Possible Enhancement of Photodynamic Therapy (PDT) Colorectal Cancer Treatment when Combined with Cannabidiol

Author(s): Nkune W. Nkune, Cherie A. Kruger*, Heidi Abrahamse

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 21 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Colorectal Cancer (CRC) has a high mortality rate and is one of the most difficult diseases to manage due to tumour resistance and metastasis. The treatment of choice for CRC is reliant on the phase and time of diagnosis. Despite several conventional treatments available to treat CRC (surgical excision, chemo-, radiationand immune-therapy), resistance is a major challenge, especially if it has metastasized. Additionally, these treatments often cause unwanted adverse side effects and so it remains imperative to investigate alternative combination therapies.

Photodynamic Therapy (PDT) is a promising treatment modality for the primary treatment of CRC, since it is non-invasive, has few side effects and selectively damages only cancerous tissues, leaving adjacent healthy structures intact. PDT involves three fundamentals: a Photosensitizer (PS) drug localized in tumour tissues, oxygen, and light. Upon PS excitation using a specific wavelength of light, an energy transfer cascade occurs, that ultimately yields cytotoxic species, which in turn induces cell death. Cannabidiol (CBD) is a cannabinoid compound derived from the Cannabis sativa plant, which has shown to exert anticancer effects on CRC through different pathways, inducing apoptosis and so inhibiting tumour metastasis and secondary spread.

This review paper highlights current conventional treatment modalities for CRC and their limitations, as well as discusses the necessitation for further investigation into unconventional active nanoparticle targeting PDT treatments for enhanced primary CRC treatment. This can be administered in combination with CBD, to prevent CRC secondary spread and enhance the synergistic efficacy of CRC treatment outcomes, with less side effects.

Keywords: Colorectal Cancer (CRC), combinative treatment, Cannabis sativa, Cannabidiol (CBD), Photodynamic Therapy (PDT), targeted therapy.

[1]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[2]
Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin., 2016, 66(4), 271-289.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[3]
Marley, A.R.; Nan, H. Epidemiology of colorectal cancer. Int. J. Mol. Epidemiol. Genet., 2016, 7(3), 105-114.
[PMID: 27766137]
[4]
Mishra, J.; Drummond, J.; Quazi, S.H.; Karanki, S.S.; Shaw, J.J.; Chen, B.; Kumar, N. Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Crit. Rev. Oncol. Hematol., 2013, 86(3), 232-250.
[http://dx.doi.org/10.1016/j.critrevonc.2012.09.014] [PMID: 23098684]
[5]
Hodgkinson, N.; Kruger, C.A.; Abrahamse, H. Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells. Tumour Biol., 2017, 39(10)1010428317734691
[http://dx.doi.org/10.1177/1010428317734691]] [PMID: 28990490]
[6]
Mármol, I.; Sánchez-de-Diego, C.; Pradilla Dieste, A.; Cerrada, E.; Rodriguez Yoldi, M.J. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci., 2017, 18(1), 197.
[http://dx.doi.org/10.3390/ijms18010197] [PMID: 28106826]
[7]
Kuipers, E.J.; Grady, W.M.; Lieberman, D.; Seufferlein, T.; Sung, J.J.; Boelens, P.G.; van de Velde, C.J.H.; Watanabe, T. Colorectal cancer. Nat. Rev. Dis. Primers, 2015, 1(15065), 15065.
[http://dx.doi.org/10.1038/nrdp.2015.65] [PMID: 27189416]
[8]
Simon, K. Colorectal cancer development and advances in screening. Clin. Interv. Aging, 2016, 11, 967-976.
[http://dx.doi.org/10.2147/CIA.S109285] [PMID: 27486317]
[9]
Kruger, C.A.; Abrahamse, H. Targeted Photodynamic Therapy as Potential treatment modality for eradication of colon cancer. Multidisciplinary Colorectal cancer; IntechOpen: UK, 2019.
[10]
Taieb, J.; André, T.; Auclin, E. Refining adjuvant therapy for non-metastatic colon cancer, new standards and perspectives. Cancer Treat. Rev., 2019, 75, 1-11.
[http://dx.doi.org/10.1016/j.ctrv.2019.02.002] [PMID: 30849607]
[11]
Varghese, A. Chemotherapy for stage II colon cancer. Clin. Colon Rectal Surg., 2015, 28(04), 256-261.
[12]
De Rosa, M.; Pace, U.; Rega, D.; Costabile, V.; Duraturo, F.; Izzo, P.; Delrio, P. Genetics, diagnosis and management of colorectal cancer.(Review) Oncol. Rep., 2015, 34(3), 1087-1096.
