Current Trend and Pro-survival Approaches for Augmenting Stem Cell Viability

Author(s): Pravin Shende*, Nivedita Gandhewar

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 12 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Stem cells are of two types: embryonic and adult stem cells and they act as a repair system by replenishing body tissue. Stem cells differentiate into different types of cells, such as neural, hematopoietic, adipose, etc. and are used for the treatment of various conditions like myocardial infarction, spinal cord injury, Parkinson’s disease and diabetes.

Methods: This article focuses on recent research development that addresses the viability issues of stem cells. The efficiency of transplanted stem cells reduces due to conditions like hypoxia, inflammation, nutrient deprivation, immunogenicity, extracellular matrix loss on delivery and mechanical stress.

Results: To increase the viability of stem cells, techniques like scaffolds of stem cells with hydrogel or alginate, pre-conditioning, different routes of administration and encapsulation, are implemented.

Conclusion: For the protection of stem cells against apoptosis, different pathways, namely Phosphoinositide 3-Kinase (PI3K/AKT), Hypoxia-Inducible Factor (HIF1), Mitogen-Activated Protein Kinases (MAPK) and Hippo, are discussed.

Discussion: Activation of the PI3K/AKT pathway decreases the concentration of apoptotic factors, while the HIF pathway protects stem cells against the micro-environment of tissue (hypoxia).

Keywords: Viability, mesenchymal stem cell, preconditioning, pro-survival strategies, PI3K/AKT, HIF1.

[1]
Mandpe, P.; Prabhakar, B.; Shende, P. Role of liposome-based stem cells for multimodal cancer therapy. Stem Cell Rev. Rep., 2019, 16(1), 103-117.
[2]
Shende, P.; Wakade, V.S. Biointerface: A nano-modulated way for biological transportation. J. Drug Target., 2020, 1-12.
[http://dx.doi.org/10.1080/1061186X.2020.1720218] [PMID: 31961758]
[3]
Colpo, G.D.; Furr Stimming, E.; Teixeira, A.L. Stem cells in animal models of Huntington disease: A systematic review. Mol. Cell. Neurosci., 2019, 95, 43-50.
[http://dx.doi.org/10.1016/j.mcn.2019.01.006] [PMID: 30685323]
[4]
Rao, M.S. Stem sense: A proposal for the classification of stem cells. Stem Cells Dev., 2004, 13(5), 452-455.
[http://dx.doi.org/10.1089/scd.2004.13.452] [PMID: 15588501]
[5]
Rana, D.; Ramasamy, K.; Leena, M.; Jiménez, C.; Campos, J.; Ibarra, P.; Haidar, Z.S.; Ramalingam, M. Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine. Biotechnol. Prog., 2016, 32(3), 554-567.
[http://dx.doi.org/10.1002/btpr.2262] [PMID: 27006260]
[6]
Ramalho-Santos, M.; Yoon, S.; Matsuzaki, Y.; Mulligan, R.C.; Melton, D.A. “Stemness”: Transcriptional profiling of embryonic and adult stem cells. Science (80- ), 2002, 298(5593), 597-600.
[7]
Li, L.; Guan, Q.; Dai, S.; Wei, W.; Zhang, Y. Integrin β1 increases stem cell survival and cardiac function after myocardial infarction. Front. Pharmacol., 2017, 8, 135.
[http://dx.doi.org/10.3389/fphar.2017.00135] [PMID: 28367125]
[8]
Herrera, S.C.; Bach, E.A. JAK/STAT signaling in stem cells and regeneration: From drosophila to vertebrates. Development, 2019, 146(2)
[http://dx.doi.org/10.1242/dev.167643 ] [PMID: 3069671]
[9]
Sousa-nunes, R.; Somers, W.G. Mechanisms of asymmetric progenitor divisions in the Drosophila central nervous system. Adv. Exp. Med. Biol., 2013, 786, 79-102.https://link.springer.com/chapter/10.1007%2F978-94-007-6621-1_6
[PMID: 23696353]
[10]
Strikoudis, A.; Guillamot, M.; Aifantis, I. Regulation of stem cell function by protein ubiquitylation. EMBO Rep., 2014, 15(4), 365-382.
