419-426. Kissin, Y.V. Primary Products in Hydrocarbon Cracking over Solid Acidic Catalysts under Very Mild Conditions: Relation to Cracking Mechanism. J. Catal., 1998, 180, 101-107.
[77]
Guo, Y-H.; Pu, M.; Wu, J-Y.; Zhang, J-Y.; Chen, B-H. Theoretical study of the cracking mechanisms of linear α-olefins catalyzed by zeolites. Appl. Surf. Sci., 2007, 254, 604-609.
[http://dx.doi.org/10.1016/j.apsusc.2007.06.039]
[78]
Bolton, A.P.; Bujalski, R.L. The role of the proton in the catalytic cracking of hexane using a zeolite catalyst. J. Catal., 1971, 23, 331-337.
[http://dx.doi.org/10.1016/0021-9517(71)90222-3]
[79]
Sievers, C.; Onda, A.; Olindo, R.; Lercher, J.A. Adsorption and Polarization of Branched Alkanes on H−LaX. J. Phys. Chem., 2007, C111, 5454-5461.
[80]
Eder, F.; Lercher, J.A. Alkane sorption in molecular sieves: The contribution of ordering, intermolecular interactions, and sorption on Brønsted acid sites. Zeolites, 1997, 18, 75-82. Pieterse, J.A.Z., Veefkind-Reyes, S., Seshan, K., Lercher, J.A.J. Sorption and Ordering of Dibranched Alkanes on Medium-Pore Zeolites Ferrierite and TON. Phys. Chem., 2000, B104, 5715-5721. Denayer, J.F., Souverijns, W., Jacobs, P.A., Martens, J.A., Baron, G.V. High-Temperature Low-Pressure Adsorption of Branched C5−C8 Alkanes on Zeolite Beta, ZSM-5, ZSM-22, Zeolite Y, and Mordenite. J. Phys. Chem., 1998, B102, 4588-4595.
[81]
Eder, F.; Stockenhuber, M.; Lercher, J.A. Brønsted Acid Site and Pore Controlled Siting of Alkane Sorption in Acidic Molecular Sieves. J. Phys. Chem., 1997, B101, 5414-5421.
[http://dx.doi.org/10.1021/jp9706487]
[82]
Kazansky, V.B.; Pidko, E.A. Intensities of IR stretching bands as a criterion of polarization and initial chemical activation of adsorbed molecules in acid catalysis. Ethane adsorption and dehydrogenation by zinc ions in ZnZSM-5 zeolite. J. Phys. Chem. B, 2005, 109(6), 2103-2108.
[http://dx.doi.org/10.1021/jp049224k PMID: 16851201]
[83]
Liengme, B.V.; Hall, W.K. Studies of hydrogen held by solids. Part 11. Interaction of simple olefins and pyridine with decationated zeolites. Trans. Faraday Soc., 1966, 62, 3229-3238.
[http://dx.doi.org/10.1039/TF9666203229]
[84]
Cant, N.W.; Hall, W.K. Studies of the hydrogen held by solids: XXI. The interaction between ethylene and hydroxyl groups of a Y-zeolite at elevated temperatures. J. Catal., 1972, 25, 161-169.
[http://dx.doi.org/10.1016/0021-9517(72)90213-8]
[85]
Trombetta, M.; Busca, G.; Lenarda, M.; Storaro, L.; Pavan, M. An investigation of the surface acidity of mesoporous Al-containing MCM-41 and of the external surface of ferrierite through pivalonitrile adsorption. Appl. Catal., 1999, A182, 225-233. Gabrienko, A.A., Danilova, I.G., Arzumanov, S.S., Toktarev, A.V., Freude, D., Stepanov, A.G. Strong acidity of silanol groups of zeolite beta: Evidence from the studies by IR spectroscopy of adsorbed CO and 1H MAS NMR. Microp. Mesop. Mater, 2010, 131, 210-216.
[86]
Smit, B.; Siepmann, J.I. Computer Simulations of the Energetics and Siting of n-Alkanes in Zeolites. J. Phys. Chem., 1994, 98, 8443-8449.
