Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Exploring siRNA Umpired Nanogels: A Tale of Barrier Combating Carrier

Author(s): Sushil K. Kashaw*, Prashant Sahu, Vaibhav Rajoriya, Pradeep Jana, Varsha Kashaw, Samaresh Sau and Arun K. Iyer*

Volume 26, Issue 27, 2020

Page: [3234 - 3250] Pages: 17

DOI: 10.2174/1381612826666200417143800

Price: $65

Abstract

Potential short interfering RNAs (siRNA) modulating gene expression have emerged as a novel therapeutic arsenal against a wide range of maladies and disorders containing cancer, viral infections, bacterial ailments and metabolic snags at the molecular level. Nanogel, in the current medicinal era, displayed a comprehensive range of significant drug delivery prospects. Biodegradation, swelling and de-swelling tendency, pHsensitive drug release and thermo-sensitivity are some of the renowned associated benefits of nanogel drug delivery system. Global researches have also showed that nanogel system significantly targets and delivers the biomolecules including DNAs, siRNA, protein, peptides and other biologically active molecules. Biomolecules delivery via nanogel system explored a wide range of pharmaceutical, biomedical engineering and agro-medicinal application. The siRNAs and DNAs delivery plays a vivacious role by addressing the hitches allied with chronic and contemporary therapeutic like generic possession and low constancy. They also incite release kinetics approach from slow-release while mingling to rapid release at the targets will be beneficial as interference RNAs delivery carriers. Therefore, in this research, we focused on the latest improvements in the delivery of siRNA loaded nanogels by enhancing the absorption, stability, sensitivity and combating the hindrances in cellular trafficking and release process.

Keywords: siRNA, nanogel, gene expression, pH triggered, nanomedicine, interference RNAs.

[1]
Ozcan G, Ozpolat B, Coleman RL, Sood AK, Lopez-Berestein G. Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev 2015; 87: 108-19.
[http://dx.doi.org/10.1016/j.addr.2015.01.007] [PMID: 25666164]
[2]
Woolard K, Fine HA. Glioma stem cells: better flat than round. Cell Stem Cell 2009; 4(6): 466-7.
[http://dx.doi.org/10.1016/j.stem.2009.05.013] [PMID: 19497271]
[3]
Padfield E, Ellis HP, Kurian KM. Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma. Front Oncol 2015; 5: 5.
[http://dx.doi.org/10.3389/fonc.2015.00005] [PMID: 25688333]
[4]
Kozielski KL, Tzeng SY, Green JJ. A bioreducible linear poly(β-amino ester) for siRNA delivery. Chem Commun (Camb) 2013; 49(46): 5319-21.
[http://dx.doi.org/10.1039/c3cc40718g] [PMID: 23646347]
[5]
He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles Biomaterials 2010; 31(13): 3657-66.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.065] [PMID: 20138662]
[6]
Zhang ML, Qiu HD. Progress in stationary phases modified with carbonaceous nanomaterials for high-performance liquid chromatography. Trends Analyt Chem 2015; 65: 107-21.
[http://dx.doi.org/10.1016/j.trac.2014.10.008]
[7]
Patra S, Roy E, Madhuri R, Sharma PK. The next generation cell-penetrating peptide and carbon dot conjugated nano-liposome for transdermal delivery of curcumin. Biomater Sci 2016; 4(3): 418-29.
[http://dx.doi.org/10.1039/C5BM00433K] [PMID: 26631310]
[8]
Brys AK, Gowda R, Loriaux DB, Robertson GP, Mosca PJ. Nanotechnology-based strategies for 573 combating toxicity and resistance in melanoma therapy Biotechnol Adv 32016 4(5): 565-77.
[9]
Hsu T, Mitragotri S. Delivery of siRNA and other macromolecules into skin and cells using a peptide 652 enhancer. Proc Natl Acad Sci USA 2014; 108(38): 5816-15821.
[10]
Finn L, Markovic SN, Joseph RW. Therapy for metastatic melanoma: the past, present, and future. BMC Med 2012; 10: 23.
[http://dx.doi.org/10.1186/1741-7015-10-23] [PMID: 22385436]
[11]
Su X, Wu Q, Li J, et al. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv Energy Mater 2014; 4(1)1300882
[http://dx.doi.org/10.1002/aenm.201300882]
[12]
Varki A. Essentials of Glycobiology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press 2009.
[13]
Karande P, Jain A, Mitragotri S. Discovery of transdermal penetration enhancers by high-throughput screening. Nat Biotechnol 2004; 22(2): 192-7.
[http://dx.doi.org/10.1038/nbt928] [PMID: 14704682]
[14]
Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today 2016; 21(5): 789-801.
[15]
Luo C, Shen J. Research progress in advanced melanoma. Cancer Lett 2017; 397: 120-6.
[http://dx.doi.org/10.1016/j.canlet.2017.03.037] [PMID: 28385603]
[16]
Martin-Liberal J, Larkin J. Vemurafenib for the treatment of BRAF mutant metastatic melanoma. Future Oncol 2015; 11(4): 579-89.
