Synthesis of some 1H-1,5-benzodiazepine Series Containing Chromene Ring from α,β-Unsaturated Ketones of 6-Acetyl-5-Hydroxy-4-Methylcoumarin

Author(s): Duong Ngoc Toan*, Nguyen Dinh Thanh*, Mai Xuan Truong, Nguyen Minh Thao

Journal Name: Current Organic Synthesis

Volume 17 , Issue 5 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: Reaction of α,β-unsaturated ketones with o-phenylenediamine afforded corresponding 2,3-dihydro-1H-1,5-benzodiazepines.

Objective: α,β-Unsaturated ketones of 6-acetyl-5-hydroxy-4-methylcoumarin are precursors for synthesis of 2,3-dihydro-1H-1,5-benzodiazepines by a reaction with o-phenylenediamine.

Methods: Enones of 6-acetyl-5-hydroxy-4-methylcoumarin were prepared from this ketone and (un)substituted benzaldehydes in the presence of piperidine, triethylamine, or pyridine as a catalyst in absolute ethanol with 1:1 molar ratios, respectively. 2',3'-Dihydro-1H-1',5'-benzodiazepines were synthesized by using the reaction of these enones with o-phenylenediamine in absolute ethanol in the presence of glacial acetic acid as a catalyst. Their biological activities were evaluated using the disk diffusion method.

Results: Seven new 2',3'-dihydro-1H-1',5'-benzodiazepines were obtained and their structures were confirmed by thin-layer chromatography, IR, NMR and MS spectra. Some synthesized benzodiazepines showed antibacterial and antifungal activities against Escherichia coli (Gram-(−) bacterium), Staphylococus epidermidis (Gram-(+) bacterium). Candida albicans (fungus).

Conclusion: The formation of enones from 6-acetyl-5-hydroxy-4-methylcoumarin and (un)substituted benzaldehydes could be catalyzed by piperidine, triethylamine, pyridine to afford similar yields. 2',3'-dihydro-1H- 1',5'-benzodiazepines have been synthesized from the aforementioned enones and o-phenylenediamine.

Keywords: Benzodiazepines, chromene, ethyl acetoacetate, 3-acetylcoumarin, o-phenylenediamine, α, β-unsaturated ketones.