[http://dx.doi.org/10.1021/j100085a027]
[87]
Sun, M.S.; Talu, O.; Shah, D.B. Adsorption Equilibria of C5−C10 Normal Alkanes in Silicalite Crystals. J. Phys. Chem., 1996, 100, 17276-17282.
[http://dx.doi.org/10.1021/jp961579j]
[88]
Savitz, S.; Siperstein, F.; Gorte, R.J.; Myers, A.L. Calorimetric study of adsorption of alkanes in high-silica zeolites. J. Phys. Chem., 1998, B102, 6865-6871.
[http://dx.doi.org/10.1021/jp981836f]
[89]
Zhu, W.; van de Graaf, J.M.; van den Broeke, L.J.P.; Kapteijn, F. Moulijn, J.A. A unique technique for measuring of adsorption properties. Light alkanes in silicalite-1. Ind. Eng. Chem. Res., 1998, 37, 1934-1938.
[http://dx.doi.org/10.1021/ie970739q]
[90]
Subbotina, I.R.; Kazansky, V.B.; Kröhnert, J.; Jentoft, F.C. Integral absorption coefficients of C-H stretching bands in IR spectra of ethane adsorbed by cationic forms of Y zeolite. J. Phys. Chem. A, 2009, 113(5), 839-844.
[http://dx.doi.org/10.1021/jp8086122 PMID: 19128020]
[91]
Stach, H.; Lohse, U.; Thamm, H.; Schirmer, W. Adsorption equilibria of hydrocarbons on highly dealuminated zeolites. Zeolites, 1986, 6, 74-80.
[http://dx.doi.org/10.1016/S0144-2449(86)80001-X]
[92]
Derouane, E.G.; Andre, J-M.; Lucas, A.A. Surface curvature effects in physisorption and catalysis by microporous solids and molecular sieves. J. Catal., 1988, 110, 58-64. Titiloye, J.O., Parker, S.C., Stone, F.S., Catlow, C.R.A. Simulation studies of the structure and energetics of sorbed molecules in high-silica zeolites. 1. Hydrocarbons. J. Phys. Chem., 1991, 95, 4038-4043.
[93]
Richards, R.E.; Rees, L.V.C. Sorption and packing of n-alkane molecules in ZSM-5. Langmuir, 1987, 3, 335-342.
[http://dx.doi.org/10.1021/la00075a009]
[94]
Calero, S.; Smit, B.; Krishna, R. Separation of linear, mono-methyl and di-methyl alkanes in the 5-7 carbon atom range by exploiting configurational entropy effects during sorption on silicalite-1. Phys. Chem. Chem. Phys., 2001, 3, 4390-4398.
[http://dx.doi.org/10.1039/b103118j]
[95]
Ilbige, C.A.; Denayer, J.F.; Baron, G.V. High-temperature adsorption of n-alkanes on ZSM-5 zeolites: influence of the Si/Al ratio and the synthesis method on the low-coverage adsorption properties. Microp. Mesop. Mater, 2003, 60, 111-115.
[http://dx.doi.org/10.1016/S1387-1811(03)00332-9]
[96]
Bogdan, V.I.; Koklin, A.E.; Kazanskii, V.B. Catalytic activity of H-forms of zeolites in the isomerization of supercritical n-pentan and their physicochemical properties. Kinet. Catal., 2010, 51, 736-741.
[http://dx.doi.org/10.1134/S0023158410050162]
[97]
Kuznetsov, A.M. Adsorption of water on metal surfaces. Sorosovsky Edu. J., 2000, 6, 45-49.
[98]
Yang, G.; Wang, Y.; Zhou, D.; Liu, X.; Han, X.; Bao, X. Density functional theory calculations on various M/ZSM-5 zeolites: Interaction with probe molecule H2O and relative hydrothermal stability predicted by binding energies. J. Mol. Catal. Chem., 2005, 237, 36-42.
[http://dx.doi.org/10.1016/j.molcata.2005.04.063]
[99]
Bolis, V.; Busco, C.; Ugliengo, P. Thermodynamic study of water adsorption in high-silica zeolites. J. Phys. Chem. B, 2006, 110(30), 14849-14859.