[http://dx.doi.org/10.2217/fon.14.252] [PMID: 25686114]
[17]
Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 2014; 6(4): 37.
[http://dx.doi.org/10.1186/alzrt269] [PMID: 25024750]
[18]
Kukharsky MS, Ovchinnikov RK, Bachurin SO. Molecular aspects of the pathogenesis and current approaches to pharmacological correction of Alzheimer’s disease Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115(6): 103-14.
[http://dx.doi.org/10.17116/jnevro20151156103-114] [PMID: 26438898]
[19]
De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV. Alzheimer’s disease. Subcell Biochem 2012; 65: 329-52.
[http://dx.doi.org/10.1007/978-94-007-5416-4_14] [PMID: 23225010]
[20]
Karran E, Mercken M. DeStrooperB.TheamyloidcascadehypothesisforAlzheimer’sdisease:An appraisal for the development of therapeutics. Nat Rev Drug Discov 2011; 10(9): 698-712.
[http://dx.doi.org/10.1038/nrd3505] [PMID: 21852788]
[21]
Maccioni RB, Farías G, Morales I, Navarrete L. The revitalized tau hypothesis on Alzheimer’s disease. Arch Med Res 2010; 41(3): 226-31.
[http://dx.doi.org/10.1016/j.arcmed.2010.03.007] [PMID: 20682182]
[22]
Vardeny O, Miller R, Solomon SD. Combined neprilysin and renin-angiotensin system inhibition for the treatment of heart failure. JACC Heart Fail 2014; 2(6): 663-70.
[http://dx.doi.org/10.1016/j.jchf.2014.09.001] [PMID: 25306450]
[23]
Armstrong RA. What causes alzheimer’s disease? Folia Neuropathol 2013; 51(3): 169-88.
[http://dx.doi.org/10.5114/fn.2013.37702] [PMID: 24114635]
[24]
Scheltens P, Blennow K, Breteler MM, et al. Alzheimer’s disease. Lancet 2016; 388(10043): 505-17.
[http://dx.doi.org/10.1016/S0140-6736(15)01124-1] [PMID: 26921134]
[25]
Watts JK, Corey DR. Silencing disease genes in the laboratory and the clinic. J Pathol 2012; 226(2): 365-79.
[http://dx.doi.org/10.1002/path.2993] [PMID: 22069063]
[26]
Sahu P, Kashaw SK, Sau S, et al. pH Responsive 5-Fluorouracil Loaded Biocompatible Nanogels For Topical Chemotherapy of Aggressive Melanoma. Colloids Surf B Biointerfaces 2019; 174: 232-45.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.018] [PMID: 30465998]
[27]
Yandrapalli S, Khan MH, Rochlani Y, Aronow WS. Sacubitril/valsartan in cardiovascular disease: evidence to date and place in therapy. Ther Adv Cardiovasc Dis 2018; 12(8): 217-31.
[http://dx.doi.org/10.1177/1753944718784536] [PMID: 29921166]
[28]
Yu L, Zheng M, Wang W, Rozanski GJ, Zucker IH, Gao L. Developmental changes in AT1 and AT2 receptor-protein expression in rats. J Renin Angiotensin Aldosterone Syst 2010; 11(4): 214-21.
[http://dx.doi.org/10.1177/1470320310379065] [PMID: 20807798]
[29]
Zhang H, Han GW, Batyuk A, et al. Structural basis for selectivity and diversity in angiotensin II receptors. Nature 2017; 544(7650): 327-32.
[http://dx.doi.org/10.1038/nature22035] [PMID: 28379944]
[30]
Savage PD, Lovato J, Brosnihan KB, Miller AA, Petty WJ. Phase II trial of angiotensin-(1-7) for the treatment of patients with metastatic sarcoma. Sarcoma 2016; 20164592768
[http://dx.doi.org/10.1155/2016/4592768]] [PMID: 27895527]
[31]
Ahsan SM, Rao CM, Ahmad MF. Nanoparticle-protein interaction: the significance and role of protein corona. Adv Exp Med Biol 2018; 1048: 175-98.
[http://dx.doi.org/10.1007/978-3-319-72041-8_11] [PMID: 29453539]
[32]
Au JL, Guo P, Gao Y, et al. Multiscale tumor spatiokinetic model for intraperitoneal therapy. AAPS J 2014; 16(3): 424-39.
[http://dx.doi.org/10.1208/s12248-014-9574-y] [PMID: 24570339]
[33]
Olsson B, Lautner R, Andreasson U, et al. Olsson C, Strobel G, Wu E, Dakin K, Petzold M, Blennow K, Zetterberg H. CSF and blood biomarkersforthediagnosisofAlzheimer’sdisease:Asystematicreviewandmeta-analysis. Lancet 2016; 15(7): 673-84.