[PMID: 10.3892/or.2015.4108] [PMID: 26151224]
[13]
Dienstmann, R.; Mason, M.J.; Sinicrope, F.A.; Phipps, A.I.; Tejpar, S.; Nesbakken, A.; Danielsen, S.A.; Sveen, A.; Buchanan, D.D.; Clendenning, M.; Rosty, C.; Bot, B.; Alberts, S.R.; Milburn Jessup, J.; Lothe, R.A.; Delorenzi, M.; Newcomb, P.A.; Sargent, D.; Guinney, J. Prediction of overall survival in stage II and III colon cancer beyond TNM system: A retrospective, pooled biomarker study. Ann. Oncol., 2017, 28(5), 1023-1031.
[http://dx.doi.org/10.1093/annonc/mdx052] [PMID: 28453697]
[14]
Benarba, B.; Pandiella, A. Colorectal cancer and medicinal plants: Principle findings from recent studies. Biomed. Pharmacother., 2018, 107, 408-423.
[http://dx.doi.org/10.1016/j.biopha.2018.08.006] [PMID: 30099345]
[15]
Rejhová, A.; Opattová, A.; Čumová, A.; Slíva, D.; Vodička, P. Natural compounds and combination therapy in colorectal cancer treatment. Eur. J. Med. Chem., 2018, 144, 582-594.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.039] [PMID: 29289883]
[16]
Rentsch, M.; Schiergens, T.; Khandoga, A.; Werner, J. Surgery for colorectal cancer - trends, developments, and future perspectives. Visc. Med., 2016, 32(3), 184-191.
[http://dx.doi.org/10.1159/000446490] [PMID: 27493946]
[17]
Viswanath, B.; Kim, S.; Lee, K. Recent insights into nanotechnology development for detection and treatment of colorectal cancer. Int. J. Nanomedicine, 2016, 11, 2491-2504.
[PMID: 27330292]
[18]
Kwiatt, M.; Kawata, M. Avoidance and management of stomal complications. Clin. Colon Rectal Surg., 2013, 26(02), 112-121.
[http://dx.doi.org/10.1055/s-0033-1348050]
[19]
Gianfaldoni, S.; Gianfaldoni, R.; Wollina, U.; Lotti, J.; Tchernev, G.; Lotti, T. An overview on radiotherapy: From its history to its current applications in dermatology. Open Access Maced. J. Med. Sci., 2017, 5(4), 521-525.
[http://dx.doi.org/10.3889/oamjms.2017.122] [PMID: 28785349]
[20]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[21]
Kim, J.H. Controversial issues in radiotherapy for rectal cancer: A systematic review. Radiat. Oncol. J., 2017, 35(4), 295-305.
[http://dx.doi.org/10.3857/roj.2017.00395] [PMID: 29325395]
[22]
Jaffray, D.A.; Gospodarowicz, M.K. Disease Control Priorities, 3rd ed; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2015.
[23]
Denlinger, C.S.; Barsevick, A.M. The challenges of colorectal cancer survivorship. J. Natl. Compr. Canc. Netw., 2009, 7(8), 883-893.
[http://dx.doi.org/10.6004/jnccn.2009.0058] [PMID: 19755048]
[24]
Birgisson, H.; Påhlman, L.; Gunnarsson, U.; Glimelius, B. Late adverse effects of radiation therapy for rectal cancer - a systematic overview. Acta Oncol., 2007, 46(4), 504-516.
[http://dx.doi.org/10.1080/02841860701348670] [PMID: 17497318]
[25]
Bruheim, K.; Guren, M.G.; Skovlund, E.; Hjermstad, M.J.; Dahl, O.; Frykholm, G.; Carlsen, E.; Tveit, K.M. Late side effects and quality of life after radiotherapy for rectal cancer. Int. J. Radiat. Oncol. Biol. Phys., 2010, 76(4), 1005-1011.
[http://dx.doi.org/10.1016/j.ijrobp.2009.03.010] [PMID: 19540058]
[26]
Aung, T.N.; Qu, Z.; Kortschak, R.D.; Adelson, D.L. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int. J. Mol. Sci., 2017, 18(3), 656.
[http://dx.doi.org/10.3390/ijms18030656] [PMID: 28304343]
[27]
Naidoo, C.; Kruger, C.A.; Abrahamse, H. Photodynamic therapy for metastatic melanoma treatment: A review. Technol. Cancer Res. Treat., 2018, 171533033818791795
[http://dx.doi.org/10.1177/1533033818791795]] [PMID: 30099929]
[28]
Palaghia, M.; Prelipcean, C.C.; Cotea, E.; Vlad, N.; Leneschi, L. Metastatic colorectal cancer: Review of diagnosis and treatment options. J. Surg. (Northborough), 2015, 10(4), 249-256.