[http://dx.doi.org/10.1021/jp061078q PMID: 16869595]
[100]
Subbotin, A.N.; Zhidomirov, G.M.; Subbotina, I.R.; Kazansky, V.B. Molecular and dissociative adsorption of H2O on zeolite Zn/ZSM-5 studied by diffuse-reflectance IR spectroscopy and quantum chemical calculations. Kinet. Catal., 2013, 54, 744-750.
[http://dx.doi.org/10.1134/S002315841306013X]
[101]
Stepanov, N.F.; Kubasov, A.A.; Tikhii, Ya.V. Simple molecules on a zeolite acceptor center: A quantum-chemical approach. Russ. J. Phys. Chem., 2007, A81, 1365-1370. Domracheva, T.M., Novakovskaya, Yu.V., Kubasov, A.A. Stepanov, N.F. An ab initio model of simplest water-zeolite adsorption complexes: mobile proton formation. Russ. J. Phys. Chem, 1999, A73, 1115-1121.
[102]
Auerbach, S.M.; Carrado, K.A.; Dutta, P.K., Eds.; Handbook of Zeolite Science and Technology; Marcel Dekker: New York, Basel, 2003.
[http://dx.doi.org/10.1201/9780203911167]
[103]
Dzhigit, O.M.; Kiselev, A.V.; Mikos, K.N.; Muttik, G.G.; Rahmanova, T.A. Heats of adsorption of water vapour on X-zeolites containing Li+, Na+, K+, Rb+, and Cs+ cationset. Trans. Faraday Soc., 1971, 67, 458-465.
[http://dx.doi.org/10.1039/tf9716700458]
[104]
Kiselev, A.B.; Lugin, V.I.; Starodubzeva, R.V. Spectral and energetic aspects of water adsorption by Li-, Na-, K- and Cs-X zeolites. J. Chem. Soc., Faraday Trans. I, 1972, 68, 1793-1798.
[http://dx.doi.org/10.1039/f19726801793]
[105]
Hunger, J.; Beta, I.A.; Bolhlig, H.; Ling, Ch. Jobic, Hunger, B. Adsorption structures of water in NaX. Studied by DRIFT spectroscopy and neutron powder diffraction. J. Phys. Chem., 2006, B110, 342-347.
[http://dx.doi.org/10.1021/jp054636u]
[106]
Rice, M.J.; Chakraborty, A.K.; Bell, A.T. A Density Functional Theory Study of the Interactions of H2O with H-ZSM-5, Cu-ZSM-5, and Co-ZSM-5. J. Phys. Chem., 1998, A102, 7498-7504.
[http://dx.doi.org/10.1021/jp981108s]
[107]
Bardyshev, I.I.; Fomkin, A.A. Heterogeneous distribution of adsorbed water molecules in NaX zeolite nanopores from the data of positron spectroscopy. Prot. Met., 2008, 44, 358-361.
[http://dx.doi.org/10.1134/S0033173208040073]
[108]
Shirono, K.; Daiguji, H. Dipole moments of water molecules confined in Na-LSX zeolites - Molecular dynamics simulations including polarization of water. Chem. Phys. Lett., 2006, 417, 251-256.
[http://dx.doi.org/10.1016/j.cplett.2005.09.130]
[109]
Jobic, H.; Méthivier, A.; Seydel, T. On the adsorption and diffusion of water in BaX zeolite. C. R. Chim., 2005, 8, 411-415.
[http://dx.doi.org/10.1016/j.crci.2004.09.012]
[110]
Moïse, J-C.; Bellat, J-P.; Méthivier, A. Adsorption of water vapor on X and Y zeolites exchanged with barium. Microp. Mesop. Mater, 2001, 43, 91-915.
[http://dx.doi.org/10.1016/S1387-1811(00)00352-8]
[111]
Dzhigit, O.M.; Kiselev, A.V.; Rachmanova, T.A.; Zhdanov, S.P. Influence of Li+, Na+ and K+ cation concentrations in X and Y zeolites on isotherms and heats of adsorption of propane and water. J. Chem. Soc., Faraday Trans. I, 1979, 75, 2662-2666.
[http://dx.doi.org/10.1039/f19797502662]
[112]
Beauvais, Ch.; Boutin, A.; Fuchs, A.H. Adsorption of water in zeolite sodium-faujasite: A molecular simulation study. C. R. Chim., 2005, 8, 485-491.
