Recent Advances in Liposomal Drug Delivery System of Quercetin for Cancer Targeting: A Mechanistic Approach

Author(s): Sabya S. Das, Afzal Hussain*, Priya R. Prasad Verma, Syed S. Imam, Mohammad A. Altamimi, Sultan Alshehri, Sandeep Kumar Singh*

Journal Name: Current Drug Delivery

Volume 17 , Issue 10 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Quercetin (QT, 3,3′,4′,5,7-pentahydroxyflavone), is a natural flavonoid with nutritional value and acts as a potential free-radical scavenger (antioxidant). QT has also been explored for its anti-cancer as well as anti-proliferative activities against numerous cancerous cells. Moreover, QT exhibits significant pro-apoptotic activity against tumor cells and is well established to control the growth of different carcinoma cells at various phases of the cell cycle. Hence, it can reduce the burden of human solid cancer and metastasis. Both these activities have been established in a diverse class of human cell lines in-vitro as well as in animal models (in-vivo). Apart from the promising therapeutic activities of QT molecule, their applications have been limited due to some major concerns, including low oral bioavailability and poor aqueous solubility. Also, rapid gastrointestinal digestion of QT seems to be a key barrier for its clinical translations for oral drug delivery in conventional dosage form. Henceforth, to overcome these drawbacks, QT is loaded with liposomal systems, which exhibit promising outcomes in the upregulation of QT by the epithelial system and also improved its targeting at the site of action. Furthermore, Liposomes based Drug Delivery Systems (LDDS) have showed significant therapeutic activity with conjugated drug moiety and exhibit safety, biocompatibility, biodegradability, and mitigated toxicity despite having certain limitations associated with physiological and biological barriers. Herein, in this review, we have focused on the mechanism related with the chemotherapeutic activity of QT and also discussed the promising activity of QT-loaded LDDS as a potent chemotherapeutic agent for cancer therapy.

Keywords: Quercetin, liposomes, chemotherapy, mechanistic perspective, bioavailability, LDDS.

[1]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-252.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6 ] [PMID: 5859039]
[2]
Wu, W.; Lu, Y.; Qi, J. Oral delivery of liposomes. Ther. Deliv., 2015, 6(11), 1239-1241.
[http://dx.doi.org/10.4155/tde.15.69 ] [PMID: 26584253]
[3]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975-999.
[http://dx.doi.org/10.2147/IJN.S68861 ] [PMID: 25678787]
[4]
Rahman, M.; Kumar, V.; Beg, S.; Sharma, G.; Katare, O.P.; Anwar, F. Emergence of liposome as targeted magic bullet for inflammatory disorders: current state of the art. Artif. Cells Nanomed. Biotechnol., 2016, 44(7), 1597-1608.
[http://dx.doi.org/10.3109/21691401.2015.1129617 ] [PMID: 26758815]
[5]
Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: an updated review. Pharmaceutics, 2017, 9(2), 1-33.
[http://dx.doi.org/10.3390/pharmaceutics9020012 ] [PMID: 28346375]
[6]
Hussain, A.; Singh, S.; Das, S.S.; Anjireddy, K.; Karpagam, S.; Shakeel, F. Nanomedicines as drug delivery carriers of anti-tubercular drugs: from pathogenesis to infection control. Curr. Drug Deliv., 2019, 16(5), 400-429.
[http://dx.doi.org/10.2174/1567201816666190201144815 ] [PMID: 30714523]
[7]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632 ] [PMID: 15688077]
[8]
Tila, D.; Ghasemi, S.; Yazdani-Arazi, S.N.; Ghanbarzadeh, S. Functional liposomes in the cancer-targeted drug delivery. J. Biomater. Appl., 2015, 30(1), 3-16.
[http://dx.doi.org/10.1177/0885328215578111 ] [PMID: 25823898]
[9]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102 ] [PMID: 23432972]
[10]
Krasnici, S.; Werner, A.; Eichhorn, M.E.; Schmitt-Sody, M.; Pahernik, S.A.; Sauer, B.; Schulze, B.; Teifel, M.; Michaelis, U.; Naujoks, K.; Dellian, M. Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int. J. Cancer, 2003, 105(4), 561-567.