[http://dx.doi.org/10.1016/S1474-4422(16)00070-3] [PMID: 27068280]
[34]
Bargheer D, Nielsen J, Gébel G, et al. The fate of a designed protein corona on nanoparticles in vitro and in vivo. Beilstein J Nanotechnol 2015; 6: 36-46.
[http://dx.doi.org/10.3762/bjnano.6.5] [PMID: 25671150]
[35]
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 2016; 33(10): 2373-87.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[36]
Khlistunova I, Biernat J, Wang Y, et al. Inducible expression of Tau repeat domain in cell models of tauopathy: aggregation is toxic to cells but can be reversed by inhibitor drugs. J Biol Chem 2006; 281(2): 1205-14.
[http://dx.doi.org/10.1074/jbc.M507753200] [PMID: 16246844]
[37]
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[38]
Caputo D, Papi M, Coppola R, et al. A protein corona-enabled blood test for early cancer detection. Nanoscale 2017; 9(1): 349-54.
[http://dx.doi.org/10.1039/C6NR05609A] [PMID: 27924334]
[39]
Sahu P, Kashaw SK, Sau S, Iyer AK. Polylactide-co-glycolide-based Nanogel: Concept and Functions. Materials for Biomedical Engineering 2019; pp. 399-423.
[40]
Chan SK, Gullick WJ, Hill ME. Mutations of the epidermal growth factor receptor in non-small cell lung cancer - search and destroy. Eur J Cancer 2006; 42(1): 17-23.
[http://dx.doi.org/10.1016/j.ejca.2005.07.031] [PMID: 16364841]
[41]
Yun CH, Mengwasser KE, Toms AV, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA 2008; 105(6): 2070-5.
[http://dx.doi.org/10.1073/pnas.0709662105] [PMID: 18227510]
[42]
Zhou W, Ercan D, Chen L, et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 2009; 462(7276): 1070-4.
[http://dx.doi.org/10.1038/nature08622] [PMID: 20033049]
[43]
Walter AO, Sjin RT, Haringsma HJ, et al. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov 2013; 3(12): 1404-15.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0314] [PMID: 24065731]
[44]
Kim ES. Olmutinib:firstglobalapproval. Drugs 2016; 76(11): 1153-7.
[http://dx.doi.org/10.1007/s40265-016-0606-z] [PMID: 27357069]
[45]
Chan BK, Hanan EJ, Bowman KK, et al. Discovery of a noncovalent, mutant-selective epidermal growth factor receptor inhibitor. J Med Chem 2016; 59(19): 9080-93.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00995] [PMID: 27564586]
[46]
Jia Y, Yun CH, Park E, et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature 2016; 534(7605): 129-32.
[http://dx.doi.org/10.1038/nature17960] [PMID: 27251290]
[47]
Corbo C, Molinaro R, Tabatabaei M, Farokhzad OC, Mahmoudi M. Personalized protein corona on nanoparticles and its clinical implications. Biomater Sci 2017; 5(3): 378-87.
[http://dx.doi.org/10.1039/C6BM00921B] [PMID: 28133653]
[48]
Nori A, Kopecek J. Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv Drug Deliv Rev 2005; 57(4): 609-36.
[http://dx.doi.org/10.1016/j.addr.2004.10.006] [PMID: 15722167]
[49]
Cheng R, Meng F, Deng C, Klok HA, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013; 34(14): 3647-57.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.084] [PMID: 23415642]
[50]
Vishwakarma APS, Vishwe A, Sahu P, et al. Screening of Hepatoprotective Potential of Ethanolic and Aqueous Extract of Terminalia Arjuna Bark against Paracetamol/CCl4 Induced Liver damage in Wistar Albino Rats. Int J Pharma Archive 2013; 3: 1-8.
[51]
Deng C, Jiang YJ, Cheng R, Meng FH, Zhong ZY. Biodegradable polymericmicelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today 2012; 7: 467-80.
[http://dx.doi.org/10.1016/j.nantod.2012.08.005]
[52]
Sun H, Guo B, Cheng R, Meng F, Liu H, Zhong Z. Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials 2009; 30(31): 6358-66.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.051] [PMID: 19666191]
[53]
Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem 2009; 78: 857-902.
[http://dx.doi.org/10.1146/annurev.biochem.78.081307.110540] [PMID: 19317650]
[54]
Liu C, Liu F, Feng L, Li M, Zhang J, Zhang N. The targeted co-delivery of DNA and doxorubicin to tumor cells via multifunctional PEI-PEG based nanoparticles. Biomaterials 2013; 34(10): 2547-64.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.038] [PMID: 23332321]
[55]
Zhao L, Xu YH, Akasaka T, et al. Polyglycerol-coated nanodiamond as a macrophage-evading platform for selective drug delivery in cancer cells. Biomaterials 2014; 35(20): 5393-406.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.041] [PMID: 24720879]
[56]
Zhang LY, Guo R, Yang M, Jiang XQ, Liu BR. Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery. Adv Mater 2007; 19: 2988-92.