[29]
Geng, F.; Wang, Z.; Yin, H.; Yu, J.; Cao, B. Molecular targeted drugs and treatment of colorectal cancer: Recent progress and future perspectives. Cancer Cancer Biother. Radiopharm., 2017, 32(5), 149-160.
[http://dx.doi.org/10.1089/cbr.2017.2210] [PMID: 28622036]
[30]
Brar, G.; Marshall, J.L.; Pishvaian, M.J. Targeted therapy and the use of molecular profiling in metastatic colorectal cancer. Am. J. Hematol., 2017, 13(9)
[31]
Ohhara, Y.; Fukuda, N.; Takeuchi, S.; Honma, R.; Shimizu, Y.; Kinoshita, I.; Dosaka-Akita, H. Role of targeted therapy in metastatic colorectal cancer. World J. Gastrointest. Oncol., 2016, 8(9), 642-655.
[http://dx.doi.org/10.4251/wjgo.v8.i9.642] [PMID: 27672422]
[32]
Ahluwalia, A.; Jones, M.K.; Matysiak-Budnik, T.; Tarnawski, A.S. VEGF and colon cancer growth beyond angiogenesis: Does VEGF directly mediate colon cancer growth via a non-angiogenic mechanism? Curr. Pharm. Des., 2014, 20(7), 1041-1044.
[http://dx.doi.org/10.2174/1381612819999131218175905] [PMID: 23755727]
[33]
Lee, S.Y.; Oh, S.C. Advances of targeted therapy in treatment of unresectable metastatic colorectal cancer. BioMed Res. Int., 2016, 20167590245
[http://dx.doi.org/10.1155/2016/7590245]] [PMID: 27127793]
[34]
Hagan, S.; Orr, M.C.; Doyle, B. Targeted therapies in colorectal cancer-an integrative view by PPPM. EPMA J., 2013, 4(1), 3.
[http://dx.doi.org/10.1186/1878-5085-4-3] [PMID: 23356214]
[35]
Lin, B.R.; Lin, Y.L.; Lai, H.S.; Lee, P.H.; Chang, K.J.; Liang, J.T. Overall survival of stage III colon cancer with only one lymph node metastasis is independently predicted by preoperative carcinoembryonic antigen level and lymph node sampling status. PLoS One, 2015, 10(9)e0137053
[http://dx.doi.org/10.1371/journal.pone.0137053]] [PMID: 26381396]
[36]
Nakayama, G.; Tanaka, C.; Kodera, Y. Current options for the diagnosis, staging and therapeutic management of colorectal cancer. Gastrointest. Tumors, 2013, 1(1), 25-32.
[http://dx.doi.org/10.1159/000354995] [PMID: 26674429]
[37]
Cheasley, D.; Jorissen, R.N.; Liu, S.; Tan, C.W.; Love, C.; Palmieri, M.; Sieber, O.M. Genomic approach to translational studies in colorectal cancer. Transl. Cancer Res., 2015, 4(3), 235-255.
[38]
Shida, D.; Tanabe, T.; Boku, N.; Takashima, A.; Yoshida, T.; Tsukamoto, S.; Kanemitsu, Y. Prognostic value of primary tumor sidedness for unresectable stage IV colorectal cancer: A retrospective study. Ann. Surg. Oncol., 2019, 26(5), 1358-1365.
[http://dx.doi.org/10.1245/s10434-019-07209-x] [PMID: 30719633]
[39]
Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed. Pharmacother., 2018, 106, 1098-1107.
[http://dx.doi.org/10.1016/j.biopha.2018.07.049] [PMID: 30119176]
[40]
Mansoori, B.; Mohammadi, A.; Amin Doustvandi, M.; Mohammadnejad, F.; Kamari, F.; Gjerstorff, M.F.; Baradaran, B.; Hamblin, M.R. Photodynamic therapy for cancer: Role of natural products. Photodiagn. Photodyn. Ther., 2019, 26, 395-404.
[http://dx.doi.org/10.1016/j.pdpdt.2019.04.033] [PMID: 31063860]
[41]
Hong, E.J.; Choi, D.G.; Shim, M.S. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm. Sin. B, 2016, 6(4), 297-307.
[http://dx.doi.org/10.1016/j.apsb.2016.01.007] [PMID: 27471670]
[42]
Sekhejane, P.R.; Houreld, N.N.; Abrahamse, H. Multiorganelle localization of metallated phthalocyanine photosensitizer in colorectal cancer cells (DLD-1 and CaCo-2) enhances efficacy of photodynamic therapy. Int. J. Photoenergy, 2014, 2014 Article ID 383027
[http://dx.doi.org/10.1155/2014/383027]
[43]
Kruger, C.A.; Abrahamse, H. Utilisation of targeted nanoparticle photosensitiser drug delivery systems for the enhancement of photodynamic therapy. Molecules, 2018, 23(10), 2628.