[http://dx.doi.org/10.1002/ijc.11108 ] [PMID: 12712451]
[11]
Campbell, R.B.; Fukumura, D.; Brown, E.B.; Mazzola, L.M.; Izumi, Y.; Jain, R.K.; Torchilin, V.P.; Munn, L.L. Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res., 2002, 62(23), 6831-6836.
[PMID: 12460895]
[12]
Almgren, M.; Edwards, K.; Karlsson, G. Cryo transmission electron microscopy of liposomes and related structures. Colloids Surf. A Physicochem. Eng. Asp., 2000, 174, 3-21.
[http://dx.doi.org/10.1016/S0927-7757(00)00516-1]
[13]
Sun, J.; Zhang, L.; Wang, J.; Feng, Q.; Liu, D.; Yin, Q.; Xu, D.; Wei, Y.; Ding, B.; Shi, X.; Jiang, X. Tunable rigidity of (polymeric core)-(lipid shell) nanoparticles for regulated cellular uptake. Adv. Mater., 2015, 27(8), 1402-1407.
[http://dx.doi.org/10.1002/adma.201404788 ] [PMID: 25529120]
[14]
Key, J.; Palange, A.L.; Gentile, F.; Aryal, S.; Stigliano, C.; Di Mascolo, D.; De Rosa, E.; Cho, M.; Lee, Y.; Singh, J.; Decuzzi, P. Soft discoidal polymeric nanoconstructs resist macrophage uptake and enhance vascular targeting in tumors. ACS Nano, 2015, 9(12), 11628-11641.
[http://dx.doi.org/10.1021/acsnano.5b04866 ] [PMID: 26488177]
[15]
Anselmo, A.C.; Zhang, M.; Kumar, S.; Vogus, D.R.; Menegatti, S.; Helgeson, M.E.; Mitragotri, S. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano, 2015, 9(3), 3169-3177.
[http://dx.doi.org/10.1021/acsnano.5b00147 ] [PMID: 25715979]
[16]
Rauf, A.; Imran, M.; Khan, I.A.; Ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer potential of quercetin: a comprehensive review. Phytother. Res., 2018, 32(11), 2109-2130.
[http://dx.doi.org/10.1002/ptr.6155 ] [PMID: 30039547]
[17]
Gibellini, L.; Pinti, M.; Nasi, M.; Montagna, J.P.; De Biasi, S.; Roat, E.; Bertoncelli, L.; Cooper, E.L.; Cossarizza, A. Quercetin and cancer chemoprevention. Evid. Based Complement. Alternat. Med., 2011, 2011, 591356
[http://dx.doi.org/10.1093/ecam/neq053 ] [PMID: 21792362]
[18]
Rich, G.T.; Buchweitz, M.; Winterbone, M.S.; Kroon, P.A.; Wilde, P.J. Towards an understanding of the low bioavailability of quercetin: a study of its interaction with intestinal lipids. Nutrients, 2017, 9(2), 111.
[http://dx.doi.org/10.3390/nu9020111 ] [PMID: 28165426]
[19]
Chien, S.Y.; Wu, Y.C.; Chung, J.G.; Yang, J.S.; Lu, H.F.; Tsou, M.F.; Wood, W.G.; Kuo, S.J.; Chen, D.R. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Hum. Exp. Toxicol., 2009, 28(8), 493-503.
[http://dx.doi.org/10.1177/0960327109107002 ] [PMID: 19755441]
[20]
Ong, C.S.; Tran, E.; Nguyen, T.T.; Ong, C.K.; Lee, S.K.; Lee, J.J.; Ng, C.P.; Leong, C.; Huynh, H. Quercetin-induced growth inhibition and cell death in nasopharyngeal carcinoma cells are associated with increase in bad and hypophosphorylated retinoblastoma expressions. Oncol. Rep., 2004, 11(3), 727-733.
[http://dx.doi.org/10.3892/or.11.3.727 ] [PMID: 14767529]
[21]
Lautraite, S.; Musonda, A.C.; Doehmer, J.; Edwards, G.O.; Chipman, J.K. Flavonoids inhibit genetic toxicity produced by carcinogens in cells expressing CYP1A2 and CYP1A1. Mutagenesis, 2002, 17(1), 45-53.