[http://dx.doi.org/10.1002/embr.201338373] [PMID: 24652853]
[11]
Mohammad, K.; Dakik, P.; Medkour, Y.; Mitrofanova, D.; Titorenko, V.I. Quiescence entry, maintenance, and exit in adult stem cells. Int. J. Mol. Sci., 2019, 20(9), 1-41.
[http://dx.doi.org/10.3390/ijms20092158] [PMID: 31052375]
[12]
Mandai, M.; Watanabe, A.; Kurimoto, Y.; Hirami, Y.; Morinaga, C.; Daimon, T.; Fujihara, M.; Akimaru, H.; Sakai, N.; Shibata, Y.; Terada, M.; Nomiya, Y.; Tanishima, S.; Nakamura, M.; Kamao, H.; Sugita, S.; Onishi, A.; Ito, T.; Fujita, K.; Kawamata, S.; Go, M.J.; Shinohara, C.; Hata, K.I.; Sawada, M.; Yamamoto, M.; Ohta, S.; Ohara, Y.; Yoshida, K.; Kuwahara, J.; Kitano, Y.; Amano, N.; Umekage, M.; Kitaoka, F.; Tanaka, A.; Okada, C.; Takasu, N.; Ogawa, S.; Yamanaka, S.; Takahashi, M. Autologous induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med., 2017, 376(11), 1038-1046.
[http://dx.doi.org/10.1056/NEJMoa1608368] [PMID: 28296613]
[13]
Madl, C.M.; Heilshorn, S.C.; Blau, H.M. Bioengineering strategies to accelerate stem cell therapeutics. Nature, 2018, 557(7705), 335-342.
[http://dx.doi.org/10.1038/s41586-018-0089-z] [PMID: 29769665]
[14]
Nishiyama, Y.; Iwanami, A.; Kohyama, J.; Itakura, G.; Kawabata, S.; Sugai, K.; Nishimura, S.; Kashiwagi, R.; Yasutake, K.; Isoda, M.; Matsumoto, M.; Nakamura, M.; Okano, H. Safe and efficient method for cryopreservation of human induced pluripotent stem cell-derived neural stem and progenitor cells by a programmed freezer with a magnetic field. Neurosci. Res., 2016, 107, 20-29.
[http://dx.doi.org/10.1016/j.neures.2015.11.011] [PMID: 26804710]
[15]
Ji, P.; Manupipatpong, S.; Xie, N.; Li, Y. Induced pluripotent stem cells: Generation strategy and epigenetic mystery behind reprogramming. Stem Cells Int., 2016, 2016, 8415010.https://www.hindawi.com/journals/sci/2016/8415010/
[PMID: 26880993]
[16]
Ghaedi, M.; Niklason, L.E. Human Pluripotent Stem Cells (iPSC); Generation, culture, and differentiation to lung progenitor cells. 2016.
[17]
Hong, H.; Yang, Y.; Zhang, Y.; Cai, W. Non-invasive imaging of human embryonic stem cells. Curr. Pharm. Biotechnol., 2010, 11(6), 685-692.
[http://dx.doi.org/10.2174/138920110792246500 ] [PMID: 20497109]
[18]
Patil, U.S.; Adireddy, S.; Jaiswal, A.; Mandava, S.; Lee, B.R. In vitro/in vivo toxicity evaluation and quantification of iron oxide. Int. J. Mol. Sci., 2015, 24417-24450.
[http://dx.doi.org/10.3390/ijms161024417 ] [PMID: 26501258]
[19]
Vembadi, A.; Menachery, A.; Qasaimeh, M.A. Cell cytometry: Review and perspective on biotechnological advances. Front. Bioeng. Biotechnol., 2019, 7, 147.
[http://dx.doi.org/10.3389/fbioe.2019.00147] [PMID: 31275933]
[20]
Stachura, D.L.; Traver, D. Cellular dissection of zebrafish hematopoiesis. In: Methods in Cell Biology, Third Edit.; Elsevier Ltd; , 2016; 33, pp. 11-53.
[http://dx.doi.org/10.1016/B978-0-12-387036-0.00004-9]
[21]
Chacon, E.; Acosta, D.; Lemasters, J.J. Primary Cultures of cardiac myocytes as in vitro models for pharmacological and toxicological assessments. In Vitro Methods Pharmaceut. Res. 1997, 209-223.
[http://dx.doi.org/10.1016/B978-012163390-5.50010-7]
[22]
Protocol, B. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol., 2015, 111, A3.B.1-A3.B.3.
[http://dx.doi.org/10.1002/0471142735.ima03bs111] [PMID: 26529666]
[23]
Meerloo, J. Van.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol., 2011, 731, 237-245.
[http://dx.doi.org/10.1002/0471142735.ima03bs111 ] [PMID: 21516412.]
[24]
Rafii, S. Circulating endothelial precursors: Mystery, reality, and promise. J. Clin. Invest., 2000, 105(1), 17-19.
[http://dx.doi.org/10.1172/JCI8774] [PMID: 10619857]
[25]
Zhao, L.; Hu, C.; Zhang, P.; Jiang, H.; Chen, J. Preconditioning strategies for improving the survival rate and paracrine ability of mesenchymal stem cells in acute kidney injury. J. Cell. Mol. Med., 2019, 23(2), 720-730.
[http://dx.doi.org/10.1111/jcmm.14035 ] [PMID: 30484934]
[26]
Nowakowski, A.; Walczak, P.; Lukomska, B.; Janowski, M. genetic engineering of mesenchymal stem cells to induce their migration and survival. Stem Cells Int., 2016, 2016, 4956063.
[http://dx.doi.org/10.1155/2016/4956063] [PMID: 27242906]
[27]
Burcu, S. Boron increases the cell viability of mesenchymal stem cells after after long-term cryopreservation. Cryobiology, 2014, 68, 139-146.
[28]
Scotti, C.; Tonnarelli, B.; Papadimitropoulos, A.; Piccinini, E.; Todorov, A.; Centola, M. Engineering small-scale and scaffold-based bone organs via endochondral ossification using adult progenitor cells. Methods Mol. Biol., 2016, 1416, 413-424.
[http://dx.doi.org/10.1007/978-1-4939-3584-0_24] [PMID: 27236686]
[29]
Batten, P.; Rosenthal, N.A.; Yacoub, M.H. Immune response to stem cells and strategies to induce tolerance. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2007, 362(1484), 1343-1356.
[http://dx.doi.org/10.1098/rstb.2007.2120] [PMID: 17584730]
[30]
Teng, C.; Jeng, L.; Shyu, W. Role of insulin-like growth factor 1 receptor signaling in stem cell stemness and therapeutic efficacy. Cell Transplant., 2018, 27(9), 1313-1319.https://pubmed.ncbi.nlm.nih.gov/29882416/
[PMID: 29882416]
[31]
Hemmings, B.A.; Restuccia, D.F.; Wrana, J.L.; Kopan, R.; Ward, P.S.; Thompson, C.B. PI3K-PKB/Akt Pathway PI3K-PKB/Akt pathway. Cold Spring Harb. Perspect. Biol., 2012, 4(9), a011189.
[http://dx.doi.org/10.1101/cshperspect.a011189] [PMID: 22952397]
[32]
Ravenna, L.; Salvatori, L.; Russo, M.A. HIF3α: The little we know. FEBS J., 2016, 283(6), 993-1003.
[http://dx.doi.org/10.1111/febs.13572] [PMID: 26507580]
[33]
Morrison, D.K. MAP kinase pathways. Cold Spring Harb. Perspect. Biol., 2012, 1-6.
[http://dx.doi.org/10.1101/cshperspect.a011254]
[34]
Hiemer, S.E.; Varelas, X. Stem cell regulation by the Hippo pathway. Biochim. Biophys. Acta, 2013, 1830(2), 2323-2334.
[35]
Murua, A.; Portero, A.; Orive, G.; Hernández, R.M.; de Castro, M.; Pedraz, J.L. Cell microencapsulation technology: Towards clinical application. J. Control. Release, 2008, 132(2), 76-83.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.010] [PMID: 18789985]
[36]
Yang, C.; Frei, H.; Rossi, F.M.; Burt, H.M. The differential in vitro and in vivo responses of bone marrow stromal cells on novel porous gelatin-alginate scaffolds. J. Tissue Eng. Regen. Med., 2009, 3(8), 601-614.
[http://dx.doi.org/10.1002/term.201] [PMID: 19685485]
[37]
Hashemi, M.; Kalalinia, F. Application of encapsulation technology in stem cell therapy. Life Sci., 2015, 143, 139-146.
[http://dx.doi.org/10.1016/j.lfs.2015.11.007] [PMID: 26556151]
[38]
Li, X.; Krawetz, R.; Liu, S.; Meng, G.; Rancourt, D.E. ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells. Hum. Reprod., 2009, 24(3), 580-589.
[http://dx.doi.org/10.1093/humrep/den404] [PMID: 19056770]
[39]
Chen, S.; Deng, X.; Ma, K.; Zhao, L.; Huang, D.; Li, Z. Icariin improves the viability and function of cryopreserved human nucleus pulposus-derived mesenchymal stem cells. Oxid. Med. Cell. Longev., 2018, 5, 1-12.
[http://dx.doi.org/10.1155/2018/3459612]
[40]
Fan, G.C. Role of heat shock proteins in stem cell behavior.[Internet]. In: Progress in Molecular Biology and Translational Science, 1st ed; Elsevier Inc., 2012; Vol. 111, pp. 305-322.
[http://dx.doi.org/10.1016/B978-0-12-398459-3.00014-9]
[41]
Chang, W.; Song, B.W.; Lim, S.; Song, H.; Shim, C.Y.; Cha, M.J.; Ahn, D.H.; Jung, Y.G.; Lee, D.H.; Chung, J.H.; Choi, K.D.; Lee, S.K.; Chung, N.; Lee, S.K.; Jang, Y.; Hwang, K.C. Mesenchymal stem cells pretreated with delivered Hph-1-Hsp70 protein are protected from hypoxia-mediated cell death and rescue heart functions from myocardial injury. Stem Cells, 2009, 27(9), 2283-2292.
[http://dx.doi.org/10.1002/stem.153] [PMID: 19544472]
[42]
Shaik, S.; Hayes, D.; Gimble, J.; Devireddy, R. Inducing heat shock proteins enhances the stemness of frozen- thawed adipose tissue derived. Stem Cells, 2016, (225), 1-38.
[43]
Chendrimada, T.P.; Finn, K.J.; Ji, X.; Baillat, D.; Gregory, R.I.; Liebhaber, S.A.; Pasquinelli, A.E.; Shiekhattar, R. MicroRNA silencing through RISC recruitment of eIF6. Nature, 2007, 447(7146), 823-828.
[http://dx.doi.org/10.1038/nature05841] [PMID: 17507929]
[44]
Liu, Y.; Xiong, Y.; Xing, F.; Gao, H.; Wang, X.; He, L. Precise regulation of mir-210 is critical for the cellular homeostasis maintenance and transplantation efficacy enhancement of mesenchymal stem cells in acute liver failure therapy. Cell Transplant., 2017, 26(5), 805-820.
[http://dx.doi.org/10.3727/096368916X694274] [PMID: 27983913]
[45]
Bálint, E.E.; Vousden, K.H. Activation and activities of the p53 tumour suppressor protein. Br. J. Cancer, 2001, 85(12), 1813-1823.
[http://dx.doi.org/10.1054/bjoc.2001.2128] [PMID: 11747320]
[46]
Sugino, N.; Tamura, I.; Maekawa, R.; Jozaki, K. Decidualization and epigenetic regulation; Uterine Endometrial Funct, 2016, pp. 125-138.
[47]
Blüguermann, C.; Romorini, L.; Evseenko, D.; Garate, X.; Neiman, G.; Sevlever, G.E. Leukemia inhibitory factor increases survival of pluripotent stem cell-derived cardiomyocytes. J. Cardiovasc. Transl. Res., 2018, 11(1)
[http://dx.doi.org/10.1007/s12265-017-9769-6]]
[48]
Winslow, T. Regenerative Medicine; Department of Health and Human Services, 2006. https://stemcells.nih.gov/sites/all/themes/stemcells_theme/stemcell_includes/Regenerative_Medicine_2006.pdf
[49]
Cui, H.; Yi, Q.; Feng, J.; Yang, L.; Tang, L. Mechano growth factor E peptide regulates migration and differentiation of bone marrow mesenchymal stem cells. J. Mol. Endocrinol., 2014, 52(2), 111-120.