[http://dx.doi.org/10.1002/adma.200601817]
[57]
Liu TY, Hu SH, Liu KH, Shaiu RS, Liu DM, Chen SY. Instantaneous drug delivery of magnetic/thermally sensitive nanospheres by a high-frequency magnetic field. Langmuir 2008; 24(23): 13306-11.
[http://dx.doi.org/10.1021/la801451v] [PMID: 18954093]
[58]
Such GK, Yan Y, Johnston APR, Gunawan ST, Caruso F. Interfacing materials science and biology for drug carrier design. Adv Mater 2015; 27(14): 2278-97.
[http://dx.doi.org/10.1002/adma.201405084] [PMID: 25728711]
[59]
Lee MH, Yang Z, Lim CW, et al. Disulfide-cleavage-triggered chemosensors and their biological applications. Chem Rev 2013; 113(7): 5071-109.
[http://dx.doi.org/10.1021/cr300358b] [PMID: 23577659]
[60]
Sahu P, Sau S, Iyer AK, Kashaw SK. Nanogels: The Emerging Carrier in Drug Delivery System. Recent Trends in Nanomedicine and Tissue Engineering 2017; p. 121.
[61]
Prabhakar U, Maeda H, Jain RK, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 2013; 73(8): 2412-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-4561] [PMID: 23423979]
[62]
Das D, Chaurasia A, Sahu P, et al. Antihypercholestrolemic Potential of Omega-3-Fatty Acid Concentrate in Alloxan Induced Diabetic Rodent. Int J Pharm Sci Res 2015; 6: 3634-40.
[63]
Qu L, Ding J, Chen C, et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 2016; 29(5): 653-68.
[http://dx.doi.org/10.1016/j.ccell.2016.03.004] [PMID: 27117758]
[64]
Raoufi M, Hajipour MJ, Kamali Shahri SM, Schoen I, Linn U, Mahmoudi M. Probing fibronectin conformation on a protein corona layer around nanoparticles. Nanoscale 2018; 10(3): 1228-33.
[http://dx.doi.org/10.1039/C7NR06970G] [PMID: 29292453]
[65]
Northfield SE, Wang CK, Schroeder CI, et al. Disulfide-rich macrocyclic peptides as templates in drug design. Eur J Med Chem 2014; 77: 248-57.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.011] [PMID: 24650712]
[66]
Yadav S, Sahu P, Chaurasia A. Role of Cyamopsis tetragonoloba against Cisplatin induced Genotoxicity: Analysis of Micronucleus and Chromosome Aberrations In vivo. Int J Bio Innovation 2013; 2: 184-93.
[67]
Góngora-Benítez M, Tulla-Puche J, Albericio F. Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chem Rev 2014; 114(2): 901-26.
[http://dx.doi.org/10.1021/cr400031z] [PMID: 24446748]
[68]
Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 2011; 152(1): 2-12.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.030] [PMID: 21295087]
[69]
Huang L, Liu D, Wagner E. Nonviral vectors for gene therapy lipid- and polymer-based gene transferAdvances in Genetics. San Diego: Elsevier Academic Press Inc 2014; pp. 289-323.
[70]
Vader P, van der Aa LJ, Storm G, Schiffelers RM, Engbersen JFJ. Polymeric carrier systems for siRNA delivery. Curr Top Med Chem 2012; 12(2): 108-19.
[http://dx.doi.org/10.2174/156802612798919123] [PMID: 22196278]
[71]
Ouyang D, Shah N, Zhang H, Smith SC, Parekh HS. Reducible disulfide-based non-viral gene delivery systems. Mini Rev Med Chem 2009; 9(10): 1242-50.
[http://dx.doi.org/10.2174/138955709789055225] [PMID: 19817714]
[72]
Chaurasia A, Das D, Sahu P. Evaluation, Assessment & Screening of Antidiabetic Activity of Stevia Rebaudiana leaves extract in Alloxan-Induced Diabetic Rat Model. J Int Res Medical Pharmaceutical Science 2016; 9: 107-12.
[73]
Lin C, Engbersen JFJ. The role of the disulfide group in disulfide-based polymeric gene carriers. Expert Opin Drug Deliv 2009; 6(4): 421-39.
[http://dx.doi.org/10.1517/17425240902878010] [PMID: 19382884]
[74]
Ryu K, Kim TI. Therapeutic gene delivery using bioreducible polymers. Arch Pharm Res 2014; 37(1): 31-42.
[http://dx.doi.org/10.1007/s12272-013-0275-3] [PMID: 24178745]
[75]
Brülisauer L, Gauthier MA, Leroux JC. Disulfide-containing parenteral delivery systems and their redox-biological fate. J Control Release 2014; 195: 147-54.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.012] [PMID: 24952369]
[76]
Lee YS, Kim SW. Bioreducible polymers for therapeutic gene delivery. J Control Release 2014; 190: 424-39.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.012] [PMID: 24746626]
[77]
Phillips DJ, Gibson MI. Redox-sensitive materials for drug delivery: targeting the correct intracellular environment, tuning release rates, and appropriate predictive systems. Antioxid Redox Signal 2014; 21(5): 786-803.