[http://dx.doi.org/10.1093/mutage/17.1.45 ] [PMID: 11752233]
[22]
Vijayababu, M.R.; Arunkumar, A.; Kanagaraj, P.; Venkataraman, P.; Krishnamoorthy, G.; Arunakaran, J. Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in Prostate Cancer cells (PC-3). Mol. Cell. Biochem., 2006, 287(1-2), 109-116.
[http://dx.doi.org/10.1007/s11010-005-9085-3 ] [PMID: 16645725]
[23]
Tan, W.F.; Lin, L.P.; Li, M.H.; Zhang, Y-X.; Tong, Y.G.; Xiao, D.; Ding, J. Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. Eur. J. Pharmacol., 2003, 459(2-3), 255-262.
[http://dx.doi.org/10.1016/S0014-2999(02)02848-0 ] [PMID: 12524154]
[24]
Chen, X. Protective effects of quercetin on liver injury induced by ethanol. Pharmacogn. Mag., 2010, 6(22), 135-141.
[http://dx.doi.org/10.4103/0973-1296.62900 ] [PMID: 20668581]
[25]
Nam, J.S.; Sharma, A.R.; Nguyen, L.T.; Chakraborty, C.; Sharma, G.; Lee, S.S. Application of bioactive quercetin in oncotherapy: from nutrition to nanomedicine. Molecules, 2016, 21(1), E108
[http://dx.doi.org/10.3390/molecules21010108 ] [PMID: 26797598]
[26]
D’Andrea, G. Quercetin: a flavonol with multifaceted therapeutic applications? Fitoterapia, 2015, 106, 256-271.
[http://dx.doi.org/10.1016/j.fitote.2015.09.018 ] [PMID: 26393898]
[27]
Hollman, P.C.H.; Katan, M.B. Absorption, metabolism and health effects of dietary flavonoids in man. Biomed. Pharmacother., 1997, 51(8), 305-310.
[http://dx.doi.org/10.1016/S0753-3322(97)88045-6 ] [PMID: 9436520]
[28]
Podhajcer, O.L.; Friedlander, M.; Graziani, Y. Effect of liposome-encapsulated quercetin on DNA synthesis, lactate production, and cyclic adenosine 3′:5′-monophosphate level in Ehrlich ascites tumor cells. Cancer Res., 1980, 40(4), 1344-1350.
[PMID: 6244093]
[29]
Goniotaki, M.; Hatziantoniou, S.; Dimas, K.; Wagner, M.; Demetzos, C. Encapsulation of naturally occurring flavonoids into liposomes: physicochemical properties and biological activity against human cancer cell lines. J. Pharm. Pharmacol., 2004, 56(10), 1217-1224.
[http://dx.doi.org/10.1211/0022357044382 ] [PMID: 15482635]
[30]
Tammela, P.; Laitinen, L.; Galkin, A.; Wennberg, T.; Heczko, R.; Vuorela, H.; Slotte, J.P.; Vuorela, P. Permeability characteristics and membrane affinity of flavonoids and alkyl gallates in Caco-2 cells and in phospholipid vesicles. Arch. Biochem. Biophys., 2004, 425(2), 193-199.
[http://dx.doi.org/10.1016/j.abb.2004.03.023 ] [PMID: 15111127]
[31]
Yuan, Z.P.; Chen, L.J.; Wei, Y.Q.; Fan, L.Y.; Tang, M.H.; Yang, G.L. [Nanoliposomal quercetin inhibits formation of malignant ascites of hepatocellular carcinoma]. Chin. J. Cancer, 2006, 25(8), 941-945.
[PMID: 16965672]
[32]
Yuan, Z.P.; Chen, L.J.; Fan, L.Y.; Tang, M.H.; Yang, G.L.; Yang, H.S.; Du, X.B.; Wang, G.Q.; Yao, W.X.; Zhao, Q.M.; Ye, B.; Wang, R.; Diao, P.; Zhang, W.; Wu, H.B.; Zhao, X.; Wei, Y.Q. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin. Cancer Res., 2006, 12(10), 3193-3199.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2365 ] [PMID: 16707620]
[33]
Ghosh, D.; Ghosh, S.; Sarkar, S.; Ghosh, A.; Das, N.; Das Saha, K.; Mandal, A.K. Quercetin in vesicular delivery systems: evaluation in combating arsenic-induced acute liver toxicity associated gene expression in rat model. Chem. Biol. Interact., 2010, 186(1), 61-71.