[http://dx.doi.org/10.3390/molecules23102628] [PMID: 30322132]
[44]
De Freitas, L.F.; Hamblin, M.R. Antimicrobial photoinactivation with functionalized fullerenes. In: Nanobiomaterials in Antimicrobial Therapy; William Andrew Publishing: Bucharest, Romania, 2016, pp. 1-27.
[http://dx.doi.org/10.1016/B978-0-323-42864-4.00001-4]
[45]
Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364.
[http://dx.doi.org/10.1042/BJ20150942] [PMID: 26862179]
[46]
O’Connor, A.E.; Gallagher, W.M.; Byrne, A.T. Porphyrin and nonporphyrin photosensitizers in oncology: Preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol., 2009, 85(5), 1053-1074.
[http://dx.doi.org/10.1111/j.1751-1097.2009.00585.x] [PMID: 19682322]
[47]
Tanaka, M.; Kataoka, H.; Mabuchi, M.; Sakuma, S.; Takahashi, S.; Tujii, R.; Akashi, H.; Ohi, H.; Yano, S.; Morita, A.; Joh, T. Anticancer effects of novel photodynamic therapy with glycoconjugated chlorin for gastric and colon cancer. Anticancer Res., 2011, 31(3), 763-769.
[PMID: 21498693]
[48]
Abdulrehman, G.; Xv, K.; Li, Y.; Kang, L. Effects of meta-tetrahydroxyphenylchlorin photodynamic therapy on isogenic colorectal cancer SW480 and SW620 cells with different metastatic potentials. Lasers Med. Sci., 2018, 33(7), 1581-1590.
[http://dx.doi.org/10.1007/s10103-018-2524-7] [PMID: 29796953]
[49]
Yang, K.; Niu, T.; Luo, M.; Tang, L.; Kang, L. Enhanced cytotoxicity and apoptosis through inhibiting autophagy in metastatic potential colon cancer SW620 cells treated with Chlorin e6 photodynamic therapy. Photodiagn. Photodyn., 2018, 24, 332-341.
[http://dx.doi.org/10.1016/j.pdpdt.2018.10.012]
[50]
Li, Y.; Yu, Y.; Kang, L.; Lu, Y. Effects of chlorin e6-mediated photodynamic therapy on human colon cancer SW480 cells. Int. J. Clin. Exp. Med., 2014, 7(12), 4867-4876.
[PMID: 25663983]
[51]
Kawczyk-Krupka, A.; Latos, W.; Oleś, P.; Czuba, Z.P.; Latos, M.; Krupka, M.; Pengyun, H.; Xu, C.; Cieślar, G.; Sieroń, A. The influence of 5-aminolevulinic photodynamic therapy on colon cancer cell interleukin secretion in hypoxia-like condition in vitro. Photodiagn. Photodyn. Ther., 2018, 23, 240-243.
[http://dx.doi.org/10.1016/j.pdpdt.2018.07.007] [PMID: 30016752]
[52]
Kim, J.H.; Park, J.M.; Roh, Y.J.; Kim, I.W.; Hasan, T.; Choi, M.G. Enhanced efficacy of photodynamic therapy by inhibiting ABCG2 in colon cancers. BMC Cancer, 2015, 15(1), 504.
[http://dx.doi.org/10.1186/s12885-015-1514-4] [PMID: 26149077]
[53]
Şueki, F.; Ruhi, M.K.; Gülsoy, M. The Effect of curcumin in antitumor photodynamic therapy: In vitro experiments with Caco-2 and PC-3 cancer lines. Photodiagn. Photodyn. Ther., 2019, 27, 95-99.
[54]
Ouyang, G.; Xiong, L.; Liu, Z.; Lam, B.; Bui, B.; Ma, L.; Chen, X.; Zhou, P.; Wang, K.; Zhang, Z.; Huang, H.; Miao, X.; Chen, W.; Wen, Y. Inhibition of autophagy potentiates the apoptosis-inducing effects of photodynamic therapy on human colon cancer cells. Photodiagn. Photodyn. Ther., 2018, 21, 396-403.
[http://dx.doi.org/10.1016/j.pdpdt.2018.01.010] [PMID: 29355734]
[55]
Zhu, B.; Li, S.; Yu, L.; Hu, W.; Sheng, D.; Hou, J.; Zhao, N.; Hou, X.; Wu, Y.; Han, Z.; Wei, L.; Zhang, L. Inhibition of autophagy with chloroquine enhanced sinoporphyrin sodium mediated photodynamic therapy-induced apoptosis in human colorectal cancer cells. Int. J. Biol. Sci., 2019, 15(1), 12-23.
