An Overview of Piperazine Scaffold as Promising Nucleus for Different Therapeutic Targets

Author(s): Anjali Sharma, Sharad Wakode*, Faizana Fayaz, Shaik Khasimbi, Faheem H. Pottoo, Avneet Kaur

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 35 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Piperazine scaffolds are a group of heterocyclic atoms having pharmacological values and showing significant results in pharmaceutical chemistry. Piperazine has a flexible core structure for the design and synthesis of new bioactive compounds. These flexible heterogenous compounds exhibit various biological roles, primarily anticancer, antioxidant, cognition enhancers, antimicrobial, antibacterial, antiviral, antifungal, antiinflammatory, anti-HIV-1 inhibitors, antidiabetic, antimalarial, antidepressant, antianxiety and anticonvulsant activities, etc. In the past few years, researchers focused on the therapeutic profile of piperazine synthons for different biological targets. The present review highlights the development in designing pharmacological activities of nitrogen-containing piperazine moiety as a therapeutic agent. The extensive popularity of piperazine as a drug of abuse and their vast heterogeneity research efforts over the last years motivated the new investigators to further explore this area.

Keywords: Piperazine, marketed drugs, abuse drugs, synthesize, anthelmintic, pharmacological activities.

[1]
Anthelmintics KA. New age international (p) limited. 4th ed. New Delhi 2007; 653-654..
[2]
Moisescu-Goia C, Muresan-Pop M, Simon V. New solid state forms of antineoplastic 5-fluorouracil with anthelmintic piperazine. J Mol Struct 2017; 1150: 37-43.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.076]
[3]
Azéma J, Guidetti B, Dewelle J, et al. 7-((4-Substituted)piperazin-1-yl) derivatives of ciprofloxacin: synthesis and in vitro biological evaluation as potential antitumor agents. Bioorg Med Chem 2009; 17(15): 5396-407.
[http://dx.doi.org/10.1016/j.bmc.2009.06.053] [PMID: 19595598]
[4]
Beberok A, Wrześniok D, Minecka A, et al. Ciprofloxacin-mediated induction of S-phase cell cycle arrest and apoptosis in COLO829 melanoma cells. Pharmacol Rep 2018; 70(1): 6-13.
[http://dx.doi.org/10.1016/j.pharep.2017.07.007] [PMID: 29306115]
[5]
Sun WX, Ji YJ, Wan Y, et al. Design and synthesis of piperazine acetate podophyllotoxin ester derivatives targeting tubulin depolymerization as new anticancer agents. Bioorg Med Chem Lett 2017; 27(17): 4066-74.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.047] [PMID: 28757065]
[6]
Mistry B, Patel RV, Keum YS, Kim DH. Synthesis of N-Mannich bases of berberine linking piperazine moieties revealing anticancer and antioxidant effects. Saudi J Biol Sci 2017; 24(1): 36-44.
[http://dx.doi.org/10.1016/j.sjbs.2015.09.005] [PMID: 28053569]
[7]
Abd-El-Aziz AS, Abdelghani AA, El-Sadany SK, Overy DP, Kerr RG. Antimicrobial and anticancer activities of organoiron melamine dendrimers capped with piperazine moieties. Eur Polym J 2016; 82: 307-23.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.04.002]
[8]
Mao ZW, Zheng X, Lin YP, et al. Design, synthesis and anticancer activity of novel hybrid compounds between benzofuran and N-aryl piperazine. Bioorg Med Chem Lett 2016; 26(15): 3421-4.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.055] [PMID: 27371110]
[9]
Zhang R, Wu X, Yalowich JC, Hasinoff BB. Design, synthesis, and biological evaluation of a novel series of bisintercalating DNA-binding piperazine-linked bisanthrapyrazole compounds as anticancer agents. Bioorg Med Chem 2011; 19(23): 7023-32.