[http://dx.doi.org/10.1016/j.cbi.2010.03.048 ] [PMID: 20371363]
[34]
Wong, M.Y.; Chiu, G.N. Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen-receptor-negative breast cancer treatment. Anticancer Drugs, 2010, 21(4), 401-410.
[http://dx.doi.org/10.1097/CAD.0b013e328336e940 ] [PMID: 20110806]
[35]
Ghosh, A.; Mandal, A.K.; Sarkar, S.; Das, N. Hepatoprotective and neuroprotective activity of liposomal quercetin in combating chronic arsenic induced oxidative damage in liver and brain of rats. Drug Deliv., 2011, 18(6), 451-459.
[http://dx.doi.org/10.3109/10717544.2011.577110 ] [PMID: 21554158]
[36]
Wong, M.Y.; Chiu, G.N. Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model. Nanomedicine (Lond.), 2011, 7(6), 834-840.
[http://dx.doi.org/10.1016/j.nano.2011.02.001 ] [PMID: 21371568]
[37]
Yang, W.; Ahmed, M.; Tasawwar, B.; Levchenko, T.; Sawant, R.R.; Collins, M.; Signoretti, S.; Torchilin, V.; Goldberg, S.N. Radiofrequency ablation combined with liposomal quercetin to increase tumour destruction by modulation of heat shock protein production in a small animal model. Int. J. Hyperthermia, 2011, 27(6), 527-538.
[http://dx.doi.org/10.3109/02656736.2011.582474 ] [PMID: 21846189]
[38]
Yang, W.; Ahmed, M.; Tasawwar, B.; Levchenko, T.; Sawant, R.R.; Torchilin, V.; Goldberg, S.N. Combination Radiofrequency (RF) ablation and IV liposomal heat shock protein suppression: reduced tumor growth and increased animal endpoint survival in a small animal tumor model. J. Control. Release, 2012, 160(2), 239-244.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.031 ] [PMID: 22230341]
[39]
Sinha, R.; Gadhwal, M.K.; Joshi, B.J.; Srivastava, S.; Govil, G. Modifying effect of quercetin on model biomembranes: studied by molecular dynamic simulation, DSC and NMR. Int. J. Curr. Pharm. Res., 2012, 4, 70-79.
[40]
Wang, G.; Wang, J.J.; Yang, G.Y.; Du, S.M.; Zeng, N.; Li, D.S.; Li, R.M.; Chen, J.Y.; Feng, J.B.; Yuan, S.H.; Ye, F. Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int. J. Nanomed, 2012, 7, 271-280.
[PMID: 22275840]
[41]
Wang, G.; Wang, J.J.; Chen, X.L.; Du, S.M.; Li, D.S.; Pei, Z.J.; Lan, H.; Wu, L.B. The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death. Cell Death Dis., 2013, 4, e746
[http://dx.doi.org/10.1038/cddis.2013.242 ] [PMID: 23907460]
[42]
Liu, D.; Hu, H.; Lin, Z.; Chen, D.; Zhu, Y.; Hou, S.; Shi, X. Quercetin deformable liposome: preparation and efficacy against ultraviolet B induced skin damages in vitro and in vivo. J. Photochem. Photobiol. B, 2013, 127, 8-17.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.07.014 ] [PMID: 23933244]
[43]
Liu, H.; Xue, J.X.; Li, X.; Ao, R.; Lu, Y. Quercetin liposomes protect against radiation-induced pulmonary injury in a murine model. Oncol. Lett., 2013, 6(2), 453-459.
[http://dx.doi.org/10.3892/ol.2013.1365 ] [PMID: 24137346]
[44]
He, B.; Wang, X.; Shi, H.S.; Xiao, W.J.; Zhang, J.; Mu, B.; Mao, Y.Q.; Wang, W.; Wang, Y.S. Quercetin liposome sensitizes colon carcinoma to thermotherapy and thermochemotherapy in mice models. Integr. Cancer Ther., 2013, 12(3), 264-270.