[http://dx.doi.org/10.7150/ijbs.27156] [PMID: 30662343]
[56]
Sanovic, R.; Verwanger, T.; Hartl, A.; Krammer, B. Low dose hypericin-PDT induces complete tumor regression in BALB/c mice bearing CT26 colon carcinoma. Photodiagn. Photodyn. Ther., 2011, 8(4), 291-296.
[http://dx.doi.org/10.1016/j.pdpdt.2011.04.003] [PMID: 22122915]
[57]
Peng, C.L.; Lin, H.C.; Chiang, W.L.; Shih, Y.H.; Chiang, P.F.; Luo, T.Y.; Cheng, C.C.; Shieh, M.J. Anti-angiogenic treatment (Bevacizumab) improves the responsiveness of photodynamic therapy in colorectal cancer. Photodiagn. Photodyn. Ther., 2018, 23, 111-118.
[http://dx.doi.org/10.1016/j.pdpdt.2018.06.008] [PMID: 29894822]
[58]
Li, P.T.; Ke, E.S.; Chiang, P.C.; Tsai, T. ALA-or Ce6-PDT induced phenotypic change and suppressed migration in surviving cancer cells. J. Dent. Sci., 2015, 10(1), 74-80.
[http://dx.doi.org/10.1016/j.jds.2013.10.005]
[59]
Hatakeyama, T.; Murayama, Y.; Komatsu, S.; Shiozaki, A.; Kuriu, Y.; Ikoma, H.; Nakanishi, M.; Ichikawa, D.; Fujiwara, H.; Okamoto, K.; Ochiai, T.; Kokuba, Y.; Inoue, K.; Nakajima, M.; Otsuji, E. Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells. Oncol. Rep., 2013, 29(3), 911-916.
[http://dx.doi.org/10.3892/or.2013.2220] [PMID: 23291627]
[60]
Benov, L. Photodynamic therapy: Current status and future directions. Med. Princ. Pract., 2015, 24(1)(Suppl. 1), 14-28.
[http://dx.doi.org/10.1159/000362416] [PMID: 24820409]
[61]
Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev., 2016, 45(23), 6597-6626.
[http://dx.doi.org/10.1039/C6CS00271D] [PMID: 27722328]
[62]
Baskaran, R.; Lee, J.; Yang, S.G. Clinical development of photodynamic agents and therapeutic applications. Biomater. Res., 2018, 22(1), 25.
[http://dx.doi.org/10.1186/s40824-018-0140-z] [PMID: 30275968]
[63]
Wei, M.F.; Chen, M.W.; Chen, K.C.; Lou, P.J.; Lin, S.Y.F.; Hung, S.C.; Hsiao, M.; Yao, C.J.; Shieh, M.J. Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy, 2014, 10(7), 1179-1192.
[http://dx.doi.org/10.4161/auto.28679] [PMID: 24905352]
[64]
Shams, M.; Owczarczak, B.; Manderscheid-Kern, P.; Bellnier, D.A.; Gollnick, S.O. Development of photodynamic therapy regimens that control primary tumor growth and inhibit secondary disease. Cancer Immunol. Immunother., 2015, 64(3), 287-297.
[http://dx.doi.org/10.1007/s00262-014-1633-9] [PMID: 25384911]
[65]
Jeong, S.; Yun, H.K.; Jeong, Y.A.; Jo, M.J.; Kang, S.H.; Kim, J.L.; Kim, D.Y.; Park, S.H.; Kim, B.R.; Na, Y.J.; Lee, S.I.; Kim, H.D.; Kim, D.H.; Oh, S.C.; Lee, D.H. Cannabidiol-induced apoptosis is mediated by activation of Noxa in human colorectal cancer cells. Cancer Lett., 2019, 447, 12-23.
[http://dx.doi.org/10.1016/j.canlet.2019.01.011] [PMID: 30660647]
[66]
Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019 Article ID 3702518
[http://dx.doi.org/10.1155/2019/3702518]
[67]
Bi, Y.; Hao, F.; Yan, G.; Teng, L.; Lee, R.J.; Xie, J. Actively targeted nanoparticles for drug delivery to tumor. Curr. Drug Metab., 2016, 17(8), 763-782.
[http://dx.doi.org/10.2174/1389200217666160619191853] [PMID: 27335116]
[68]
Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[69]
Wang, J.; Hu, X.; Xiang, D. Nanoparticle drug delivery systems: an excellent carrier for tumor peptide vaccines. Drug Deliv., 2018, 25(1), 1319-1327.
[http://dx.doi.org/10.1080/10717544.2018.1477857] [PMID: 29869539]
[70]
Muhamad, N.; Plengsuriyakarn, T.; Na-Bangchang, K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: A systematic review. Int. J. Nanomedicine, 2018, 13, 3921-3935.