[http://dx.doi.org/10.1089/ars.2013.5728] [PMID: 24219144]
[78]
Ritz S, Schöttler S, Kotman N, et al. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 2015; 16(4): 1311-21.
[http://dx.doi.org/10.1021/acs.biomac.5b00108] [PMID: 25794196]
[79]
Riviere JE. Of mice, men and nanoparticle biocoronas: are in vitro to in vivo correlations and interspecies extrapolations realistic? Nanomedicine (Lond) 2013; 8(9): 1357-9.
[http://dx.doi.org/10.2217/nnm.13.129] [PMID: 23987106]
[80]
Treuel L, Nienhaus GU. Toward a molecular understanding of nanoparticle-protein interactions. Biophys Rev 2012; 4(2): 137-47.
[http://dx.doi.org/10.1007/s12551-012-0072-0] [PMID: 28510093]
[81]
Sahu P, Kashaw SK, Sau S, Kushwah V, Jain S, Iyer AK. Discovering pH triggered charge rebound surface modulated topical nanotherapy against aggressive skin papilloma. Mater Sci Eng C 2020; 107110263
[http://dx.doi.org/10.1016/j.msec.2019.110263] [PMID: 31761163]
[82]
Schroeder A, Levins CG, Cortez C, Langer R, Anderson DG. Lipid-based nanotherapeutics for siRNA delivery. J Intern Med 2010; 267(1): 9-21.
[http://dx.doi.org/10.1111/j.1365-2796.2009.02189.x] [PMID: 20059641]
[83]
Sefidgar M, Soltani M, Raahemifar K, Bazmara H, Nayinian SM, Bazargan M. Effect of tumor shape, size, and tissue transport properties on drug delivery to solid tumors. J Biol Eng 2014; 8: 12.
[http://dx.doi.org/10.1186/1754-1611-8-12] [PMID: 24987457]
[84]
Wang YZ. QuK, Tang LH, Li ZL, Moore E, Zeng XQ, LiuY, Li JH. Nanomaterials in carbohydrate biosensors. Trends Analyt Chem 2014; 58: 54-70.
[http://dx.doi.org/10.1016/j.trac.2014.03.005]
[85]
Jin Y, Song Y, Zhu X, et al. Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials 2012; 33(5): 1573-82.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.075] [PMID: 22093292]
[86]
Reichardt NC, Martín-Lomas M, Penadés S. Glyconanotechnology. Chem Soc Rev 2013; 42(10): 4358-76.
[http://dx.doi.org/10.1039/c2cs35427f] [PMID: 23303404]
[87]
Kruss S, Hilmer AJ, Zhang J, Reuel NF, Mu B, Strano MS. Carbon nanotubes as optical biomedical sensors. Adv Drug Deliv Rev 2013; 65(15): 1933-50.
[http://dx.doi.org/10.1016/j.addr.2013.07.015] [PMID: 23906934]
[88]
Majdalawieh A, Kanan MC, El-Kadri O, Kanan SM. Recent advances in gold and silver nanoparticles: synthesis and applications. J Nanosci Nanotechnol 2014; 14(7): 4757-80.
[http://dx.doi.org/10.1166/jnn.2014.9526] [PMID: 24757945]
[89]
Modugno G, Ménard-Moyon C, Prato M, Bianco A. Carbon nanomaterials combined with metal nanoparticles for theranostic applications. Br J Pharmacol 2015; 172(4): 975-91.
[http://dx.doi.org/10.1111/bph.12984] [PMID: 25323135]
[90]
Ang CY, Tan SY, Zhao Y. Recent advances in biocompatible nanocarriers for delivery of chemotherapeutic cargoes towards cancer therapy. Org Biomol Chem 2014; 12(27): 4776-806.
[http://dx.doi.org/10.1039/c4ob00164h] [PMID: 24737243]
[91]
Sahu P, Kashaw SK, Kushwah V, Sau S, Jain S, Iyer AK. pH responsive biodegradable nanogels for sustained release of bleomycin. Bioorg Med Chem 2017; 25(17): 4595-613.
[http://dx.doi.org/10.1016/j.bmc.2017.06.038] [PMID: 28734664]
[92]
Gabius HJ, Kayser K. Introduction to glycopathology: the concept, the tools and the perspectives. Diagn Pathol 2014; 9: 4.
[http://dx.doi.org/10.1186/1746-1596-9-4] [PMID: 24443956]
[93]
Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 2015; 115(5): 2045-108.
[http://dx.doi.org/10.1021/cr500279h] [PMID: 25659975]
[94]
Endo T. Glycobiology of α-dystroglycan and muscular dystrophy. J Biochem 2015; 157(1): 1-12.