[http://dx.doi.org/10.1177/1534735412446863 ] [PMID: 22740083]
[45]
Pawlikowska-Pawlęga, B.; Dziubińska, H.; Król, E.; Trębacz, K.; Jarosz-Wilkołazka, A.; Paduch, R.; Gawron, A.; Gruszecki, W.I. Characteristics of quercetin interactions with liposomal and vacuolar membranes. Biochim. Biophys. Acta, 2014, 1838(1 Pt B), 254-265.
[http://dx.doi.org/10.1016/j.bbamem.2013.08.014 ] [PMID: 24001508]
[46]
Zheng, N.G.; Mo, S.J.; Li, J.P.; Wu, J.L. Anti-CSC effects in human esophageal squamous cell carcinomas and Eca109/9706 cells induced by nanoliposomal quercetin alone or combined with CD 133 antiserum. Asian Pac. J. Cancer Prev., 2014, 15(20), 8679-8684.
[http://dx.doi.org/10.7314/APJCP.2014.15.20.8679 ] [PMID: 25374189]
[47]
Zheng, N.G.; Wang, J.L.; Yang, S.L.; Wu, J.L. Aberrant epigenetic alteration in Eca9706 cells modulated by nanoliposomal quercetin combined with butyrate mediated via epigenetic-NF-κB signaling. Asian Pac. J. Cancer Prev., 2014, 15(11), 4539-4543.
[http://dx.doi.org/10.7314/APJCP.2014.15.11.4539 ] [PMID: 24969881]
[48]
Moussa, M.; Goldberg, S.N.; Kumar, G.; Sawant, R.R.; Levchenko, T.; Torchilin, V.P.; Ahmed, M. Nanodrug-enhanced radiofrequency tumor ablation: effect of micellar or liposomal carrier on drug delivery and treatment efficacy. PLoS One, 2014, 9(8), e102727
[http://dx.doi.org/10.1371/journal.pone.0102727 ] [PMID: 25133740]
[49]
Rezaei-Sadabady, R.; Eidi, A.; Zarghami, N.; Barzegar, A. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 128-134.
[http://dx.doi.org/10.3109/21691401.2014.926456 ] [PMID: 24959911]
[50]
Dabbagh-Bazarbachi, H.; Clergeaud, G.; Quesada, I.M.; Ortiz, M.; O’Sullivan, C.K.; Fernández-Larrea, J.B. Zinc ionophore activity of quercetin and epigallocatechin-gallate: from Hepa 1-6 cells to a liposome model. J. Agric. Food Chem., 2014, 62(32), 8085-8093.
[http://dx.doi.org/10.1021/jf5014633 ] [PMID: 25050823]
[51]
Caddeo, C.; Nacher, A.; Vassallo, A.; Armentano, M.F.; Pons, R.; Fernàndez-Busquets, X.; Carbone, C.; Valenti, D.; Fadda, A.M.; Manconi, M. Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer. Int. J. Pharm., 2016, 513(1-2), 153-163.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.014 ] [PMID: 27609664]
[52]
Caddeo, C.; Pons, R.; Carbone, C.; Fernàndez-Busquets, X.; Cardia, M.C.; Maccioni, A.M.; Fadda, A.M.; Manconi, M. Physico-chemical characterization of succinyl chitosan-stabilized liposomes for the oral co-delivery of quercetin and resveratrol. Carbohydr. Polym., 2017, 157, 1853-1861.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.072 ] [PMID: 27987905]
[53]
Hu, J.; Wang, J.; Wang, G.; Yao, Z.; Dang, X. Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells. Int. J. Mol. Med., 2016, 37(3), 690-702.
[http://dx.doi.org/10.3892/ijmm.2016.2458 ] [PMID: 26782731]
[54]
Ravichandiran, V.; Masilamani, K.; Senthilnathan, B.; Maheshwaran, A.; Wong, T.W.; Roy, P. Quercetin-decorated curcumin liposome design for cancer therapy: in-vitro and in-vivo studies. Curr. Drug Deliv., 2017, 14(8), 1053-1059.