[http://dx.doi.org/10.2147/IJN.S165210] [PMID: 30013345]
[71]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[72]
Portilho, F.A.; Cavalcanti, C.E.D.; Miranda-Vilela, A.L.; Estevanato, L.L.C.; Longo, J.P.F.; Almeida Santos, M.F.; Bocca, A.L.; Martins, O.P.; Simioni, A.R.; Morais, P.C.; Azevedo, R.B.; Tedesco, A.C.; Lacava, Z.G. Antitumor activity of photodynamic therapy performed with nanospheres containing zinc-phthalocyanine. J. Nanobiotechnology, 2013, 11(1), 41.
[http://dx.doi.org/10.1186/1477-3155-11-41] [PMID: 24341795]
[73]
García Calavia, P.; Bruce, G.; Pérez-García, L.; Russell, D.A. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem. Photobiol. Sci., 2018, 17(11), 1534-1552.
[http://dx.doi.org/10.1039/C8PP00271A] [PMID: 30118115]
[74]
Tombe, S.; Antunes, E.; Nyokong, T. The photophysical and photochemical behavior of coumarin-derivatized zinc phthalocyanine when conjugated with gold nanoparticles and electrospun into polymer fibers. New J. Chem., 2013, 37(3), 679-689.
[http://dx.doi.org/10.1039/C2NJ40984D]
[75]
Nombona, N.; Antunes, E.; Litwinski, C.; Nyokong, T. Synthesis and photophysical studies of phthalocyanine-gold nanoparticle conjugates. Dalton Trans., 2011, 40(44), 11876-11884.
[http://dx.doi.org/10.1039/c1dt11151e] [PMID: 21971707]
[76]
da Volta Soares, M.; Oliveira, M.R.; dos Santos, E.P.; de Brito Gitirana, L.; Barbosa, G.M.; Quaresma, C.H.; Ricci-Júnior, E. Nanostructured delivery system for zinc phthalocyanine: Preparation, characterization, and phototoxicity study against human lung adenocarcinoma A549 cells. Int. J. Nanomedicine, 2011, 6, 227-238.
[PMID: 21499420]
[77]
Sukumar, U.K.; Bhushan, B.; Dubey, P.; Matai, I.; Sachdev, A.; Packirisamy, G. Emerging applications of nanoparticles for lung cancer diagnosis and therapy. Int. Nano Lett., 2013, 3(1), 45.
[http://dx.doi.org/10.1186/2228-5326-3-45]
[78]
Colombeau, L.; Acherar, S.; Baros, F.; Arnoux, P.; Gazzali, A.M.; Zaghdoudi, K.; Toussaint, M.; Vanderesse, R.; Frochot, C. Inorganic nanoparticles for photodynamic therapy. In: Light-responsive nanostructured systems for applications in nanomedicine; Springer: Cham, 2016, pp. 113-134.
[http://dx.doi.org/10.1007/978-3-319-22942-3_4]
[79]
Oniszczuk, A.; Wojtunik-Kulesza, K.A.; Oniszczuk, T.; Kasprzak, K. The potential of photodynamic therapy (PDT)-Experimental investigations and clinical use. Biomed. Pharmacother., 2016, 83, 912-929.
[http://dx.doi.org/10.1016/j.biopha.2016.07.058] [PMID: 27522005]
[80]
Kawczyk-Krupka, A.; Bugaj, A.M.; Latos, W.; Zaremba, K.; Wawrzyniec, K.; Kucharzewski, M.; Sieroń, A. Photodynamic therapy in colorectal cancer treatment--The state of the art in preclinical research. Photodiagn. Photodyn. Ther., 2016, 13, 158-174.
[http://dx.doi.org/10.1016/j.pdpdt.2015.07.175] [PMID: 26238625]
[81]
Pietersz, G.A.; Wang, X.; Yap, M.L.; Lim, B.; Peter, K. Therapeutic targeting in nanomedicine: the future lies in recombinant antibodies. Nanomedicine (Lond.), 2017, 12(15), 1873-1889.
[http://dx.doi.org/10.2217/nnm-2017-0043] [PMID: 28703636]
[82]
Shirasu, N.; Nam, S.O.; Kuroki, M. Tumor-targeted photodynamic therapy. Anticancer Res., 2013, 33(7), 2823-2831.
[PMID: 23780966]
[83]
Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer active targeting by nanoparticles: A comprehensive review of literature. J. Cancer Res. Clin. Oncol., 2015, 141(5), 769-784.
[http://dx.doi.org/10.1007/s00432-014-1767-3] [PMID: 25005786]
[84]
St Denis, T.G.; Hamblin, M.R. Synthesis, bioanalysis and biodistribution of photosensitizer conjugates for photodynamic therapy. Bioanalysis, 2013, 5(9), 1099-1114.
[http://dx.doi.org/10.4155/bio.13.37] [PMID: 23641699]
[85]
Babu, A.; Templeton, A.K.; Munshi, A.; Ramesh, R. Nanoparticle-based drug delivery for therapy of lung cancer: Progress and challenges. J. Nanomater., 2013, 2013Article ID 863951
[http://dx.doi.org/10.1155/2013/863951]
[86]
Magee, M.S.; Kraft, C.L.; Abraham, T.S.; Baybutt, T.R.; Marszalowicz, G.P.; Li, P.; Waldman, S.A.; Snook, A.E. GUCY2C-directed CAR-T cells oppose colorectal cancer metastases without autoimmunity. OncoImmunology, 2016, 5(10)e1227897
[http://dx.doi.org/10.1080/2162402X.2016.1227897]] [PMID: 27853651]
[87]
Danaee, H.; Kalebic, T.; Wyant, T.; Fassan, M.; Mescoli, C.; Gao, F.; Trepicchio, W.L.; Rugge, M. Consistent expression of guanylyl cyclase-C in primary and metastatic gastrointestinal cancers. PLoS One, 2017, 12(12)e0189953
[http://dx.doi.org/10.1371/journal.pone.0189953]] [PMID: 29261789]
[88]
Wu, H.Y.; Jan, T.R. Cannabidiol hydroxyquinone-induced apoptosis of splenocytes is mediated predominantly by thiol depletion. Toxicol. Lett., 2010, 195(1), 68-74.
[http://dx.doi.org/10.1016/j.toxlet.2010.02.012] [PMID: 20184945]
[89]
Wu, H.Y.; Huang, C.H.; Lin, Y.H.; Wang, C.C.; Jan, T.R. Cannabidiol induced apoptosis in human monocytes through mitochondrial permeability transition pore-mediated ROS production. Free Radic. Biol. Med., 2018, 124, 311-318.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.06.023] [PMID: 29940353]
[90]
Sharma, M.; Hudson, J.B.; Adomat, H.; Guns, E.; Cox, M.E. In vitro anticancer activity of plant-derived cannabidiol on prostate cancer cell line. Pharmacol. Pharm., 2014, 5, 806-820.
[http://dx.doi.org/10.4236/pp.2014.58091]
[91]
Śledziński, P.; Zeyland, J.; Słomski, R.; Nowak, A. The current state and future perspectives of cannabinoids in cancer biology. Cancer Med., 2018, 7(3), 765-775.
[http://dx.doi.org/10.1002/cam4.1312] [PMID: 29473338]
[92]
Lukhele, S.T.; Motadi, L.R. Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells. BMC Complement. Altern. Med., 2016, 16(1), 335.
[http://dx.doi.org/10.1186/s12906-016-1280-0] [PMID: 27586579]
[93]
Kenyon, J.; Liu, W.; Dalgleish, A. Report of objective clinical responses of cancer patients to pharmaceutical-grade synthetic cannabidiol. Anticancer Res., 2018, 38(10), 5831-5835.
[http://dx.doi.org/10.21873/anticanres.12924] [PMID: 30275207]
[94]
Naderi, J.; Dana, N.; Javanmard, S.H.; Amooheidari, A.; Yahay, M.; Vaseghi, G. Effects of standardized Cannabis sativa extract and ionizing radiation in melanoma cells in vitro. J. Cancer Res. Ther., 2019, Ahead of Print..
[95]
Massi, P.; Solinas, M.; Cinquina, V.; Parolaro, D. Cannabidiol as potential anticancer drug. Br. J. Clin. Pharmacol., 2013, 75(2), 303-312.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04298.x] [PMID: 22506672]
[96]
Shrivastava, A.; Kuzontkoski, P.M.; Groopman, J.E.; Prasad, A. Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Mol. Cancer Ther., 2011, 10(7), 1161-1172.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-1100] [PMID: 21566064]
[97]
Aviello, G.; Romano, B.; Borrelli, F.; Capasso, R.; Gallo, L.; Piscitelli, F.; Di Marzo, V.; Izzo, A.A. Chemopreventive effect of the non-psychotropic phytocannabinoid cannabidiol on experimental colon cancer. J. Mol. Med. (Berl.), 2012, 90(8), 925-934.
[http://dx.doi.org/10.1007/s00109-011-0856-x] [PMID: 22231745]
[98]
Huang, Y.J.; Nan, G.X. Oxidative stress-induced angiogenesis. J. Clin. Neurosci., 2019, 63, 13-16.
[http://dx.doi.org/10.1016/j.jocn.2019.02.019] [PMID: 30837109]
[99]
Sun, W. Angiogenesis in metastatic colorectal cancer and the benefits of targeted therapy. J. Hematol. Oncol., 2012, 5(1), 63.
[http://dx.doi.org/10.1186/1756-8722-5-63] [PMID: 23057939]
[100]
Rajabi, M.; Mousa, S.A. The role of angiogenesis in cancer treatment. Biomedicines, 2017, 5(2), 34.
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[101]
Solinas, M.; Massi, P.; Cantelmo, A.R.; Cattaneo, M.G.; Cammarota, R.; Bartolini, D.; Cinquina, V.; Valenti, M.; Vicentini, L.M.; Noonan, D.M.; Albini, A.; Parolaro, D. Cannabidiol inhibits angiogenesis by multiple mechanisms. Br. J. Pharmacol., 2012, 167(6), 1218-1231.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02050.x]] [PMID: 22624859]
[102]
Romano, B.; Borrelli, F.; Pagano, E.; Cascio, M.G.; Pertwee, R.G.; Izzo, A.A. Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol. Phytomedicine, 2014, 21(5), 631-639.
[http://dx.doi.org/10.1016/j.phymed.2013.11.006] [PMID: 24373545]
[103]
Honarmand, M.; Namazi, F.; Mohammadi, A.; Nazifi, S. Can cannabidiol inhibit angiogenesis in colon cancer? Comp. Clin. Pathol., 2019, 28(1), 165-172.
[http://dx.doi.org/10.1007/s00580-018-2810-6]
[104]
Zeng, J.; Tang, Z.H.; Liu, S.; Guo, S.S. Clinicopathological significance of overexpression of interleukin-6 in colorectal cancer. World J. Gastroenterol., 2017, 23(10), 1780-1786.
[http://dx.doi.org/10.3748/wjg.v23.i10.1780] [PMID: 28348483]
[105]
Gong, H.; Cheng, W.; Wang, Y. Tumor necrosis factor-related apoptosis-inducing ligand inhibits the growth and aggressiveness of colon carcinoma via the exogenous apoptosis signaling pathway. Exp. Ther. Med., 2019, 17(1), 41-50.
[PMID: 30651763]
[106]
de Miguel, D.; Lemke, J.; Anel, A.; Walczak, H.; Martinez-Lostao, L. Onto better TRAILs for cancer treatment. Cell Death Differ., 2016, 23(5), 733-747.
[http://dx.doi.org/10.1038/cdd.2015.174] [PMID: 26943322]
[107]
Kim, J.L.; Kim, B.R.; Kim, D.Y.; Jeong, Y.A.; Jeong, S.; Na, Y.J.; Park, S.H.; Yun, H.K.; Jo, M.J.; Kim, B.G.; Kim, H.D.; Kim, D.H.; Oh, S.C.; Lee, S.I.; Lee, D.H. Cannabidiol enhances the therapeutic effects of TRAIL by upregulating DR5 in colorectal cancer. Cancers (Basel), 2019, 11(5), 642.
[http://dx.doi.org/10.3390/cancers11050642] [PMID: 31075907]
[108]
Jeong, S.; Kim, B.G.; Kim, D.Y.; Kim, B.R.; Kim, J.L.; Park, S.H.; Na, Y.J.; Jo, M.J.; Yun, H.K.; Jeong, Y.A.; Kim, H.J.; Lee, S.I.; Kim, H.D.; Kim, D.H.; Oh, S.C.; Lee, D.H. Cannabidiol overcomes oxaliplatin resistance by enhancing NOS3- and SOD2-induced autophagy in human colorectal cancer cells. Cancers (Basel), 2019, 11(6), 781.
[http://dx.doi.org/10.3390/cancers11060781] [PMID: 31195721]
[109]
Wang, J.; Cui, D.; Gu, S.; Chen, X.; Bi, Y.; Xiong, X.; Zhao, Y. Autophagy regulates apoptosis by targeting NOXA for degradation. Biochim. Biophys. Acta Mol. Cell Res., 2018, 1865(8), 1105-1113.
[http://dx.doi.org/10.1016/j.bbamcr.2018.05.007] [PMID: 29758299]
[110]
Banerjee, A.; Banerjee, V.; Czinn, S.; Blanchard, T. Increased reactive oxygen species levels cause ER stress and cytotoxicity in andrographolide treated colon cancer cells. Oncotarget, 2017, 8(16), 26142-26153.
[http://dx.doi.org/10.18632/oncotarget.15393] [PMID: 28412728]
[111]
Bostad, M.; Olsen, C.E.; Peng, Q.; Berg, K.; Høgset, A.; Selbo, P.K. Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin by photochemical internalization - A minimally invasive cancer stem cell-targeting strategy. J. Control. Release, 2015, 206, 37-48.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.008] [PMID: 25758331]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 2
Year: 2021
Published on: 14 April, 2020
Page: [137 - 148]
Pages: 12
DOI: 10.2174/1871520620666200415102321

Article Metrics

PDF: 143
HTML: 1