[http://dx.doi.org/10.1016/j.bmc.2011.10.012] [PMID: 22041173]
[10]
Wang P, Huang J, Wang K, Gu Y. New palbociclib analogues modified at the terminal piperazine ring and their anticancer activities. Eur J Med Chem 2016; 122: 546-56.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.020] [PMID: 27448913]
[11]
Kumar S, Singh A, Kumar K, Kumar V. Recent insights into synthetic β-carbolines with anti-cancer activities. Eur J Med Chem 2017; 142: 48-73.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.059] [PMID: 28583770]
[12]
Sun R, Liu R, Zhou C, Ren Z, Guo L, Ma Q, et al. Synthesis and biological evaluation of piperazine group-linked bivalent β-carbolines as potential antitumor agents. MedChemComm 2015; 6(12): 2170-4.
[http://dx.doi.org/10.1039/C5MD00312A]
[13]
Wei MX, Zhang J, Ma FL, et al. Synthesis and biological activities of dithiocarbamates containing 2(5H)-furanone-piperazine. Eur J Med Chem 2018; 155: 165-70.
[PMID: 29886320]
[14]
Chen TC, Wu CL, Lee CC, Chen CL, Yu DS, Huang HS. Structure-based hybridization, synthesis and biological evaluation of novel tetracyclic heterocyclic azathioxanthone analogues as potential antitumor agents. Eur J Med Chem 2015; 103: 615-27.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.050] [PMID: 25799376]
[15]
Uddin I, Taha M, Rahim F, Wadood A. Synthesis and molecular docking study of piperazine derivatives as potent inhibitor of thymidine phosphorylase. Bioorg Chem 2018; 78: 324-31.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.026] [PMID: 29626638]
[16]
Lee YB, Gong YD, Yoon H, Ahn CH, Jeon MK, Kong JY. Synthesis and anticancer activity of new 1-[(5 or 6-substituted 2-alkoxyquinoxalin-3-yl)aminocarbonyl]-4-(hetero)arylpiperazine derivatives. Bioorg Med Chem 2010; 18(22): 7966-74.
[http://dx.doi.org/10.1016/j.bmc.2010.09.028] [PMID: 20943401]
[17]
Zhang Y, Yang CR, Tang X, et al. Synthesis and antitumor activity evaluation of quinazoline derivatives bearing piperazine-1-carbodithioate moiety at C4-position. Bioorg Med Chem Lett 2016; 26(19): 4666-70.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.060] [PMID: 27575478]
[18]
Wu Z, Ding N, Tang Y, Ye J, Peng J, Hu A. Synthesis and antitumor activity of novel N-(5-benzyl-4-(tert-butyl)thiazol-2-yl)-2-(piperazin-1-yl)acetamides. Res Chem Intermed 2017; 43(8): 4833-50.
[19]
Patel RV, Mistry B, Syed R, et al. Chrysin-piperazine conjugates as antioxidant and anticancer agents. Eur J Pharm Sci 2016; 88: 166-77.
[http://dx.doi.org/10.1016/j.ejps.2016.02.011] [PMID: 26924226]
[20]
Piplani P, Danta CC. Design and synthesis of newer potential 4-(N-acetylamino)phenol derived piperazine derivatives as potential cognition enhancers. Bioorg Chem 2015; 60: 64-73.
[http://dx.doi.org/10.1016/j.bioorg.2015.04.004] [PMID: 25965977]
[21]
Martino MV, Guandalini L, Di Cesare Mannelli L, et al. Piperazines as nootropic agents: New derivatives of the potent cognition-enhancer DM235 carrying hydrophilic substituents. Bioorg Med Chem 2017; 25(6): 1795-803.
[http://dx.doi.org/10.1016/j.bmc.2017.02.019] [PMID: 28238510]
[22]
Guandalini L, Martino MV, Di Cesare Mannelli L, et al. Substituted piperazines as nootropic agents: 2- or 3-phenyl derivatives structurally related to the cognition-enhancer DM235. Bioorg Med Chem Lett 2015; 25(8): 1700-4.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.009] [PMID: 25813160]
[23]
Vanda D, Soural M, Canale V, et al. Novel non-sulfonamide 5-HT6 receptor partial inverse agonist in a group of imidazo[4,5-b]pyridines with cognition enhancing properties. Eur J Med Chem 2018; 144(144): 716-29.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.053] [PMID: 29291439]
[24]
Patel RV, Kumari P, Rajani DP, Chikhalia KH. A new class of 2-(4-cyanophenyl amino)-4-(6-bromo-4-quinolinyloxy)-6-piperazinyl (piperidinyl)-1,3,5-triazine analogues with antimicrobial/antimycobacterial activity. J Enzyme Inhib Med Chem 2012; 27(3): 370-9.