[http://dx.doi.org/10.2174/1567201813666160829100453 ] [PMID: 27572089]
[55]
Kuo, Y.C.; Tsao, C.W. Neuroprotection against apoptosis of SK-N-MC cells using RMP-7- and lactoferrin-grafted liposomes carrying quercetin. Int. J. Nanomedicine, 2017, 12, 2857-2869.
[http://dx.doi.org/10.2147/IJN.S132472 ] [PMID: 28435263]
[56]
Dos Santos, D.M.; Rocha, C.V.J.; da Silveira, E.F.; Marinho, M.A.G.; Rodrigues, M.R.; Silva, N.O.; da Silva Ferreira, A.; de Moura, N.F.; Darelli, G.J.S.; Braganhol, E.; Horn, A.P.; de Lima, V.R. In vitro anti/pro-oxidant activities of R. ferruginea extract and its effect on glioma cell viability: correlation with phenolic compound content and effects on membrane dynamics. J. Membr. Biol., 2018, 251(2), 247-261.
[http://dx.doi.org/10.1007/s00232-018-0017-z ] [PMID: 29417170]
[57]
Zhang, Z.; Xu, S.; Wang, Y.; Yu, Y.; Li, F.; Zhu, H.; Shen, Y.; Huang, S.; Guo, S. Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J. Colloid Interface Sci., 2018, 509, 47-57.
[http://dx.doi.org/10.1016/j.jcis.2017.08.097 ] [PMID: 28881205]
[58]
Rodriguez, E.B.; Almeda, R.A.; Vidallon, M.L.P.; Reyes, C.T. Enhanced bioactivity and efficient delivery of quercetin through nanoliposomal encapsulation using rice bran phospholipids. J. Sci. Food Agric., 2019, 99(4), 1980-1989.
[http://dx.doi.org/10.1002/jsfa.9396 ] [PMID: 30270448]
[59]
Kruszewski, M.; Kusaczuk, M.; Kotyńska, J.; Gál, M.; Krętowski, R.; Cechowska-Pasko, M.; Naumowicz, M. The effect of quercetin on the electrical properties of model lipid membranes and human glioblastoma cells. Bioelectrochemistry, 2018, 124, 133-141.
[http://dx.doi.org/10.1016/j.bioelechem.2018.07.010 ] [PMID: 30029034]
[60]
Zhou, X.; Liu, H.Y.; Zhao, H.; Wang, T. RGD-modified nanoliposomes containing quercetin for lung cancer targeted treatment. OncoTargets Ther., 2018, 11, 5397-5405.
[http://dx.doi.org/10.2147/OTT.S169555 ] [PMID: 30214245]
[61]
Chen, K.T.J.; Anantha, M.; Leung, A.W.Y.; Kulkarni, J.A.; Militao, G.G.C.; Wehbe, M.; Sutherland, B.; Cullis, P.R.; Bally, M.B. Characterization of a liposomal copper(II)-quercetin formulation suitable for parenteral use. Drug Deliv. Transl. Res., 2020, 10(1), 202-215.
[PMID: 31482519]
[62]
Das, A.; Konyak, P.M.; Das, A.; Dey, S.K.; Saha, C. Physicochemical characterization of dual action liposomal formulations: anticancer and antimicrobial. Heliyon, 2019, 5(8), e02372
[http://dx.doi.org/10.1016/j.heliyon.2019.e02372 ] [PMID: 31497672]
[63]
Hemati, M.; Haghiralsadat, F.; Yazdian, F.; Jafari, F.; Moradi, A.; Malekpour-Dehkordi, Z. Development and characterization of a novel cationic PEGylated niosome-encapsulated forms of doxorubicin, quercetin and siRNA for the treatment of cancer by using combination therapy. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1295-1311.
[http://dx.doi.org/10.1080/21691401.2018.1489271 ] [PMID: 30033768]
[64]
Zuo, J.; Jiang, Y.; Zhang, E.; Chen, Y.; Liang, Z.; Zhu, J.; Zhao, Y.; Xu, H.; Liu, G.; Liu, J.; Wang, W.; Zhang, S.; Zhen, Y. Synergistic effects of 7-O-geranylquercetin and siRNAs on the treatment of human breast cancer. Life Sci., 2019, 227, 145-152.