[http://dx.doi.org/10.1093/jb/mvu066] [PMID: 25381372]
[95]
Sahu P, Kashaw SK, Jain S, Sau S, Iyer AK. Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: In vitro and ex vivo studies. J Control Release 2017; 253: 122-36.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.023] [PMID: 28322977]
[96]
Tan FYY, Tang CM, Exley RM. Sugar coating: bacterial protein glycosylation and host-microbe interactions. Trends Biochem Sci 2015; 40(7): 342-50.
[http://dx.doi.org/10.1016/j.tibs.2015.03.016] [PMID: 25936979]
[97]
André S, Kaltner H, Manning JC, Murphy PV, Gabius H-J. Lectins: getting familiar with translators of the sugar code. Molecules 2015; 20(2): 1788-823.
[http://dx.doi.org/10.3390/molecules20021788] [PMID: 25621423]
[98]
Alla AJ, Stine KJ. Development of monolithic column materials for the separation and analysis of glycans. Chromatography (Basel) 2015; 2(1): 20-65.
[http://dx.doi.org/10.3390/chromatography2010020]
[99]
Tkac J, Bertok T, Nahalka J, Gemeiner P. Perspectives in glycomics and lectin engineering. Methods Mol Biol 2014; 1200: 421-45.
[http://dx.doi.org/10.1007/978-1-4939-1292-6_37] [PMID: 25117256]
[100]
Sahu P, Bhatt A, Chaurasia A, et al. Enhanced hepatoprotective activity of piperine loaded chitosan microspheres. Int J Drug Dev Research 2012; 4: 259-62.
[101]
Gao Q, Tontini M, Brogioni G, et al. RomanoMR,Costantino P, BertiF, Adamo R, LayL. Immunoactivity of protein conjugates of carba analogues fromneisseria meningitidis a capsular polysaccharide. ACS Chem Biol 2013; 8(11): 2561-7.
[http://dx.doi.org/10.1021/cb400463u] [PMID: 24000773]
[102]
Johannes M, Reindl M, Gerlitzki B, Schmitt E, Hoffmann-Röder A. Synthesis and biological evaluation of a novel MUC1 glycopeptide conjugate vaccine candidate comprising a 4′-deoxy-4′-fluoro-Thomsen-Friedenreich epitope. Beilstein J Org Chem 2015; 11: 155-61.
[http://dx.doi.org/10.3762/bjoc.11.15] [PMID: 25670999]
[103]
Sahu P, Bhatt A, Chaurasia A, et al. Enhanced hepatoprotective activity of piperine loaded chitosan microspheres. Int J Drug Delivery and Research 2012; 4: 259-62.
[104]
Pelaz B, del Pino P, Maffre P, et al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 2015; 9(7): 6996-7008.
[http://dx.doi.org/10.1021/acsnano.5b01326] [PMID: 26079146]
[105]
Li P, Luo Z, Liu P, et al. Bioreducible alginate-poly(ethylenimine) nanogels as an antigen-delivery system robustly enhance vaccine-elicited humoral and cellular immune responses. J Control Release 2013; 168(3): 271-9.
[http://dx.doi.org/10.1016/j.jconrel.2013.03.025] [PMID: 23562637]
[106]
Liu Z, Lv D, Liu S, et al. Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: effect against breast cancer in mice. PLoS One 2013; 8(4)e60190
[http://dx.doi.org/10.1371/journal.pone.0060190] [PMID: 23577091]
[107]
Bento D, Staats HF, Borges O. Effect of particulate adjuvant on the anthrax protective antigen dose required for effective nasal vaccination. Vaccine 2015; 33(31): 3609-13.
[http://dx.doi.org/10.1016/j.vaccine.2015.06.037] [PMID: 26087299]
[108]
Bento D, Staats HF, Gonçalves T, Borges O. Development of a novel adjuvanted nasal vaccine: C48/80 associated with chitosan nanoparticles as a path to enhance mucosal immunity. Eur J Pharm Biopharm 2015; 93: 149-64.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.024] [PMID: 25818119]
[109]
Lu F, Mencia A, Bi L, Taylor A, Yao Y. HogenEsch H. Dendrimer-like alpha-d-glucan nanoparticles activate dendritic cells and are effective vaccine adjuvants. J Control Release 2015; 204: 51-9.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.002] [PMID: 25747143]
[110]
Liao G, Zhou Z, Burgula S, et al. Synthesis and immunological studies of linear oligosaccharides of β-glucan as antigens for antifungal vaccine development. Bioconjug Chem 2015; 26(3): 466-76.
[http://dx.doi.org/10.1021/bc500575a] [PMID: 25671314]
[111]
Saade F, Honda-Okubo Y, Trec S, Petrovsky N. A novel hepatitis B vaccine containing Advax™, a polysaccharide adjuvant derived from delta inulin, induces robust humoral and cellular immunity with minimal reactogenicity in preclinical testing. Vaccine 2013; 31(15): 1999-2007.
[http://dx.doi.org/10.1016/j.vaccine.2012.12.077] [PMID: 23306367]
[112]
Sahu P, Kashaw SK, Sau S, et al. Stimuli-Responsive Bio-Hybrid Nanogels: an Emerging Platform in Medicinal Arena, Global J. Nanomedicine (Lond) 2017; 1: 1-3.
