Recent Developments in Medicinal Chemistry of Allosteric Activators of Human Glucokinase for Type 2 Diabetes Mellitus Therapeutics

Author(s): Ajmer S. Grewal, Viney Lather*, Neha Charaya, Neelam Sharma, Sukhbir Singh, Visvaldas Kairys

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 21 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Glucokinase (GK), a cytoplasmic enzyme catalyzes the metabolism of glucose to glucose- 6-phosphate with the help of ATP and aids in the controlling of blood glucose levels within the normal range in humans. In pancreatic β-cells, it plays a chief role by controlling the glucose-stimulated secretion of insulin and in liver hepatocyte cells, it controls the metabolism of carbohydrates. GK acts as a promising drug target for the pharmacological treatment of patients with type 2 diabetes mellitus (T2DM) as it plays an important role in the control of carbohydrate metabolism.

Methods: Data used for this review was based on the search from several science databases as well as various patent databases. The main data search terms used were allosteric GK activators, diabetes mellitus, type 2 diabetes, glucokinase, glucokinase activators and human glucokinase.

Results: This article discusses an overview of T2DM, the biology of GK, the role of GK in T2DM, recent updates in the development of small molecule GK activators reported in recent literature, mechanism of action of GK activators and their clinical status.

Conclusion: GK activators are the novel class of pharmacological agents that enhance the catalytic activity of GK enzyme and display their antihyperglycemic effects. Broad diversity of chemical entities including benzamide analogues, carboxamides, acrylamides, benzimidazoles, quinazolines, thiazoles, pyrimidines, pyridines, orotic acid amides, amino acid derivatives, amino phosphates and urea derivatives have been synthesized in past two decades as potent allosteric activators of GK. Presently, the pharmaceutical companies and researchers are focusing on the design and development of liver-selective GK activators for preventing the possible adverse effects associated with GK activators for the long-term treatment of T2DM.

Keywords: Allosteric, antidiabetic, diabetes mellitus, GK activators, Glucokinase (GK), type 2 diabetes mellitus.