[http://dx.doi.org/10.1530/JME-13-0157] [PMID: 24323763]
[50]
Suresh, A.; Biswas, A.; Perumal, S.; Khurana, S. Periostin and integrin signaling in stem cell regulation. Adv. Exp. Med. Biol., 2019, 1132, 163-176.
[http://dx.doi.org/10.1007/978-981-13-6657-4_16.2019]
[51]
Suresh, A.; Biswas, A.; Perumal, S.; Khurana, S. Periostin and integrin signaling in stem cell regulation. Adv. Exp. Med. Biol., 2019, 1132, 163-176.
[http://dx.doi.org/10.1007/978-981-13-6657-4_16] [PMID: 31037634]
[52]
Mirescu, C.; Gould, E. Stem Cells in the Adult Brain Internet. In: Handbook of Stem Cells; Elsevier Inc., 2004; Vol. 2, pp. 219-224.http://dx.doi.org/10.1016/B978-0-12-436643-5.50110-3
[53]
Jiang, S.; Haider, H.Kh.; Idris, N.M.; Salim, A.; Ashraf, M. Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ. Res., 2006, 99(7), 776-784.
[http://dx.doi.org/10.1161/01.RES.0000244687.97719.4f] [PMID: 16960098]
[54]
Song, H.; Chang, W.; Lim, S.; Seo, H-S.; Shim, C.Y.; Park, S.; Yoo, K.J.; Kim, B.S.; Min, B.H.; Lee, H.; Jang, Y.; Chung, N.; Hwang, K.C. Tissue transglutaminase is essential for integrin-mediated survival of bone marrow-derived mesenchymal stem cells. Stem Cells, 2007, 25(6), 1431-1438.
[http://dx.doi.org/10.1634/stemcells.2006-0467] [PMID: 17347495]
[55]
Xie, X.; Shen, Y.; Chen, J.; Huang, Z.; Ge, J. Mineralocorticoid receptor deficiency improves the therapeutic effects of mesenchymal stem cells for myocardial infarction via enhanced cell survival. J. Cell. Mol. Med., 2019, 23(2), 1246-1256.
[PMID: 30549184]
[56]
Sudulaguntla, A.; Nanjwade, B.; Chandy, V. Stem cells : Cultivation and routes of administration. Current Trends Biomed. Engin. Biosci., 2017, 2(1), 10-16.
[57]
Lim, J.Y.; Jeong, C.H.; Jun, J.A.; Kim, S.M.; Ryu, C.H.; Hou, Y.; Oh, W.; Chang, J.W.; Jeun, S.S. Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells after intrathecal administration by lumbar puncture in a rat model of cerebral ischemia. Stem Cell Res. Ther., 2011, 2(5), 38.
[http://dx.doi.org/10.1186/scrt79] [PMID: 21939558]
[58]
Zhang, L.; Li, K.; Liu, X.; Li, D.; Luo, C.; Fu, B. Repeated systemic administration of human adipose-derived stem cells attenuates overt diabetic nephropathy in rats. Stem Cells Dev., 2013, 22(23), 3074-3086.
[http://dx.doi.org/10.1089/scd.2013.0142] [PMID: 23844841]
[59]
Gonçalves, F da C.; Schneider, N.; Pinto, F.O.; Meyer, F.S.; Visioli, F.; Pfaffenseller, B.; Lopez, P.L.; Passos, E.P.; Cirne-Lima, E.O.; Meurer, L.; Paz, A.H. Intravenous vs. intraperitoneal mesenchymal stem cells administration: What is the best route for treating experimental colitis? World J. Gastroenterol., 2014, 20(48), 18228-18239.
[http://dx.doi.org/10.3748/wjg.v20.i48.18228] [PMID: 25561790]
[60]
Kanelidis, A.J.; Premer, C.; Lopez, J.; Balkan, W.; Hare, J.M. Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction: A meta-analysis of preclinical studies and clinical trials. Circ. Res., 2017, 120(7), 1139-1150.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309819] [PMID: 28031416]
[61]
Somaiah, C.; Kumar, A.; Mawrie, D.; Sharma, A. Collagen promotes higher adhesion; survival and proliferation of mesenchymal stem cells. PLoS One, 2015, 10(12), e0145068.