[http://dx.doi.org/10.1016/j.crci.2004.11.011]
[113]
Guo, X.; Huang, Sh.; Teng, J.; Xie, Z. Study on adsorption of water on NanZSM-5 type zeolite by molecular simulation. Wuli Huaxue Xuebao, 2006, 22, 270-275.
[http://dx.doi.org/10.1016/S1872-1508(06)60001-6]
[114]
Sauer, J.; Horn, H.; Häser, M.; Ahlrichs, R. Formation of hydronium ions on Brønsted sites in zeolitic catalysts: A quantum-chemical ab initio study. Chem. Phys. Lett., 1990, 173, 26-29.
[http://dx.doi.org/10.1016/0009-2614(90)85297-P]
[115]
Parker, L.M.; Bibby, D.M.; Burns, G.R. Interaction of water with the zeolite HY, studied by FTIR. Zeolites, 1991, 11, 293-297.
[http://dx.doi.org/10.1016/S0144-2449(05)80235-0]
[116]
Chen, K.; Gumidyala, A.; Abdolrhamani, M.; Villines, C.; Crossley, S.; White, J.L. Trace water amounts can increase benzene H/D exchange rates in an acidic zeolite. J. Catal., 2017, 351, 130-135.
[http://dx.doi.org/10.1016/j.jcat.2017.04.026]
[117]
Wang, B. Zeolite deactivation during hydrocarbon reactions: characterisation of coke precursors and acidity, product distribution., PhD Thesis, University College London: Chemical Engineering, London. 2007.
[118]
Pelmenschikov, A.G.; Morosi, G.; Gamba, A. Quantum chemical molecular models of oxides. 2. Methanol adsorption on silica and zeolites. J. Phys. Chem., 1992, 96, 2241-2245.
[http://dx.doi.org/10.1021/j100184a040]
[119]
Olson, D.H.; Haag, W.O.; Borghard, W.S. Use of water as a probe of zeolitic properties: Interaction of water with HZSM-5. Microporous Mesoporous Mater., 2000, 35-36, 435-439.
[http://dx.doi.org/10.1016/S1387-1811(99)00240-1]
[120]
Kiselev, A.V. Adsorption properties of hydrophobic surfaces. J. Colloid Interface Sci., 1968, 28, 430-439.
[http://dx.doi.org/10.1016/0021-9797(68)90074-X]
[121]
Kiselev, A.V.; Lopatkin, A.A.; Shulga, A.A. Molecular statistical calculation of gas adsorption by silicalite. Zeolites, 1985, 5, 261-266. Ching, C.B., Ruthven, D.M. Sorption and diffusion of some amino acids in KX zeolite crystals. Chem. Eng. J., 1989, 40, B1-B7.
[122]
Halasz, I.; Kim, S.; Marcus, B. Hydrophilic and hydrophobic adsorption on Y zeolites. Mol. Phys., 2002, 100, 3123-3128.
[http://dx.doi.org/10.1080/00268970210133198]
[123]
Halasz, I.; Agarwal, M.; Marcus, B.; Cormier, W.E. Molecular spectra and polarity sieving of aluminum deficient hydrophobic H-Y zeolites. Microporous Mesoporous Mater., 2005, 84, 318-324.
[http://dx.doi.org/10.1016/j.micromeso.2005.05.040]
[124]
Yonli, A.H.; Gener, I.; Mignard, S. Comparative a study of the hydrophobicity of BEA, HZSM-5 and HY zeolites determined by competitive adsorption. Microporous Mesoporous Mater., 2010, 122, 135-139.
[http://dx.doi.org/10.1016/j.micromeso.2009.02.012]
[125]
Lohse, U.; Thamm, H.; Noack, M.; Fahlke, B. Adsorption of hydrocarbons and water on ZSM 5 and on ZSM 5 converted by dealumination into silicalite. J. Inclusion Phenom, 1987, 5, 307-313.
[http://dx.doi.org/10.1007/BF00665363]
[126]
Riekert, L. Sorption, Diffusion, and catalytic reaction in zeolites. Adv. Catal., 1970, 21, 281-288.