[PMID: 21740100]
[25]
Govindaiah S, Sreenivasa S, Ramakrishna RA, Rao TMC, Nagabhushana H. Regioselective Synthesis, Antibacterial, Molecular Docking and Fingerprint Applications of 1-Benzhydrylpiperazine Derivatized 1,4-Disubstituted 1,2,3-Triazoles. ChemistrySelect 2018; 3(28): 8111-7.
[26]
Dou D, He G, Mandadapu SR, et al. Inhibition of noroviruses by piperazine derivatives. Bioorg Med Chem Lett 2012; 22(1): 377-9.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.122] [PMID: 22119464]
[27]
Bassetto M, Leyssen P, Neyts J, et al. In silico identification, design and synthesis of novel piperazine-based antiviral agents targeting the hepatitis C virus helicase. Eur J Med Chem 2017; 125: 1115-31.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.043] [PMID: 27810598]
[28]
Zhang LY, Wang BL, Zhan YZ, Zhang Y, Zhang X, Li ZM. Synthesis and biological activities of some fluorine- and piperazine-containing 1,2,4-triazole thione derivatives. Chin Chem Lett 2016; 27(1): 163-7.
[http://dx.doi.org/10.1016/j.cclet.2015.09.015]
[29]
Xu G, Yang X, Jiang B, et al. Synthesis and bioactivities of novel piperazine-containing 1,5-Diphenyl-2-penten-1-one analogues from natural product lead. Bioorg Med Chem Lett 2016; 26(7): 1849-53.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.088] [PMID: 26906636]
[30]
Koparde S, Hosamani KM, Kulkarni V, Joshi SD. Synthesis of coumarin-piperazine derivatives as potent anti-microbial and anti-inflammatory agents, and molecular docking studies. Chem Data Collect 2018; 15-16: 197-206.
[http://dx.doi.org/10.1016/j.cdc.2018.06.001]
[31]
Wei ZY, Chi KQ, Wang KS, Wu J, Liu LP, Piao HR. Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents. Bioorg Med Chem Lett 2018; 28(10): 1797-803.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.021] [PMID: 29678461]
[32]
Carbo A, Gandour RD, Hontecillas R, et al. An N,N-Bis(benzimidazolylpicolinoyl)piperazine (BT-11): A Novel Lanthionine Synthetase C-Like 2-Based Therapeutic for Inflammatory Bowel Disease. J Med Chem 2016; 59(22): 10113-26.
[PMID: 27933891]
[33]
Karthik CS, Manukumar HM, Ananda AP, et al. Synthesis of novel benzodioxane midst piperazine moiety decorated chitosan silver nanoparticle against biohazard pathogens and as potential anti-inflammatory candidate: A molecular docking studies. Int J Biol Macromol 2018; 108: 489-502.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.045] [PMID: 29225179]
[34]
Jin K, Sang Y, De Clercq E, Pannecouque C, Meng G. Design and synthesis of a novel series of non-nucleoside HIV-1 inhibitors bearing pyrimidine and N-substituted aromatic piperazine. Bioorg Med Chem Lett 2018; 28(22): 3491-5.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.010] [PMID: 30318436]
[35]
Biftu T, Feng D, Qian X, et al. (3R)-4-[(3R)-3-Amino-4-(2,4,5-trifluorophenyl)butanoyl]-3-(2,2,2-trifluoroethyl)-1,4-diazepan-2-one, a selective dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Bioorg Med Chem Lett 2007; 17(1): 49-52.
[PMID: 17055272]
[36]
Taha M, Irshad M, Imran S, et al. Synthesis of piperazine sulfonamide analogs as diabetic-II inhibitors and their molecular docking study. Eur J Med Chem 2017; 141: 530-7.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.028] [PMID: 29102178]
[37]
Kushwaha RN, Srivastava R, Mishra A, et al. Design, synthesis, biological screening, and molecular docking studies of piperazine-derived constrained inhibitors of DPP-IV for the treatment of type 2 diabetes. Chem Biol Drug Des 2015; 85(4): 439-46.
[PMID: 25216392]
[38]
Sinha M, Dola VR, Agarwal P, et al. Antiplasmodial activity of new 4-aminoquinoline derivatives against chloroquine resistant strain. Bioorg Med Chem 2014; 22(14): 3573-86.
[http://dx.doi.org/10.1016/j.bmc.2014.05.024] [PMID: 24906512]
[39]
Gu ZS, Xiao Y, Zhang QW, Li JQ. Synthesis and antidepressant activity of a series of arylalkanol and aralkyl piperazine derivatives targeting SSRI/5-HT1A/5-HT7. Bioorg Med Chem Lett 2017; 27(24): 5420-3.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.007] [PMID: 29138029]
[40]
da Silva DM, Sanz G, Vaz BG, et al. Tert-butyl 4-((1-phenyl-1H-pyrazol-4-yl) methyl) piperazine-1-carboxylate (LQFM104)- New piperazine derivative with antianxiety and antidepressant-like effects: Putative role of serotonergic system. Biomed Pharmacother 2018; 103: 546-52.
[PMID: 29677541]
[41]
Szczepańska K, Karcz T, Mogilski S, et al. Synthesis and biological activity of novel tert-butyl and tert-pentylphenoxyalkyl piperazine derivatives as histamine H3R ligands. Eur J Med Chem 2018; 152: 223-34.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.043] [PMID: 29723785]
[42]
Zou J, Gao P, Hao X, Xu H, Zhan P, Liu X. Recent progress in the structural modification and pharmacological activities of ligustrazine derivatives. Eur J Med Chem 2018; 147: 150-62.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.097] [PMID: 29432947]
[43]
Chen J, Wang W, Wang H, Liu X, Guo X. Combination treatment of ligustrazine piperazine derivate DLJ14 and adriamycin inhibits progression of resistant breast cancer through inhibition of the EGFR/PI3K/Akt survival pathway and induction of apoptosis. Drug Discov Ther 2014; 8(1): 33-41.
[PMID: 24647156]
[44]
Deng P, Xu J, Li S, Huang S, Zhang H, Wang J, et al. A facile one-pot synthesis of monodisperse hollow hexanitrostilbene-piperazine compound microspheres. Mater Lett 2018; 214: 45-9.
[http://dx.doi.org/10.1016/j.matlet.2017.11.104]
[45]
Jamshidi A, Zonoz FM, Wei Y, Maleki B. An organic-inorganic nano-hybrid material containing a mixed-addenda Keggin-type polyoxometalate, piperazine: Synthesis, characterization, its electrochemical investigation. Inorganica Chim Acta 2018; 477: 233-41.
[http://dx.doi.org/10.1016/j.ica.2018.03.030]
[46]
Yin Y, Qiao F, Jiang LY, et al. Design, synthesis and biological evaluation of (E)-3-(3,4-dihydroxyphenyl)acrylylpiperazine derivatives as a new class of tubulin polymerization inhibitors. Bioorg Med Chem 2014; 22(15): 4285-92.
[http://dx.doi.org/10.1016/j.bmc.2014.05.029] [PMID: 24916028]
[47]
Prinz H, Ridder AK, Vogel K, et al. N-heterocyclic (4-phenylpiperazin-1-yl)methanones derived from phenoxazine and phenothiazine as highly potent inhibitors of tubulin polymerization. J Med Chem 2017; 60(2): 749-66.
[PMID: 28045256]
[48]
Abdelsayed S, Duong NT, Bureau C, et al. Piperazine derivatives as iron chelators: a potential application in neurobiology. Biometals 2015; 28(6): 1043-61.
