MiR-485-5p Promotes Neuron Survival through Mediating Rac1/Notch2 Signaling Pathway after Cerebral Ischemia/Reperfusion

Author(s): Xuan Chen, Sumei Zhang, Peipei Shi, Yangli Su*, Dong Zhang, Na Li

Journal Name: Current Neurovascular Research

Volume 17 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Objective: Ischemia-reperfusion (I/R) injury is a pathological feature of ischemic stroke. This study investigated the regulatory role of miR-485-5p in I/R injury.

Methods: SH-SY5Y cells were induced with oxygen and glucose deprivation/reoxygenation (OGD/R) to mimic I/R injury in vitro. Cells were transfected with designated constructs (miR-485- 5p mimics, miR-485-5p inhibitor, lentiviral vectors overexpressing Rac1 or their corresponding controls). Cell viability was evaluated using the MTT assay. The concentrations of lactate dehydrogenase, malondialdehyde, and reactive oxygen species were detected to indicate the degree of oxidative stress. Flow cytometry and caspase-3 activity assay were used for apoptosis assessment. Dual-luciferase reporter assay was performed to confirm that Rac family small GTPase 1 (Rac1) was a downstream gene of miR-485-5p.

Results: OGD/R resulted in decreased cell viability, elevated oxidative stress, increased apoptosis, and downregulated miR-485-5p expression in SH-SY5Y cells. MiR-485-5p upregulation alleviated I/R injury, evidenced by improved cell viability, decreased oxidative markers, and reduced apoptotic rate. OGD/R increased the levels of Rac1 and neurogenic locus notch homolog protein 2 (Notch2) signaling-related proteins in cells with normal miR-485-5p expression, whereas miR- 485-5p overexpression successfully suppressed OGD/R-induced upregulation of these proteins. Furthermore, the delivery of vectors overexpressing Rac1 in miR-485-5p mimics-transfected cells reversed the protective effect of miR-485-5p in cells with OGD/R-induced injury.

Conclusion: This study showed that miR-485-5p protected cells following I/R injury via targeting Rac1/Notch2 signaling suggest that targeted upregulation of miR-485-5p might be a promising therapeutic option for the protection against I/R injury.

Keywords: miR-485-5p, ischemia-reperfusion, oxidative stress, apoptosis, Rac1/Notch2, ischemic stroke.

[1]
Ovbiagele B, Nguyen-Huynh MN. Stroke epidemiology: Advancing our understanding of disease mechanism and therapy. Neurotherapeutics 2011; 8(3): 319-29.
[http://dx.doi.org/10.1007/s13311-011-0053-1] [PMID: 21691873]
[2]
Janardhan V, Qureshi AI. Mechanisms of ischemic brain injury. Curr Cardiol Rep 2004; 6(2): 117-23.
[http://dx.doi.org/10.1007/s11886-004-0009-8] [PMID: 14759356]
[3]
Nour M, Scalzo F, Liebeskind DS. Ischemia-reperfusion injury in stroke. Intervent Neurol 2013; 1(3-4): 185-99.
[http://dx.doi.org/10.1159/000353125] [PMID: 25187778]
[4]
Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Ischemia/reperfusion. Compr Physiol 2016; 7(1): 113-70.
[http://dx.doi.org/10.1002/cphy.c160006] [PMID: 28135002]
[5]
Cai H, Ye X, Zheng W, Ma L, Hu X, Jin X. Pitfalls in the diagnosis and initial management of acute cerebral venous thrombosis. Rev Cardiovasc Med 2018; 19(4): 129-33.
[PMID: 31064164]
[6]
Lin L, Wang X, Yu Z. Ischemia-reperfusion injury in the brain: Mechanisms and potential therapeutic strategies. Biochem Pharmacol 2016; 5(4): 213.
[7]
Sun P, Liu DZ, Jickling GC, Sharp FR, Yin KJ. MicroRNA-based therapeutics in central nervous system injuries. J Cereb Blood Flow Metab 2018; 38(7): 1125-48.
[http://dx.doi.org/10.1177/0271678X18773871] [PMID: 29708005]
[8]
Khoshnam SE, Winlow W, Farbood Y, Moghaddam HF, Farzaneh M. Emerging roles of microRNAs in ischemic stroke: As possible therapeutic agents. J Stroke 2017; 19(2): 166-87.
[http://dx.doi.org/10.5853/jos.2016.01368] [PMID: 28480877]
[9]
Chen X, Li C, Li J, Sheng L, Liu X. Upregulation of miR-1306-5p decreases cerebral ischemia/reperfusion injury in vitro by targeting BIK. Biosci Biotechnol Biochem 2019; 83(12): 2230-7.
[http://dx.doi.org/10.1080/09168451.2019.1654846] [PMID: 31460837]
[10]
Liu P, Zhao H, Wang R, et al. MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke 2015; 46(2): 513-9.
[http://dx.doi.org/10.1161/STROKEAHA.114.007482] [PMID: 25523055]
[11]
Wang Y, Huang J, Ma Y, et al. MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4. J Cereb Blood Flow Metab 2015; 35(12): 1977-84.
[http://dx.doi.org/10.1038/jcbfm.2015.156] [PMID: 26126866]
[12]
Lin XJ, He CL, Sun T, Duan XJ, Sun Y, Xiong SJ. hsa-miR-485-5p reverses epithelial to mesenchymal transition and promotes cisplatin-induced cell death by targeting PAK1 in oral tongue squamous cell carcinoma. Int J Mol Med 2017; 40(1): 83-9.
[http://dx.doi.org/10.3892/ijmm.2017.2992] [PMID: 28535002]
[13]
Lou C, Xiao M, Cheng S, et al. MiR-485-3p and miR-485-5p suppress breast cancer cell metastasis by inhibiting PGC-1α expression. Cell Death Dis 2016; 20167e2159> 2016;
[http://dx.doi.org/10.1038/cddis.2016.27] [PMID: 27010860]
[14]
Duan J, Zhang H, Li S, et al. The role of miR-485-5p/NUDT1 axis in gastric cancer. Cancer Cell Int 2017; 17: 92.
[http://dx.doi.org/10.1186/s12935-017-0462-2] [PMID: 29075149]
[15]
Chen Z, Zhang Z, Zhang D, Li H, Sun Z. Hydrogen sulfide protects against TNF-α induced neuronal cell apoptosis through miR-485-5p/TRADD signaling. Biochem Biophys Res Commun 2016; 478(3): 1304-9.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.116] [PMID: 27562714]
[16]
Meng S, Su Z, Liu Z, Wang N, Wang Z. Rac1 contributes to cerebral ischemia reperfusion-induced injury in mice by regulation of Notch2. Neuroscience 2015; 306: 100-14.
[http://dx.doi.org/10.1016/j.neuroscience.2015.08.014] [PMID: 26299339]
[17]
Goldberg MP, Choi DW. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci 1993; 13(8): 3510-24.
[http://dx.doi.org/10.1523/JNEUROSCI.13-08-03510.1993] [PMID: 8101871]
[18]
Fordel E, Thijs L, Martinet W, Schrijvers D, Moens L, Dewilde S. Anoxia or oxygen and glucose deprivation in SH-SY5Y cells: a step closer to the unraveling of neuroglobin and cytoglobin functions. Gene 2007; 398(1-2): 114-22.
[http://dx.doi.org/10.1016/j.gene.2007.03.022] [PMID: 17532579]
[19]
Chen L, Liu L, Huang S. Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5. Free Radic Biol Med 2008; 45(7): 1035-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.07.011] [PMID: 18703135]
[20]
Lee RHC, Lee MHH, Wu CYC, et al. Cerebral ischemia and neuroregeneration. Neural Regen Res 2018; 13(3): 373-85.
[http://dx.doi.org/10.4103/1673-5374.228711] [PMID: 29623912]
[21]
Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 2003; 4(5): 399-415.
[http://dx.doi.org/10.1038/nrn1106] [PMID: 12728267]
[22]
Eltzschig HK, Eckle T. Ischemia and reperfusion--from mechanism to translation. Nat Med 2011; 17(11): 1391-401.
[http://dx.doi.org/10.1038/nm.2507] [PMID: 22064429]
[23]
Lochhead JJ, McCaffrey G, Quigley CE, et al. Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J Cereb Blood Flow Metab 2010; 30(9): 1625-36.
[http://dx.doi.org/10.1038/jcbfm.2010.29] [PMID: 20234382]
[24]
Toscano EC, Silva BC, Victoria EC, et al. Platelet-activating factor receptor (PAFR) plays a crucial role in experimental global cerebral ischemia and reperfusion. Brain Res Bull 2016; 124: 55-61.
[http://dx.doi.org/10.1016/j.brainresbull.2016.03.022] [PMID: 27040712]
[25]
Gawaz M. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc Res 2004; 61(3): 498-511.
[http://dx.doi.org/10.1016/j.cardiores.2003.11.036] [PMID: 14962480]
[26]
Lee JY, Hwang JY. Analysis of Gene Expression in Mice Testes Exposed to 1.765 GHz Microwave in Utero. J Reprod Med 2017; 62(5-6): 324-8.
[PMID: 30028096]
[27]
Nayak S, Aich M, Kumar A, et al. Novel internal regulators and candidate miRNAs within miR-379/miR-656 miRNA cluster can alter cellular phenotype of human glioblastoma. Sci Rep 2018; 8(1): 7673.
[http://dx.doi.org/10.1038/s41598-018-26000-8] [PMID: 29769662]
[28]
Faghihi MA, Zhang M, Huang J, et al. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 2010; 11(5): R56.
[http://dx.doi.org/10.1186/gb-2010-11-5-r56] [PMID: 20507594]
[29]
Ozaki M, Deshpande SS, Angkeow P, et al. Inhibition of the Rac1 GTPase protects against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo. FASEB J 2000; 14(2): 418-29.
[http://dx.doi.org/10.1096/fasebj.14.2.418] [PMID: 10657998]
[30]
Zhang QG, Wang R, Han D, Dong Y, Brann DW. Role of Rac1 GTPase in JNK signaling and delayed neuronal cell death following global cerebral ischemia. Brain Res 2009; 1265: 138-47.
[http://dx.doi.org/10.1016/j.brainres.2009.01.033] [PMID: 19368836]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 3
Year: 2020
Published on: 28 September, 2020
Page: [259 - 266]
Pages: 8
DOI: 10.2174/1567202617666200415154822
Price: $65

Article Metrics

PDF: 19
HTML: 1