[http://dx.doi.org/10.1016/S0360-0564(08)60566-0]
[127]
Anderson, M.W.; Klinowski, J. Zeolites treated with silicon tetrachloride vapour. Part 1.—Preparation and characterisation. J. Chem. Soc., Faraday Trans. I, 1986, 82, 1449-1460.
[http://dx.doi.org/10.1039/f19868201449]
[128]
Berke, C.H.; Kiss, A.; Kleinschmit, P.; Weitkamp, J. Der Hydrophobizitäts-Index: Eine neue Methode zur Charakterisierung der Oberflächeneigenschaften zeolithischer Adsorbentien. Chemieingenieurtechnik (Weinh.), 1991, 63, 623-628.
[http://dx.doi.org/10.1002/cite.330630618]
[129]
Yonli, A.H.; Gener, I.; Mignard, S. Influence of post-synthesis treatment on BEA zeolites hydrophobicity assessed under static and dynamic conditions. Microporous Mesoporous Mater., 2009, 122, 135-141.
[http://dx.doi.org/10.1016/j.micromeso.2009.02.012]
[130]
Cailliez, F.; Stirnemann, G.; Boutin, A.; Demachy, I.; Fuchs, A.H. Does water condense in hydrophobic cavities? A molecular simulation study of hydration in heterogeneous nanopores. J. Phys. Chem., 2008, C112, 10435-10442.
[131]
Singh, R.; Dutta, P.K. Use of surface-modified zeolite Y for extraction of metal ions from aqueous to organic phase. Microporous Mesoporous Mater., 1999, 32, 29-33.
[http://dx.doi.org/10.1016/S1387-1811(99)00085-2]
[132]
Zapata, P.A.; Faria, J.; Ruiz, M.P.; Jentoft, R.E.; Resasco, D.E. Hydrophobic zeolites for biofuel upgrading reactions at the liquid-liquid interface in water/oil emulsions. J. Am. Chem. Soc., 2012, 134(20), 8570-8578.
[http://dx.doi.org/10.1021/ja3015082 PMID: 22548687]
[133]
Zapata, P.A.; Huang, Y.; Gonzalez-Borja, M.A.; Resasco, D.E. Silylated hydrophobic zeolites with enhanced tolerance to hot liquid water. J. Catal., 2013, 308, 82-86.
[http://dx.doi.org/10.1016/j.jcat.2013.05.024]
[134]
Fujiwara, M.; Fujio, Y.; Sakurai, H.; Senoh, H.; Kiyobayashi, T. Storage of molecular hydrogen into ZSM-5 zeolite in the ambient atmosphere by the sealing of the micropore outlet. Chem. Eng. Process. Process Intensif, 2014, 79, 1-7.
[http://dx.doi.org/10.1016/j.cep.2014.02.010]
[135]
Fujiwara, M.; Satake, T.; Shiokawa, K.; Sakurai, H. CO2 hydrogenation for C2+ hydrocarbon synthesis over composite catalyst using surface modified HB zeolite. Appl. Catal. B, 2015, 179, 37-42.
[http://dx.doi.org/10.1016/j.apcatb.2015.05.004]
[136]
Labat, F.; Fuchs, A.H.; Adamo, C. Toward an accurate modeling of the water−zeolite interaction: Calibrating the DFT approach. J. Phys. Chem. Lett., 2010, 1, 763-765.
[http://dx.doi.org/10.1021/jz100011p]
[137]
Iglesia, E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl. Catal. A Gen., 1997, 161, 59-64.
[http://dx.doi.org/10.1016/S0926-860X(97)00186-5]
[138]
Hilmen, A.M.; Schanke, D.; Hansen, K.F.; Holmen, A. Study of the effect of water on alumina supported cobalt Fischer-Tropsch catalysts. Appl. Catal. A Gen., 1999, 186, 169-175.
[http://dx.doi.org/10.1016/S0926-860X(99)00171-4]
[139]
Dalai, A.K.; Davis, B.H. Fischer-Tropsch synthesis: A review of water effects on the performances of unsupported and supported Co catalysts. Appl. Catal. A Gen., 2008, 348, 1-12.
[http://dx.doi.org/10.1016/j.apcata.2008.06.021]
[140]
van Steen, E.; Claeys, M.; Dry, M.E.; van de Loosdrecht, J.; Viljoen, E.L.; Visagie, J.L. Stability of nanocrystals: Thermodynamic analysis of oxidation and re-reduction of cobalt in water/hydrogen mixtures. J. Phys. Chem. B, 2005, 109(8), 3575-3577.
[http://dx.doi.org/10.1021/jp045136o] [PMID: 16851395]
[141]
Li, J.; Jacobs, G.; Das, T.; Zhang, Y.; Davis, B.H. Fischer-Tropsch synthesis: Effect of water on the catalytic properties of a Co/SiO2 catalyst. Appl. Catal. A Gen., 2002, 236, 67-76.
[http://dx.doi.org/10.1016/S0926-860X(02)00276-4]
[142]
Krishnamoorthy, S.; Tu, M.; Ojeda, M.P.; Pinna, D.; Iglesia, E. An investigation of the effects of water on rate and selectivity for the fischer-tropsch synthesis on cobalt-based catalysts. J. Catal., 2002, 211, 422-428.
[http://dx.doi.org/10.1016/S0021-9517(02)93749-8]
[143]
Zennaro, R.; Tagliabue, M.; Bartholomew, C.H. Kinetics of Fischer-Tropsch synthesis on titania-supported cobalt. Catal. Today, 2000, 58, 309-316.
[http://dx.doi.org/10.1016/S0920-5861(00)00264-9]
[144]
Botes, F.G. Influences of water and syngas partial pressure on the kinetics of a commercial alumina-supported cobalt fischer−tropsch catalyst. Ind. Eng. Chem. Res., 2009, 48, 1859-1867.
[http://dx.doi.org/10.1021/ie8013023]
[145]
Tang, Q.; Wang, Y.; Zhang, Q.; Wan, H. Preparation of metallic cobalt inside NaY zeolite with high catalytic activity in Fischer-Tropsch synthesis. Catal. Commun., 2003, 4, 253-255.
[http://dx.doi.org/10.1016/S1566-7367(03)00053-0]
[146]
Bayat, M.; Hamidi, M.; Dehghani, Z.; Rahimpour, M.R.; Shariati, A. Sorption-enhanced reaction process in Fischer-Tropsch synthesis for production of gasoline and hydrogen: Mathematical modeling. J. Nat. Gas Sci. Eng., 2013, 14, 225-234.
[http://dx.doi.org/10.1016/j.jngse.2013.06.011]
[147]
Shi, L.; Chen, J.; Fang, K.; Sun, Y. CH3-modified Co/Ru/SiO2 catalysts and the performances for Fischer-Tropsch synthesis. Fuel, 2008, 87, 521-527.
[http://dx.doi.org/10.1016/j.fuel.2007.03.018]
[148]
Asalieva, E.Yu.; Sineva, L.V.; Zhukova, E.A.; Mordkovich, V.Z.; Bulychev, B.M. Phase composition, physicochemical and catalytic properties of cobalt-aluminum-zeolite systems. Russ. Chem. Bulletin. Intern. Edition, 2015, 64, 2371-2376.
[149]
Sineva, L.V.; Kulchakovskaya, E.V.; Asalieva, E.Yu.; Mordkovich, V.Z. Effect of water on the secondary transformations of hydrocarbons in the Fischer-Tropsch synthesis on Co-zeolite catalysts. Mendeleev Commun., 2017, 27, 75-77.
[http://dx.doi.org/10.1016/j.mencom.2017.01.024]
[150]
Ermolaev, V.S.; Mordkovich, V.Z.; Solomonik, I.G. Influence of capillary condensation on heat and mass transfer in the grain of a Fischer-Tropsch synthesis catalyst. Theor. Found. Chem. Eng., 2010, 44, 660-664.
[http://dx.doi.org/10.1134/S0040579510050040]
[151]
Wang, W.J.; Chen, Y.W. Carbon monoxide hydrogenation on cobalt/alumina and cobalt/NaX catalysts Appl. Catal, 1991, 77, 21-27.
[http://dx.doi.org/10.1016/0166-9834(91)80020-W]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 1
Year: 2020
Page: [3 - 22]
Pages: 20
DOI: 10.2174/2211544709999200420072505

Article Metrics

PDF: 32
HTML: 2