Ahumada, G.; Carrillo, D.; Manzur, C.; Fuentealba, M.; Roisnel, T.; Hamon, J-R. A facile access to new diazepines derivatives: Spectral characterization and crystal structures of 7-(thiophene-2-yl)-5-(trifluoromethyl)-2,3-dihydro-1H-1,4-diazepine and 2-thiophene-4-trifluoromethyl-1,5-benzodiazepine. J. Mol. Struct., 2016, 1125, 781-787.
Shweta, V.; Sushil, K. A Mini Review on Synthetic Approaches and Biological Activities of Benzodiazepines. Mini Rev. Org. Chem., 2017, 14(6), 453-468.
Zhang, P.; Wang, L.Z.; Wu, H.S.; Lan, J.M.; Li, Y.; Wang, Y.X. The synthesis and biological evaluation of a series of novel 2-COOC2H5/COONa substituted 1,5-benzothiazepine derivatives as antimicrobial agents. Chin. Chem. Lett., 2009, 20(6), 660-662.
Wang, L-Z.; Li, X-Q.; An, Y-S. 1,5-Benzodiazepine derivatives as potential antimicrobial agents: design, synthesis, biological evaluation, and structure activity relationships. Org. Biomol. Chem., 2015, 13(19), 5497-5509.
[] [PMID: 25875695]
Garg, N.; Chandra, T. Archana; Jain, A.B.; Kumar, A. Synthesis and evaluation of some new substituted benzothiazepine and benzoxazepine derivatives as anticonvulsant agents. Eur. J. Med. Chem., 2010, 45(4), 1529-1535.
[] [PMID: 20163892]
Kuang, H.; Johnson, J.A.; Mulqueen, J.M.; Bloch, M.H. The efficacy of benzodiazepines as acute anxiolytics in children: A meta-analysis. Depress. Anxiety, 2017, 34(10), 888-896.
[] [PMID: 28504861]
Griessner, J.; Pasieka, M.; Böhm, V.; Grössl, F.; Kaczanowska, J.; Pliota, P.; Kargl, D.; Werner, B.; Kaouane, N.; Strobelt, S.; Kreitz, S.; Hess, A.; Haubensak, W. Central amygdala circuit dynamics underlying the benzodiazepine anxiolytic effect. Mol. Psychiatry, 2018.
[] [PMID: 30504824]
Varma, S. Benzodiazepines and hypnotics. Medicine (Baltimore), 2016, 44(12), 764-767.
Sánchez-Mateo, C.C.; Darias, V.; Albertos, L.M.; Expósito-Orta, M.A. Psychopharmacological effects of tianeptine analogous hetero[2,1] benzothiazepine derivatives. Arzneimittelforschung, 2003, 53(1), 12-20.
[PMID: 12608009]
Paulussen, C.; de Wit, K.; Boulet, G.; Cos, P.; Meerpoel, L.; Maes, L. Pyrrolo[1,2-α][1,4]benzodiazepines show potent in vitro antifungal activity and significant in vivo efficacy in a Microsporum canis dermatitis model in guinea pigs. J. Antimicrob. Chemother., 2014, 69(6), 1608-1610.
[] [PMID: 24535279]
Dandia, A.; Singh, R.; Singh, D.; Laxkar, A.; Sivpuri, A. Regioselective Synthesis of Diltiazem Analogue Pyrazolo[4,3-c][1,5]benzothiazepines and Antifungal Activity. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185(12), 2472-2479.
Nguema Ongone, T.; Achour, R.; El Ghoul, M.; El Ouasif, L.; El Jemli, M.; Chemlal, L.; Cherrah, Y.; Alaoui, K.; Zellou, A. Analgesic and Antioxidant Activities of 4-Phenyl-1,5-benzodiazepin-2-one and Its Long Carbon Chains Derivatives. J. Chem., 2019, 2019, 7.
Neochoritis, C.G.; Tsoleridis, C.A.; Stephanidou-Stephanatou, J.; Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. 1,5-Benzoxazepines vs 1,5-benzodiazepines. one-pot microwave-assisted synthesis and evaluation for antioxidant activity and lipid peroxidation inhibition. J. Med. Chem., 2010, 53(23), 8409-8420.
[] [PMID: 21049954]
Richards, B.L.; Whittle, S.L.; Buchbinder, R. Muscle relaxants for pain management in rheumatoid arthritis; John Wiley & Sons, Ltd, 2012.
Di Braccio, M.; Grossi, G.; Roma, G.; Vargiu, L.; Mura, M.; Marongiu, M.E. 1,5-Benzodiazepines. Part XII. Synthesis and biological evaluation of tricyclic and tetracyclic 1,5-benzodiazepine derivatives as nevirapine analogues. Eur. J. Med. Chem., 2001, 36(11-12), 935-949.
[] [PMID: 11755236]
Kaur, N.; Kishore, D. Application of chalcones in heterocycles synthesis: Synthesis of 2-(isoxazolo, pyrazolo and pyrimido) substituted analogues of 1,4-benzodiazepin-5-carboxamides linked through an oxyphenyl bridge. J. Chem. Sci., 2013, 125(3), 555-560.
Solan, A.; Nişanci, B.; Belcher, M.; Young, J.; Schäfer, C.; Wheeler, K.A.; Török, B.; Dembinski, R. Catalyst-free chemo-/regio-/stereo-selective amination of alk-3-ynones. Synthesis of 1,5-benzodiazepines and 3-amino-2-alkenones. Green Chem., 2014, 16(3), 1120-1124.
Nardi, M.; Cozza, A.; Maiuolo, L.; Oliverio, M.; Procopio, A. 1,5-Benzoheteroazepines through eco-friendly general condensation reactions. Tetrahedron Lett., 2011, 52(38), 4827-4834.
Ried, W.; Torinus, E. Über heterocyclische Siebenringsysteme, X. Synthesen kondensierter 5-, 7- und 8-gliedriger Heterocyclen mit 2 Stickstoffatomen. Chem. Ber., 1959, 92(11), 2902-2916.
Prakash, G.K.S.; Paknia, F.; Narayan, A.; Mathew, T.; Olah, G.A. Synthesis of perimidine and 1,5-benzodiazepine derivatives using tamed Brønsted acid, BF3–H2O. J. Fluor. Chem., 2013, 152, 99-105.
Morales, H.R.; Bulbarela, A.; Contreras, R. New synthesis of dihydro-and tetrahydro-1,5-benzodiazepines by reductive condensation of o-phenylenediamine and ketones in the presence of sodium borohydride. Heterocycles, 1986, 24(1), 135-139.
Herbert, J.A.L.; Suschitzky, H. Syntheses of heterocyclic compounds. Part XXIX. Substituted 2,3-dihydro-1H-1,5-benzodiazepines. J. Chem. Soc., Perkin Trans. 1, 1974, (0), 2657-2661.
Dai-Il, J.; Tae-wonchoi, C.; Yun-Young, K.; In-Shik, K.; You-Mi, P.; Yong-Gyun, L.; Doo-Hee, J. Synthesis Of 1,5-Benzodiazepine Derivatives. Synth. Commun., 1999, 29(11), 1941-1951.
Pozarentzi, M.; Stephanidou-Stephanatou, J.; Tsoleridis, C.A. An efficient method for the synthesis of 1,5-benzodiazepine derivatives under microwave irradiation without solvent. Tetrahedron Lett., 2002, 43(9), 1755-1758.
Cooper, S.R. Resacetophenone.Organic Synthesis; Danheiser, R.L., Ed.; Organic Syntheses, Inc., 1941, Vol. 21, p. 103.
Srivastav, V.K.; Tiwari, M.; Zhang, X.; Yao, X-J. Synthesis and Antiretroviral Activity of 6-Acetyl-coumarin Derivatives against HIV-1 Infection. Indian J. Pharm. Sci., 2018, 80(1), 108-117.
Sethna, S.M.; Shah, N.M.; Shah, R.C. 44. Aluminium chloride, a new reagent for the condensation of β-ketonic esters with phenols. Part I. The condensations of methyl β-resorcylate, β-resorcylic acid, and resacetophenone with ethyl acetoacetate Journal of the Chemical Society (Resumed), 1938, 228-232.
Solomko, Z.F.; Kost, A.N. 1,5-Benzodiazepines. Chem. Heterocycl. Compd 1975, 11(11), 1231-1248. [review]
Luis Esaú, L-J.; Christian Rodolfo, R-G.; Melissa, H-D.; Claudia Adriana, C-C.; Rodolfo, G-C.; Rafael, F-C. An alternative disk diffusion test in broth and macrodilution method for colistin susceptibility in Enterobacteriales. J. Microbiol. Methods, 2019, 167, 105765
[] [PMID: 31676421]
Barberis, C.M.; Sandoval, E.; Rodriguez, C.H.; Ramírez, M.S.; Famiglietti, A.; Almuzara, M.; Vay, C. Comparison between disk diffusion and agar dilution methods to determine in vitro susceptibility of Corynebacterium spp. clinical isolates and update of their susceptibility. J. Glob. Antimicrob. Resist., 2018, 14, 246-252.
[] [PMID: 29782954]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 27 July, 2020
Page: [404 - 410]
Pages: 7
DOI: 10.2174/1570179417666200415152105
Price: $65

Article Metrics

PDF: 19
PRC: 1