[http://dx.doi.org/10.1371/journal.pone.0145068 ] [PMID: 26661657]
[62]
Jin, J.; Jeong, S.I.; Shin, Y.M.; Lim, K.S.; Shin, Hs.; Lee, Y.M.; Koh, H.C.; Kim, K.S. Transplantation of mesenchymal stem cells within a poly(lactide-co-ε-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. Eur. J. Heart Fail., 2009, 11(2), 147-153.
[http://dx.doi.org/10.1093/eurjhf/hfn017] [PMID: 19168512]
[63]
Bao, C.; Chong, M.S.K.; Qin, L.; Fan, Y.; Teo, E.Y.; Choolani, M. Effects of tricalcium phosphate in polycaprolactone scaffold for mesenchymal stem cell-based bone tissue engineering. Mater. Technol., 2019, 34(6), 1-7.
[http://dx.doi.org/10.1080/10667857.2019.1568368]
[64]
Aguado, B.A.; Mulyasasmita, W.; Su, J.; Lampe, K.J. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng Part A, 2012, 18(7-8), 806-815.https://www.liebertpub.com/doi/10.1089/ten.tea.2011.0391
[PMID: 22011213]
[65]
El-Sherbiny, I.M.; Yacoub, M.H. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob. Cardiol. Sci. Pract., 2013, 2013(3), 316-342.
[http://dx.doi.org/10.5339/gcsp.2013.38] [PMID: 24689032]
[66]
Ratajczak, M.Z.; Kucia, M.; Jadczyk, T.; Greco, N.J.; Wojakowski, W.; Tendera, M.; Ratajczak, J. Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: Can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia, 2012, 26(6), 1166-1173.
[http://dx.doi.org/10.1038/leu.2011.389] [PMID: 22182853]
[67]
Hasan, A.; Waters, R.; Roula, B.; Dana, R.; Yara, S.; Alexandre, T. Engineered biomaterials to enhance stem cell-based cardiac tissue engineering and therapy. Macromol. Biosci., 2016, 16(7), 958-977.
[http://dx.doi.org/10.1002/mabi.201500396] [PMID: 26953627]
[68]
Chan, A.T.; Karakas, M.F.; Vakrou, S.; Afzal, J.; Rittenbach, A.; Lin, X.; Wahl, R.L.; Pomper, M.G.; Steenbergen, C.J.; Tsui, B.M.; Elisseeff, J.H.; Abraham, M.R. Hyaluronic acid-serum hydrogels rapidly restore metabolism of encapsulated stem cells and promote engraftment. Biomaterials, 2015, 73, 1-11.
[http://dx.doi.org/10.1016/j.biomaterials.2015.09.001] [PMID: 26378976]
[69]
Silva, L.H.A.; Antunes, M.A.; Santos, C.C.; Weiss, D.J.; Cruz, F.F.; Rocco, P.R.M. Strategies to improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases. Stem Cell Res. Ther., 2018, 9(1), 45.
[http://dx.doi.org/10.1186/s13287-018-0802-8] [PMID: 29482654]
[70]
Masoud, M.S.; Anwar, S.S.; Afzal, M.Z.; Mehmood, A.; Khan, S.N.; Riazuddin, S. Pre-conditioned mesenchymal stem cells ameliorate renal ischemic injury in rats by augmented survival and engraftment. J. Transl. Med., 2012, 10(1), 243.
[http://dx.doi.org/10.1186/1479-5876-10-243] [PMID: 23217165]
[71]
Liu, J.; Wang, H.; Wang, Y.; Yin, Y.; Wang, L.; Liu, Z. Exendin-4 pretreated adipose derived stem cells are resistant to oxidative stress and improve cardiac performance via enhanced adhesion in the infarcted heart. PLoS One, 2014, 9(6), e99756.
[http://dx.doi.org/10.1371/journal.pone.0099756 ] [PMID: 24915574]
[72]
Hu, C.; Li, L. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo hypoxia preconditioning for improving the cell activities of MSCs. J. Cell. Mol. Med., 2018, 22(3), 1428-1442.
[http://dx.doi.org/10.1111/jcmm.13492 ] [PMID: 29392844]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 12
Year: 2020
Page: [1154 - 1164]
Pages: 11
DOI: 10.2174/1389201021666200416130253
Price: $65

Article Metrics

PDF: 43
HTML: 2
EPUB: 1
PRC: 1