[113]
Paliwal SR, Paliwal R, Vyas SP. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv 2015; 22(3): 231-42.
[http://dx.doi.org/10.3109/10717544.2014.882469] [PMID: 24524308]
[114]
Wen CC, Kuo YH, Jan JT, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem 2007; 50(17): 4087-95.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[115]
Ryu YB, Park SJ, Kim YM, et al. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg Med Chem Lett 2010; 20(6): 1873-6.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.152] [PMID: 20167482]
[116]
Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chem Rev 2017; 117(17): 11476-521.
[http://dx.doi.org/10.1021/acs.chemrev.7b00194] [PMID: 28862437]
[117]
Lai ZW, Yan Y, Caruso F, Nice EC. Emerging techniques in proteomics for probing nano-bio interactions. ACS Nano 2012; 6(12): 10438-48.
[http://dx.doi.org/10.1021/nn3052499] [PMID: 23214939]
[118]
Sahu P, Das D, Mishra VK, Kashaw V, Kashaw SK. Nanoemulsion: A Novel Eon in Cancer Chemotherapy. Mini Rev Med Chem 2017; 17(18): 1778-92.
[http://dx.doi.org/10.2174/1389557516666160219122755] [PMID: 26891931]
[119]
Das D, Sahu P, Kashaw V, et al. Formulation and Assessment of In Vivo Anti-Inflammatory Potential of Omega-3-Fatty Acid Loaded Self Emulsifying Nanoemulsion. Curr Nanomed 2017; 7: 47-58.
[http://dx.doi.org/10.2174/2468187306666160926125452]
[120]
Ko C, Michler T, Protzer U. Novel viral and host targets to cure hepatitis B. Curr Opin Virol 2017; 24: 38-45.
[http://dx.doi.org/10.1016/j.coviro.2017.03.019] [PMID: 28433762]
[121]
Ke PC, Lin S, Parak WJ, Davis TP, Caruso F. A decade of the protein corona. ACS Nano 2017; 11(12): 11773-6.
[http://dx.doi.org/10.1021/acsnano.7b08008] [PMID: 29206030]
[122]
Yao D, Li H, Gou Y, et al. Betulinic acid-mediated inhibitory effect on hepatitis B virus by suppression of manganese superoxide dismutase expression. FEBS J 2009; 276(9): 2599-614.
[http://dx.doi.org/10.1111/j.1742-4658.2009.06988.x] [PMID: 19348625]
[123]
Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics 2010; 73(10): 1907-20.
[http://dx.doi.org/10.1016/j.jprot.2010.06.006] [PMID: 20601276]
[124]
McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2011; 12(8): 517-33.
[http://dx.doi.org/10.1038/nrm3151] [PMID: 21779028]
[125]
Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 2012; 7(12): 779-86.
[http://dx.doi.org/10.1038/nnano.2012.207] [PMID: 23212421]
[126]
Das D, Sahu P, Mishra VK, et al. Nanoemulsion-the Emerging Contrivance in the Field of Nanotechnology. Nanosci Nanotechnol Asia 2018; 8: 146-71.
[http://dx.doi.org/10.2174/2210681207666170418123826]
[127]
Li Y, Wang J, Wientjes MG, Au JL. Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. Adv Drug Deliv Rev 2012; 64(1): 29-39.
[http://dx.doi.org/10.1016/j.addr.2011.04.006] [PMID: 21569804]
[128]
Lu JJ, Langer R, Chen J. A novel mechanism is involved in cationic lipid-mediated functional siRNA delivery. Mol Pharm 2009; 6(3): 763-71.
[http://dx.doi.org/10.1021/mp900023v] [PMID: 19292453]
[129]
Lu Z, Wang J, Wientjes MG, Au JL. Intraperitoneal therapy for peritoneal cancer. Future Oncol 2010; 6(10): 1625-41.
[http://dx.doi.org/10.2217/fon.10.100] [PMID: 21062160]
[130]
Mahmoudi M. Debugging nano-bio interfaces: systematic strategies to accelerate clinical translation of nanotechnologies. Trends Biotechnol 2018; 36(8): 755-69.
[http://dx.doi.org/10.1016/j.tibtech.2018.02.014] [PMID: 29559165]
[131]
Naslavsky N, Caplan S. The enigmatic endosome - sorting the ins and outs of endocytic trafficking. J Cell Sci 2018; 131(13)jcs216499
[http://dx.doi.org/10.1242/jcs.216499] [PMID: 29980602]
[132]
Nie S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond) 2010; 5(4): 523-8.
[http://dx.doi.org/10.2217/nnm.10.23] [PMID: 20528447]
[133]
Oh N, Park JH. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine 2014; 9(Suppl. 1): 51-63.