[PMID: 26502356]
[49]
Dong HR, Chen ZB, Li RS, Dong HS, Xie ZX. Convenient and efficient synthesis of disubstituted piperazine derivatives by catalyst-free, atom-economical and tricomponent domino reactions. RSC Adv 2015; 5(14): 10768-72.
[http://dx.doi.org/10.1039/C4RA14811H]
[50]
Saied NM, Mejri N, El Aissi R, Benoist E, Saidi M. Preparation and biodistribution of 1-((2-methoxyphenyl) piperazine)ferrocenecarboxamide labeled with technetium-99m as a potential brain receptor imaging agent. Eur J Med Chem 2015; 97(97): 280-8.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.014] [PMID: 25993108]
[51]
Taha M, Wadood A. Synthesis and molecular docking study of piperazine derivatives as potent urease inhibitors. Bioorg Chem 2018; 78: 411-7.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.007] [PMID: 29689419]
[52]
Broekaert A, Godfraind T. A comparison of the inhibitory effect of cinnarizine and papaverine on the noradrenaline- and calcium-evoked contraction of isolated rabbit aorta and mesenteric arteries. Eur J Pharmacol 1979; 53(3): 281-8.
[PMID: 759205]
[53]
Louis P. A double-blind placebo-controlled prophylactic study of flunarizine (Sibelium) in migraine. Headache 1981; 21(6): 235-9.
[PMID: 7031016]
[54]
Toriu N, Akaike A, Yasuyoshi H, et al. Lomerizine, a Ca2+ channel blocker, reduces glutamate-induced neurotoxicity and ischemia/reperfusion damage in rat retina. Exp Eye Res 2000; 70(4): 475-84.
[http://dx.doi.org/10.1006/exer.1999.0809] [PMID: 10865996]
[55]
Walters MC III, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 2003; 47(1): 317-23.
[PMID: 12499208]
[56]
Gulick RM, Mellors JW, Havlir D, et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med 1997; 337(11): 734-9.
[PMID: 9287228]
[57]
Fisher AA. Antihistamines.Allergic Reactions to Drugs Handbook of Experimental Pharmacology (Continuation of Handbuch der experimentellen Pharmakologie). Berlin, Heidelberg: Springer 1983; Vol. 63: 380.
[58]
Cohen BM, Harris PQ, Altesman RI, Cole JO. Amoxapine: neuroleptic as well as antidepressant? Am J Psychiatry 1982; 139(9): 1165-7.
[PMID: 6126130]
[59]
Belardinelli R, Purcaro A. Effects of trimetazidine on the contractile response of chronically dysfunctional myocardium to low-dose dobutamine in ischaemic cardiomyopathy. Eur Heart J 2001; 22(23): 2164-70.
[PMID: 11913478]
[60]
Cosi C, Carilla-Durand E, Assié MB, et al. Partial agonist properties of the antipsychotics SSR181507, aripiprazole and bifeprunox at dopamine D2 receptors: G protein activation and prolactin release. Eur J Pharmacol 2006; 535(1-3): 135-44.
[PMID: 16554049]
[61]
Edmonds HL Jr, Bellin SI, Chen FC, Hegreberg GA. Anticonvulsant properties of ropizine in epileptic and nonepileptic beagle dogs. Epilepsia 1978; 19(2): 139-46.
[PMID: 639771]
[62]
Raskind MA, Peskind ER, Hoff DJ, et al. A parallel group placebo controlled study of prazosin for trauma nightmares and sleep disturbance in combat veterans with post-traumatic stress disorder. Biol Psychiatry 2007; 61(8): 928-34.
[PMID: 17069768]
[63]
Awouters F, Niemegeers CJE, Van den Berk J, Van Nueten JM, Lenaerts FM, Borgers M, et al. Oxatomide, a new orally active frug which inhibits both release and the effects of allergic mediators. Janssen Pharm 1977; 217: 1657-9.
[64]
Pepine CJ, Wolff AA. Ranolazine Study Group. A controlled trial with a novel anti-ischemic agent, ranolazine, in chronic stable angina pectoris that is responsive to conventional antianginal agents. Am J Cardiol 1999; 84(1): 46-50.
[PMID: 10404850]
[65]
Cohn JN, Goldstein SO, Greenberg BH, et al. Vesnarinone Trial Investigators. A dose-dependent increase in mortality with vesnarinone among patients with severe heart failure. N Engl J Med 1998; 339(25): 1810-6.
[PMID: 9854116]
[66]
Pfaller M, Messer S. Antifungal Activities of Posaconazole, Ravuconazole, and Voriconazole Compared to Those of Itraconazole and Amphotericin B against 239 Clinical Isolates of Aspergillus spp. and Other Filamentous Fungi: Report from SENTRY Antimicrobial Surveillance Program, 2000. Antimicrob Agents and Chemother 2002; 46(4): 1032-7.
[67]
Conley RR, Kelly DL, Nelson MW, et al. Risperidone, quetiapine, and fluphenazine in the treatment of patients with therapy-refractory schizophrenia. Clin Neuropharmacol 2005; 28(4): 163-8.
[PMID: 16062094]
[68]
Lemeke TL, Williams DA, Roche VF, Zito SW, Williams LT. Foye’s principle of medicinal Chemistry. 7th edition. Baltimore: Lippincott Williams & Wilkins 2008; pp. 1147-92.
[69]
Chandrashekar, Venkatesha BM, Ananda S, Gowda NMM. Kinetic and Mechanistic Study of Oxidation of Piperazines by Bromamine-T in Acidic Medium. Mod Res Catal 2013; 02(04): 157-63.
[70]
Shah A, Shah AH, Parveen N. Synthesis and electrochemical investigations of piperazines. Electrochim Acta 2016; 220: 705-11.
[http://dx.doi.org/10.1016/j.electacta.2016.10.165]
[71]
Rathi AK, Syed R, Shin HS, Patel RV. Piperazine derivatives for therapeutic use: A patent review (2010-present). Expert Opin Ther Pat 2016; 26(7): 777-97.
[72]
Vardanyan R, Hruby V. Anthelmintics.Synth Best-Seller Drugs. 2016; pp. 749-64.
[73]
Richard R, Gabrielle B. Trinh-Minh-Chau. Phenol-Piperazine Adducts Showing Anthelmintic Properties. J Med Chem 1973; 16(6): 725.
[74]
Martin RJ. gamma-Aminobutyric acid- and piperazine-activated single-channel currents from Ascaris suum body muscle. Br J Pharmacol 1985; 84(2): 445-61.
[PMID: 2579701]
[75]
Yilmaz F, Menteşe M. Design and synthesis of some piperazine hybrid molecules. Rev Roum Chim 2017; 62(12): 941-6.
[76]
Yousefi MR, Goli-Jolodar O, Shirini F. Piperazine: An excellent catalyst for the synthesis of 2-amino-3-cyano-4H-pyrans derivatives in aqueous medium. Bioorg Chem 2018; 81: 326-33.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.026] [PMID: 30179795]
[77]
Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014; 64(1): 9-29.http://doi.wiley.com/10.3322/caac.21208
[http://dx.doi.org/10.3322/caac.21208] [PMID: 24399786]
[78]
Ling Z, Xin-Mei P, Guri LVD, Rong-Xia G, Cheng-He Z. Comprehensive Review in Current Developments ofImidazole-Based Medicinal Chemistry. Med Res Rev 2009; (4): 520-47.
[PMID: 20027671]
[79]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34.http://doi.wiley.com/ 10.3322/caac.21551
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[80]
Khan Z, Bisen PS. Oncoapoptotic signaling and deregulated target genes in cancers: special reference to oral cancer. Biochim Biophys Acta 2013; 1836(1): 123-45.
[http://dx.doi.org/10.1016/j.bbcan.2013.04.002] [PMID: 23602834]
[81]
Geronikaki AA, Dearden JC, Filimonov D, et al. Design of new cognition enhancers: from computer prediction to synthesis and biological evaluation. J Med Chem 2004; 47(11): 2870-6.
[PMID: 15139765]
[82]
El Rayes SM, Aboelmagd A, Gomaa MS, Fathalla WI, Ali IA, Pottoo FH, et al. Newly synthesized 3-(4-chloro-phenyl)-3-hydroxy-2,2-dimethyl-propionic acid methyl ester derivatives selectively inhibit the proliferation of colon cancer cells. RSC Advances 2020; 10: 8825-41.
[http://dx.doi.org/10.1039/C9RA10950A]
[83]
Shafi S, Khan S, Hoda F, et al. Decoding novel mechanisms and emerging therapeutic strategies in breast cancer resistance. Curr Drug Metab 2020; 21: 14.
[http://dx.doi.org/10.2174/1389200221666200303124946] [PMID: 32124694]
[84]
Simon J, David A. United States Patent no. 191987.
[85]
Franco R, Cedazo-Minguez A. Successful therapies for Alzheimer’s disease: why so many in animal models and none in humans? Front Pharmacol 2014; 5: 146.
[PMID: 25009496]
[86]
Sun MK, Nelson TJ, Alkon DL. Towards universal therapeutics for memory disorders. Trends Pharmacol Sci 2015; 36(6): 384-94.
[http://dx.doi.org/10.1016/j.tips.2015.04.004] [PMID: 25959522]
[87]
Sharma P, Sharma A, Fayaz F, Wakode S, Pottoo FH. Biological signatures of Alzheimer Disease. Curr Top Med Chem 2020; 20: 1-12.
[http://dx.doi.org/10.2174/1568026620666200228095553] [PMID: 32108008]
[88]
Hopkins A. Antibiotics at the crossroads. Nature 2004; 431: 899-902.
[89]
Katz DP, Deruiter J, Bhattacharya D, et al. Benzylpiperazine: “A messy drug. Drug Alcohol Depend 2016; 164: 1-7.
[http://dx.doi.org/10.1016/j.drugalcdep.2016.04.010] [PMID: 27207154]
[90]
Brettell TA, Lum BJ. Drugs of Abuse. Methods Mol Biol 2018; 1810: 29-42.
[http://dx.doi.org/10.1016/j.mpmed.2015.12.030] [PMID: 29974415]
[91]
Arbo MD, Bastos ML, Carmo HF. Piperazine compounds as drugs of abuse. Drug Alcohol Depend 2012; 122(3): 174-85.
[http://dx.doi.org/10.1016/j.drugalcdep.2011.10.007] [PMID: 22071119]
[92]
Darvishzad S, Daneshvar N, Shirini F, Tajik H. Introduction of piperazine-1,4-diium dihydrogen phosphate as a new and highly efficient dicationic brönsted acidic ionic salt for the synthesis of (thio)barbituric acid derivatives in water. J Mol Struct 2019; 1178: 420-7.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.053]
[93]
Mermer A, Faiz O, Demirbas A, Demirbas N, Alagumuthu M, Arumugam S. Piperazine-azole-fluoroquinolone hybrids: Conventional and microwave irradiated synthesis, biological activity screening and molecular docking studies. Bioorg Chem 2019; 85: 308-18.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.009] [PMID: 30654222]
[94]
Dwivedi BK, Singh RS, Ali A, Sharma V, Mobin SM, Pandey DS. AIE active piperazine appended naphthalimide-BODIPYs: photophysical properties and applications in live cell lysosomal tracking. Analyst (Lond) 2018; 144(1): 331-41.
[PMID: 30406227]
[95]
Das SK, Manchanda P, Peinemann KV. Solvent-resistant triazine-piperazine linked porous covalent organic polymer thin film nanofiltration membrane. Separ Purif Tech 2019; 213: 348-58.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 35
Year: 2020
Published on: 15 October, 2020
Page: [4373 - 4385]
Pages: 13
DOI: 10.2174/1381612826666200417154810
Price: $65

Article Metrics

PDF: 36
HTML: 2
EPUB: 1
PRC: 1