[http://dx.doi.org/10.1016/j.lfs.2019.04.047 ] [PMID: 31009625]
[65]
Yu, J.; Chen, H.; Jiang, L.; Wang, J.; Dai, J.; Wang, J. Codelivery of adriamycin and p-gp inhibitor quercetin using pegylated liposomes to overcome cancer drug resistance. J. Pharm. Sci., 2019, 108(5), 1788-1799.
[http://dx.doi.org/10.1016/j.xphs.2018.12.016 ] [PMID: 30610857]
[66]
Soloviev, A.I.; Kizub, I.V. Mechanisms of vascular dysfunction evoked by ionizing radiation and possible targets for its pharmacological correction. Biochem. Pharmacol., 2019, 159, 121-139.
[http://dx.doi.org/10.1016/j.bcp.2018.11.019 ] [PMID: 30508525]
[67]
Riaz, M.K.; Zhang, X.; Wong, K.H.; Chen, H.; Liu, Q.; Chen, X.; Zhang, G.; Lu, A.; Yang, Z. Pulmonary delivery of transferrin receptors targeting peptide surface-functionalized liposomes augments the chemotherapeutic effect of quercetin in lung cancer therapy. Int. J. Nanomedicine, 2019, 14, 2879-2902.
[http://dx.doi.org/10.2147/IJN.S192219 ] [PMID: 31118613]
[68]
Moosavian, S.A.; Bianconi, V.; Pirro, M.; Sahebkar, A. Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy. Semin. Cancer Biol., 2019, S1044-579X(19), 30098-7.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.025] [PMID: 31585213]
[69]
Tahara, Y.; Yoshikawa, T.; Sato, H.; Mori, Y.; Zahangir, M.H.; Kishimura, A.; Mori, T.; Katayama, Y. Encapsulation of a nitric oxide donor into a liposome to boost the Enhanced Permeation and Retention (EPR) effect. MedChemComm, 2016, 8(2), 415-421.
[http://dx.doi.org/10.1039/C6MD00614K ] [PMID: 30108759]
[70]
Amin, M.; Badiee, A.; Jaafari, M.R. Improvement of pharmacokinetic and antitumor activity of PEGylated liposomal doxorubicin by targeting with N-methylated cyclic RGD peptide in mice bearing C-26 colon carcinomas. Int. J. Pharm., 2013, 458(2), 324-333.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.018 ] [PMID: 24148663]
[71]
Ariffin, A.B.; Forde, P.F.; Jahangeer, S.; Soden, D.M.; Hinchion, J. Releasing pressure in tumors: what do we know so far and where do we go from here? A review. Cancer Res., 2014, 74(10), 2655-2662.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3696 ] [PMID: 24778418]
[72]
Murase, Y.; Asai, T.; Katanasaka, Y.; Sugiyama, T.; Shimizu, K.; Maeda, N.; Oku, N. A novel DDS strategy, “dual-targeting”, and its application for antineovascular therapy. Cancer Lett., 2010, 287(2), 165-171.
[http://dx.doi.org/10.1016/j.canlet.2009.06.008 ] [PMID: 19616372]
[73]
Kano, M.R.; Bae, Y.; Iwata, C.; Morishita, Y.; Yashiro, M.; Oka, M.; Fujii, T.; Komuro, A.; Kiyono, K.; Kaminishi, M.; Hirakawa, K.; Ouchi, Y.; Nishiyama, N.; Kataoka, K.; Miyazono, K. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proc. Natl. Acad. Sci. USA, 2007, 104(9), 3460-3465.
[http://dx.doi.org/10.1073/pnas.0611660104 ] [PMID: 17307870]
[74]
Szebeni, J.; Storm, G. Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs. Biochem. Biophys. Res. Commun., 2015, 468(3), 490-497.
[http://dx.doi.org/10.1016/j.bbrc.2015.06.177 ] [PMID: 26182876]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 10
Year: 2020
Page: [845 - 860]
Pages: 16
DOI: 10.2174/1567201817666200415112657
Price: $65

Article Metrics

PDF: 35
HTML: 4
EPUB: 1
PRC: 1