[PMID: 24872703]
[134]
Vishwakarma APS, Vishwe A, Sahu P, et al. Magical Remedies of Terminalia arjuna Roxb. Int J Pharma Archive 2013; 2: 189-201.
[135]
Hadjidemetriou M, Al-Ahmady Z, Mazza M, Collins RF, Dawson K, Kostarelos K. In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles. ACS Nano 2015; 9(8): 8142-56.
[http://dx.doi.org/10.1021/acsnano.5b03300] [PMID: 26135229]
[136]
Jayaram DT, Pustulka SM, Mannino RG, Lam WA, Payne CK. Protein corona in response to flow: effect on protein concentration and structure. Biophys J 2018; 115(2): 209-16.
[http://dx.doi.org/10.1016/j.bpj.2018.02.036] [PMID: 29650368]
[137]
Jiang Y, Tang R, Duncan B, et al. Direct cytosolic delivery of siRNA using nanoparticle-stabilized nanocapsules. Angew Chem Int Ed Engl 2015; 54(2): 506-10.
[PMID: 25393227]
[138]
Hadjidemetriou M, Al-Ahmady Z, Kostarelos K. Time-evolution of in vivo protein corona onto blood-circulating PEGylated liposomal doxorubicin (DOXIL) nanoparticles. Nanoscale 2016; 8(13): 6948-57.
[http://dx.doi.org/10.1039/C5NR09158F] [PMID: 26961355]
[139]
Gabriel EM, Fisher DT, Evans S, Takabe K, Skitzki JJ. Intravital microscopy in the study of the tumor microenvironment: from bench to human application. Oncotarget 2018; 9(28): 20165-78.
[http://dx.doi.org/10.18632/oncotarget.24957] [PMID: 29732011]
[140]
Gao Y, Li M, Chen B, et al. Predictive models of diffusive nanoparticle transport in 3-dimensional tumor cell spheroids. AAPS J 2013; 15(3): 816-31.
[http://dx.doi.org/10.1208/s12248-013-9478-2] [PMID: 23605950]
[141]
Heidary Navid M, Laszczyk-Lauer MN, Reichling J, Schnitzler P. Pentacyclic triterpenes in birch bark extract inhibit early step of herpes simplex virus type 1 replication. Phytomedicine 2014; 21(11): 1273-80.
[http://dx.doi.org/10.1016/j.phymed.2014.06.007] [PMID: 25172789]
[142]
Wang J, Chen X, Wang W, et al. Glycyrrhizic acid as the antiviral component of Glycyrrhiza uralensis Fisch. against coxsackievirus A16 and enterovirus 71 of hand foot and mouth disease. J Ethnopharmacol 2013; 147(1): 114-21.
[http://dx.doi.org/10.1016/j.jep.2013.02.017] [PMID: 23454684]
[143]
Fisher DT, Muhitch JB, Kim M, et al. Intraoperative intravital microscopy permits the study of human tumour vessels. Nat Commun 2016; 7: 10684.
[http://dx.doi.org/10.1038/ncomms10684] [PMID: 26883450]
[144]
Song J, Yeo SG, Hong EH, et al. Antiviral activity of hederasaponin B from Hedera helix against enterovirus 71 subgenotypes C3 and C4a. Biomol Ther (Seoul) 2014; 22(1): 41-6.
[http://dx.doi.org/10.4062/biomolther.2013.108] [PMID: 24596620]
[145]
Finlay MR, Anderton M, Ashton S, et al. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. J Med Chem 2014; 57(20): 8249-67.
[http://dx.doi.org/10.1021/jm500973a] [PMID: 25271963]
[146]
Sahu P, Kashaw SK, Sau S, et al. pH triggered and charge attracted nanogel for simultaneous evaluation of penetration and toxicity against skin cancer: In-vitro and ex-vivo study. Int J Biol Macromol 2019; 128: 740-51.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.147] [PMID: 30699336]
[147]
Cross DA, Ashton SE, Ghiorghiu S, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 2014; 4(9): 1046-61.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0337] [PMID: 24893891]
[148]
Jänne PA, Yang JC, Kim DW, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 2015; 372(18): 1689-99.
[http://dx.doi.org/10.1056/NEJMoa1411817] [PMID: 25923549]
[149]
Goss G, Tsai CM, Shepherd FA, et al. Osimertinib for pretreated EGFR Thr790Met-positive advanced non-small-cell lung cancer (AURA2): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol 2016; 17(12): 1643-52.
[http://dx.doi.org/10.1016/S1470-2045(16)30508-3] [PMID: 27751847]
[150]
Vilanova O, Mittag JJ, Kelly PM, et al. Understanding the kinetics of protein-nanoparticle corona formation. ACS Nano 2016; 10(12): 10842-50.
[http://dx.doi.org/10.1021/acsnano.6b04858] [PMID: 28024351]
[151]
Mok TS, Wu YL, Ahn MJ, et al. AURA3 Investigators. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med 2017; 376(7): 629-40.
[http://dx.doi.org/10.1056/NEJMoa1612674] [PMID: 27959700]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy