Effect of Danggui-Shaoyao-San-Containing Serum on the Renal Tubular Epithelial-Mesenchymal Transition of Diabetic Nephropathy

Author(s): Li Xiaobing, Niu Chunling, Chen Wenyu, Chen Yan, Li Zhenzhen*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 12 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Objectives: To investigate the effect of Danggui-Shaoyao-San (DSS)-containing serum on the renal tubular Epithelial-Mesenchymal Transition (EMT) of Diabetic Nephropathy (DN) in high glucose- induced HK-2 cells and its mechanism.

Methods: 20 rats were randomly divided into four groups: blank control group, DSS low dose group (DSS-L), DSS middle dose group (DSS-M), and DSS high dose group (DSS-H). DSS was administrated to the corresponding group (7g/kg/d, 14g/kg/d and 21g/kg/d) for 7 consecutive days, and the same volume of saline was given to the blank control group by gavage. The rat drug-containing serum was successfully prepared. HK-2 cells were divided into five groups: blank control group, model group, DSS-L, DSS-M, DSS-H, according to the corresponding drug and dose of each treatment group. Protein and mRNA levels of Jagged1, Notch1, Hes5, Notch Intracellular Domain (NICD), E-cadherin, alpha- Smooth Muscle Actin (α-SMA) and vimentin at 24h, 48h and 72h were detected by Western Blot and RT-qPCR.

Results: The protein and mRNA levels of Jagged1, Notch1, Hes5, NICD, α-SMA and vimentin in the treatment groups were remarkably decreased compared with the model group (P<0.05), and the protein and mRNA levels of E-cadherin were notably increased (P<0.05) by Western Blot and RT-qPCR.

Conclusion: Our results demonstrated that DSS could prevent DN by ameliorating renal tubular EMT through inhibition of the Notch signaling pathway.

Keywords: Diabetic nephropathy, Notch signalling pathway, Renal tubular epithelial-mesenchymal transition, Danggui- Shaoyao-San-containing serum, Renal fibrosis, diabetes mellitus.

Huczyński, A.; Markowska, J.; Ramlau, R.; Sajdak, S.; Szubert, S.; Stencel, K. Salinomycyna-przełom w leczeniu raka jajnika? Curr. Gynecolog. Oncol., 2016, 14(3), 156-161.
Antoszczak, M.; Huczyński, A.; Brzezinski, B. Synteza i aktywność biologiczna pochodnych salinomycyny. Wiadomości Chemiczne, 2017, 71(7-8), 629-661.
Kiraz, Y.; Adan, A.; Kartal Yandim, M.; Baran, Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol., 2016, 37(7), 8471-8486.
[http://dx.doi.org/10.1007/s13277-016-5035-9 ] [PMID: 27059734]
Ismail, N.I.; Othman, I.; Abas, F.H.; Lajis, N.; Naidu, R. Mechanism of apoptosis induced by curcumin in colorectal cancer. Int. J. Mol. Sci., 2019, 20(10), 2454.
[http://dx.doi.org/10.3390/ijms20102454 ] [PMID: 31108984]
Yao, J.Y.; Gao, M.Y.; Jia, Y.Y.; Wu, Y.X.; Yin, W.L.; Cao, Z.; Yang, G.L.; Huang, H.B.; Wang, C.F.; Shen, J.Y.; Gu, Z.M. Evaluation of salinomycin isolated from Streptomyces albus JSY-2 against the ciliate, Ichthyophthirius multifiliis. Parasitology, 2019, 146(4), 521-526.
[http://dx.doi.org/10.1017/S0031182018001919 ] [PMID: 30427300]
Hosseinzadeh, S.; Mirsadeghi, E.; Rajaian, H.; Sayyadi, M.; Nazifi, S. Effect of ionophore salinomycin on the antibiotic resistance in Clostridium difficile detected in mice. Comp. Clin. Pathol., 2016, 25(6), 1137-1141.
Markowska, A.; Kaysiewicz, J.; Markowska, J.; Huczyński, A. Doxycycline, salinomycin, monensin and ivermectin repositioned as cancer drugs. Bioorg. Med. Chem. Lett., 2019, 29(13), 1549-1554.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.045 ] [PMID: 31054863]
Tyagi, M.; Patro, B.S. Salinomycin reduces growth, proliferation and metastasis of cisplatin resistant breast cancer cells via NF-kB deregulation. Toxicol. In Vitro, 2019, 60(60), 125-133.
[http://dx.doi.org/10.1016/j.tiv.2019.05.004 ] [PMID: 31077746]
Versini, A.; Colombeau, L.; Hienzsch, A.; Gaillet, C.; Retailleau, P.; Debieu, S.; Müller, S.; Cañeque, T.; Rodriguez, R. Salinomycin derivatives kill breast cancer stem cells via lysosomal iron targeting. Chemistry, 2020. Epub ahead of print
Gupta, P.B.; Onder, T.T.; Jiang, G.; Tao, K.; Kuperwasser, C.; Weinberg, R.A.; Lander, E.S. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 2009, 138(4), 645-659.
[http://dx.doi.org/10.1016/j.cell.2009.06.034 ] [PMID: 19682730]
Tang, Q.L.; Zhao, Z.Q.; Li, J.C.; Liang, Y.; Yin, J.Q.; Zou, C.Y.; Xie, X.B.; Zeng, Y.X.; Shen, J.N.; Kang, T.; Wang, J.Q. Salinomycin inhibits osteosarcoma by targeting its tumor stem cells. Cancer Lett., 2011, 311(1), 113-121.
[http://dx.doi.org/10.1016/j.canlet.2011.07.016 ] [PMID: 21835542]
Kölbl, A.C.; Birk, A.E.; Kuhn, C.; Jeschke, U.; Andergassen, U. Influence of VEGFR and LHCGR on endometrial adenocarcinoma. Oncol. Lett., 2016, 12(3), 2092-2098.
[http://dx.doi.org/10.3892/ol.2016.4906 ] [PMID: 27625708]
Lu, Q.; Harmalkar, D.S.; Choi, Y.; Lee, K. An overview of saturated cyclic ethers: Biological profiles and synthetic strategies. Molecules, 2019, 24(20), 3778.
[http://dx.doi.org/10.3390/molecules24203778 ] [PMID: 31640154]
Fuchs, D.; Heinold, A.; Opelz, G.; Daniel, V.; Naujokat, C. Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells. Biochem. Biophys. Res. Commun., 2009, 390(3), 743-749.
[http://dx.doi.org/10.1016/j.bbrc.2009.10.042 ] [PMID: 19835841]
Parajuli, B.; Shin, S.J.; Kwon, S.H.; Cha, S.D.; Chung, R.; Park, W.J.; Lee, H.G.; Cho, C.H. Salinomycin induces apoptosis via death receptor-5 up-regulation in cisplatin-resistant ovarian cancer cells. Anticancer Res., 2013, 33(4), 1457-1462.
[PMID: 23564786]
Croxtall, J.D.; Elder, M.G.; White, J.O. Hormonal control of proliferation in the Ishikawa endometrial adenocarcinoma cell line. J. Steroid Biochem., 1990, 35(6), 665-669.
[http://dx.doi.org/10.1016/0022-4731(90)90306-D ] [PMID: 2362428]
Dziobek, K.; Opławski, M.; Grabarek, B.O.; Zmarzły, N.; Kieszkowski, P.; Januszyk, P.; Boroń, D. Assessment of the usefulness of the SEMA5A concentration profile changes as a molecular marker in endometrial cancer. Curr. Pharm. Biotechnol., 2020, 21(1), 45-51.
[http://dx.doi.org/10.2174/1389201020666190911113611] [PMID: 31544715]
Zamani-Ahmadmahmudi, M.; Nassiri, S.M.; Rahbarghazi, R. Serological proteome analysis of dogs with breast cancer unveils common serum biomarkers with human counterparts. Electrophoresis, 2014, 35(6), 901-910.
[http://dx.doi.org/10.1002/elps.201300461 ] [PMID: 24338489]
Zhang, B.; Wang, X.; Cai, F.; Chen, W.; Loesch, U.; Zhong, X.Y. Antitumor properties of salinomycin on cisplatin-resistant human ovarian cancer cells in vitro and in vivo: Involvement of p38 MAPK activation. Oncol. Rep., 2013, 29(4), 1371-1378.
[http://dx.doi.org/10.3892/or.2013.2241 ] [PMID: 23338561]
Chung, H.; Kim, Y.H.; Kwon, M.; Shin, S.J.; Kwon, S.H.; Cha, S.D.; Cho, C.H. The effect of salinomycin on ovarian cancer stem-like cells. Obstet. Gynecol. Sci., 2016, 59(4), 261-268.
[http://dx.doi.org/10.5468/ogs.2016.59.4.261 ] [PMID: 27462592]
Zhao, Y.; Zhong, L.; Liu, L.; Yao, S.F.; Chen, M.; Li, L.W.; Shan, Z.L.; Xiao, C.L.; Gan, L.G.; Xu, T.; Liu, B.Z. Salinomycin induces apoptosis and differentiation in human acute promyelocytic leukemia cells. Oncol. Rep., 2018, 40(2), 877-886.
[http://dx.doi.org/10.3892/or.2018.6513 ] [PMID: 29989650]
Kusunoki, S.; Kato, K.; Tabu, K.; Inagaki, T.; Okabe, H.; Kaneda, H.; Suga, S.; Terao, Y.; Taga, T.; Takeda, S. The inhibitory effect of salinomycin on the proliferation, migration and invasion of human endometrial cancer stem-like cells. Gynecol. Oncol., 2013, 129(3), 598-605.
[http://dx.doi.org/10.1016/j.ygyno.2013.03.005 ] [PMID: 23500085]
Green, D.R. Cancer and apoptosis: Who is built to last? Cancer Cell, 2017, 31(1), 2-4.
[http://dx.doi.org/10.1016/j.ccell.2016.12.007 ] [PMID: 28073002]
Ding, L.; Gu, H.; Lan, Z.; Lei, Q.; Wang, W.; Ruan, J.; Yu, M.; Lin, J.; Cui, Q. Downregulation of cyclooxygenase-1 stimulates mitochondrial apoptosis through the NF-κB signaling pathway in colorectal cancer cells. Oncol. Rep., 2019, 41(1), 559-569.
[PMID: 30320345]
Lee, H.G.; Shin, S.J.; Chung, H.W.; Kwon, S.H.; Cha, S.D.; Lee, J.E.; Cho, C.H. Salinomycin reduces stemness and induces apoptosis on human ovarian cancer stem cell. J. Gynecol. Oncol., 2017, 28(2)e14
[http://dx.doi.org/10.3802/jgo.2017.28.e14 ] [PMID: 27894167]
Kim, K.Y.; Park, K.I.; Kim, S.H.; Yu, S.N.; Lee, D.; Kim, Y.W.; Noh, K.T.; Ma, J.Y.; Seo, Y.K.; Ahn, S.C. Salinomycin induces reactive oxygen species and apoptosis in aggressive breast cancer cells as mediated with regulation of autophagy. Anticancer Res., 2017, 37(4), 1747-1758.
[http://dx.doi.org/10.21873/anticanres.11507 ] [PMID: 28373437]
Del Principe, M.I.; Dal Bo, M.; Bittolo, T.; Buccisano, F.; Rossi, F.M.; Zucchetto, A.; Rossi, D.; Bomben, R.; Maurillo, L.; Cefalo, M.; De Santis, G.; Venditti, A.; Gaidano, G.; Amadori, S.; de Fabritiis, P.; Gattei, V.; Del Poeta, G. Clinical significance of bax/bcl-2 ratio in chronic lymphocytic leukemia. Haematologica, 2016, 101(1), 77-85.
[http://dx.doi.org/10.3324/haematol.2015.131854 ] [PMID: 26565002]
Kulsoom, B.; Shamsi, T.S.; Afsar, N.A.; Memon, Z.; Ahmed, N.; Hasnain, S.N. Bax, Bcl-2, and Bax/Bcl-2 as prognostic markers in acute myeloid leukemia: Are we ready for Bcl-2-directed therapy? Cancer Manag. Res., 2018, 10, 403-416.
[http://dx.doi.org/10.2147/CMAR.S154608 ] [PMID: 29535553]
Shojaei, F.; Yazdani-Nafchi, F.; Banitalebi-Dehkordi, M.; Chehelgerdi, M.; Khorramian-Ghahfarokhi, M. Trace of survivin in cancer. Eur. J. Cancer Prev., 2019, 28(4), 365-372.
[http://dx.doi.org/10.1097/CEJ.0000000000000453] [PMID: 29847456]
Garg, H.; Suri, P.; Gupta, J.C.; Talwar, G.P.; Dubey, S. Survivin: A unique target for tumor therapy. Cancer Cell Int., 2016, 16(1), 49.
[http://dx.doi.org/10.1186/s12935-016-0326-1 ] [PMID: 27340370]
Qin, L.S.; Jia, P.F.; Zhang, Z.Q.; Zhang, S.M. ROS-p53-cyclophilin-D signaling mediates salinomycin-induced glioma cell necrosis. J. Exp. Clin. Cancer Res., 2015, 34(1), 57.
[http://dx.doi.org/10.1186/s13046-015-0174-1 ] [PMID: 26024660]
Zhao, S.J.; Wang, X.J.; Wu, Q.J.; Liu, C.; Li, D.W.; Fu, X.T.; Zhang, H.F.; Shao, L.R.; Sun, J.Y.; Sun, B.L.; Zhai, J.; Fan, C.D. FAn, C Induction of G1 cell cycle arrest in human glioma cells by salinomycin through triggering ROS-mediated DNA damage in vitro and in vivo. Neurochem. Res., 2017, 42(4), 997-1005.
[http://dx.doi.org/10.1007/s11064-016-2132-5 ] [PMID: 27995497]
Ter Huurne, M.; Peng, T.; Yi, G.; van Mierlo, G.; Marks, H.; Stunnenberg, H.G. Critical role for P53 in regulating the cell cycle of ground state embryonic stem cells. Stem Cell Reports, 2020, 14(2), 175-183.
[http://dx.doi.org/10.1016/j.stemcr.2020.01.001 ] [PMID: 32004494]
Issaeva, N. p53 Signaling in Cancers. Cancers (Basel), 2019, 11(3), 332.
[http://dx.doi.org/10.3390/cancers11030332 ] [PMID: 30857153]
Michlewski, G.; Cáceres, J.F. Post-transcriptional control of miRNA biogenesis. RNA, 2019, 25(1), 1-16.
[http://dx.doi.org/10.1261/rna.068692.118 ] [PMID: 30333195]
Pu, M.; Chen, J.; Tao, Z.; Miao, L.; Qi, X.; Wang, Y.; Ren, J. Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cell. Mol. Life Sci., 2019, 76(3), 441-451.
[http://dx.doi.org/10.1007/s00018-018-2940-7 ] [PMID: 30374521]
Hemann, M.T.; Lowe, S.W. The p53-Bcl-2 connection. Cell Death Differ., 2006, 13(8), 1256-1259.
[http://dx.doi.org/10.1038/sj.cdd.4401962 ] [PMID: 16710363]
Dolka, I.; Król, M.; Sapierzyński, R. Evaluation of apoptosis-associated protein (Bcl-2, Bax, cleaved caspase-3 and p53) expression in canine mammary tumors: An immunohistochemical and prognostic study. Res. Vet. Sci., 2016, 105, 124-133.
[http://dx.doi.org/10.1016/j.rvsc.2016.02.004 ] [PMID: 27033920]
Mirakhor Samani, S.; Ezazi Bojnordi, T.; Zarghampour, M.; Merat, S.; Fouladi, D.F. Expression of p53, Bcl-2 and Bax in endometrial carcinoma, endometrial hyperplasia and normal endometrium: a histopathological study J. Obstet. Gynaecol., 2018, 38(7), 999-1004.
[http://dx.doi.org/10.1080/01443615.2018.1437717] [PMID: 29560769]
Akbarzadeh, M.; Nouri, M.; Banekohal, M.V.; Cheraghi, O.; Tajalli, H.; Movassaghpour, A.; Soltani, S.; Cheraghi, H.; Feizy, N.; Montazersaheb, S.; Rahbarghazi, R.; Samadi, N. Effects of combination of melatonin and laser irradiation on ovarian cancer cells and endothelial lineage viability. Lasers Med. Sci., 2016, 31(8), 1565-1572.
[http://dx.doi.org/10.1007/s10103-016-2016-6 ] [PMID: 27365110]
Kozak, J.; Wdowiak, P.; Maciejewski, R.; Torres, A. A guide for endometrial cancer cell lines functional assays using the measurements of electronic impedance. Cytotechnology, 2018, 70(1), 339-350.
[http://dx.doi.org/10.1007/s10616-017-0149-5 ] [PMID: 28988392]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [1204 - 1212]
Pages: 9
DOI: 10.2174/1389201021666200416094318
Price: $65

Article Metrics

PDF: 33
PRC: 1