[1]
Ahmed AM. History of diabetes mellitus. Saudi Med J 2002; 23(4): 373-8.
[PMID: 11953758]
[2]
Bastaki S. Diabetes mellitus and its treatment. Int J Diabetes Metab 2005; 13: 111-34.
[http://dx.doi.org/10.1159/000497580]
[3]
Grewal AS, Beniwal M, Pandita D, Sekhon BS, Lather V. Recent updates on peroxisome proliferator-activated receptor δ agonists for the treatment of metabolic syndrome. Med Chem 2016; 12(1): 03-21.
[http://dx.doi.org/10.2174/1573406411666150525105826]
[4]
Grewal AS, Bhardwaj S, Pandita D, Lather V, Sekhon BS. Updates on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini Rev Med Chem 2016; 16(2): 120-62.
[http://dx.doi.org/10.2174/1389557515666150909143737] [PMID: 26349493]
[5]
Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med 1997; 14(Suppl. 5): S1-S85.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199712)14:5+3.3.CO;2-I] [PMID: 9450510]
[6]
Gabir MM, Hanson RL, Dabelea D. The 1997 American Diabetes Association and 1999 World Health Organization criteria for hyperglycemia in the diagnosis and prediction of diabetes. Diabetes Care 2000; 23(8): 1108-12.
[http://dx.doi.org/10.2337/diacare.23.8.1108] [PMID: 10937506]
[7]
2. Classification and diagnosis of diabetes. Diabetes Care 2017; 40(Suppl. 1): S11-24.
[http://dx.doi.org/10.2337/dc17-S005] [PMID: 27979889]
[8]
DeFronzo RA, Ferrannini E, Zimmet P, Alberti G. International textbook of diabetes mellitus. 4th ed. Chichester: John Wiley & Sons 2015.
[http://dx.doi.org/10.1002/9781118387658]
[9]
Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J 2012; 27(4): 269-73.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[10]
Scheen AJ. Treatment of type 2 diabetes. Acta Clin Belg 2003; 58(5): 318-24.
[http://dx.doi.org/10.1179/acb.2003.58.5.010] [PMID: 14748101]
[11]
Grewal AS, Sekhon BS, Lather V. Recent updates on glucokinase activators for the treatment of type 2 diabetes mellitus. Mini Rev Med Chem 2014; 14(7): 585-602.
[http://dx.doi.org/10.2174/1389557514666140722082713] [PMID: 25052034]
[12]
Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 2011; 94(3): 311-21.
[http://dx.doi.org/10.1016/j.diabres.2011.10.029] [PMID: 22079683]
[13]
Mohan V, Anbalagan VP. Expanding role of the Madras Diabetes Research Foundation - Indian diabetes risk score in clinical practice. Indian J Endocrinol Metab 2013; 17(1): 31-6.
[http://dx.doi.org/10.4103/2230-8210.107825] [PMID: 23776850]
[14]
Mohan V, Mapari JA, Karnad PD, Mann JS, Maheshwari VK. Reduced diabetes mellitus-related comorbidities by regular self-monitoring of blood glucose: economic and quality of life implications. Indian J Endocrinol Metab 2018; 22(4): 461-5.
[http://dx.doi.org/10.4103/ijem.IJEM_216_17] [PMID: 30148089]
[15]
Zhang X, Jiang X, Han S, Liu Q, Zhou J. Type 2 diabetes mellitus is associated with the risk of cognitive impairment: a meta-analysis. J Mol Neurosci 2019; 68(2): 251-60.
[http://dx.doi.org/10.1007/s12031-019-01290-3] [PMID: 30949957]
[16]
King KD, Jones JD, Warthen J. Microvascular and macrovascular complications of diabetes mellitus. Am J Pharm Educ 2005; 69: 1-10.
[http://dx.doi.org/10.5688/aj690587]
[17]
Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther 2008; 88(11): 1322-35.
[http://dx.doi.org/10.2522/ptj.20080008] [PMID: 18801863]
[18]
Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Phys Ther 2008; 88(11): 1254-64.
[http://dx.doi.org/10.2522/ptj.20080020] [PMID: 18801858]
[19]
Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes 2008; 26: 77-82.
[http://dx.doi.org/10.2337/diaclin.26.2.77]
[20]
Hemmingsen B, Gimenez-Perez G, Mauricio D, et al. Diet, physical activity or both for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk of developing type 2 diabetes mellitus. Cochrane Database Syst Rev 2017.12CD003054
[http://dx.doi.org/10.1002/14651858.CD003054.pub4] [PMID: 29205264]
[21]
Choudhary P. Review of dietary recommendations for diabetes mellitus. Diabetes Res Clin Pract 2004; 65(Suppl. 1): S9-S15.
[http://dx.doi.org/10.1016/j.diabres.2004.07.003] [PMID: 15315865]
[22]
Rafiq M, Flanagan SE, Patch AM, Shields BM, Ellard S, Hattersley AT. Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care 2008; 31(2): 204-9.
[http://dx.doi.org/10.2337/dc07-1785] [PMID: 18025408]
[23]
Bailey CJ. Metformin: historical overview. Diabetologia 2017; 60(9): 1566-76.
[http://dx.doi.org/10.1007/s00125-017-4318-z] [PMID: 28776081]
[24]
Tahrani AA, Bailey CJ, Del Prato S, Barnett AH. Management of type 2 diabetes: new and future developments in treatment. Lancet 2011; 378(9786): 182-97.
[http://dx.doi.org/10.1016/S0140-6736(11)60207-9] [PMID: 21705062]
[25]
Pittas AG, Greenberg AS. Thiazolidinediones in the treatment of type 2 diabetes. Expert Opin Pharmacother 2002; 3(5): 529-40.
[http://dx.doi.org/10.1517/14656566.3.5.529] [PMID: 11996632]
[26]
Usman B, Sharma N, Satija S. Recent developments in alpha-glucosidase inhibitors for management of type-2 diabetes: an update. Curr Pharm Des 2019; 25(23): 2510-25. Epub ahead of print
[http://dx.doi.org/10.2174/1381612825666190717104547] [PMID: 31333110]
[27]
Hemmingsen B, Sonne DP, Metzendorf MI, Richter B. Dipeptidylpeptidase (DPP)-4 inhibitors and glucagon-like peptide (GLP)-1 analogues for prevention or delay of type 2 diabetes mellitus and its associated complications in people at increased risk for the development of type 2 diabetes mellitus. Cochrane Database Syst Rev 2017.5CD012204
[http://dx.doi.org/10.1002/14651858.CD012204.pub2] [PMID: 28489279]
[28]
Deacon CF, Mannucci E, Ahrén B. Glycaemic efficacy of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors as add-on therapy to metformin in subjects with type 2 diabetes-a review and meta analysis. Diabetes Obes Metab 2012; 14(8): 762-7.
[http://dx.doi.org/10.1111/j.1463-1326.2012.01603.x] [PMID: 22471248]
[29]
Mane PB, Antre RV, Oswal RJ. Antidiabetic drugs: An overview. Int J Pharm Chem Sci 2012; 1(1): 301-6.
[30]
Tahrani AA, Barnett AH, Bailey CJ. SGLT inhibitors in management of diabetes. Lancet Diabetes Endocrinol 2013; 1(2): 140-51.
[http://dx.doi.org/10.1016/S2213-8587(13)70050-0] [PMID: 24622320]
[31]
Hasan FM, Alsahli M, Gerich JE. SGLT2 inhibitors in the treatment of type 2 diabetes. Diabetes Res Clin Pract 2014; 104(3): 297-322.
[http://dx.doi.org/10.1016/j.diabres.2014.02.014] [PMID: 24735709]
[32]
Ganesan K, Sultan S. Oral hypoglycemic medications Treasure Island. Stat Pearls Publishing 2018.
[33]
Lorenzati B, Zucco C, Miglietta S, Lamberti F, Bruno G. Oral hypoglycemic drugs: pathophysiological basis of their mechanism of action. Pharmaceuticals (Basel) 2010; 3(9): 3005-20.
[http://dx.doi.org/10.3390/ph3093005] [PMID: 27713388]
[34]
Alhadramy MS. Diabetes and oral therapies: a review of oral therapies for diabetes mellitus. J Taibah Univ Med Sci 2016; 11(4): 317-29.
[35]
Wright JJ, Tylee TS. Pharmacologic therapy of type 2 diabetes. Med Clin North Am 2016; 100(4): 647-63.
[http://dx.doi.org/10.1016/j.mcna.2016.03.014] [PMID: 27235609]
[36]
Chaudhury A, Duvoor C, Reddy Dendi VS. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol (Lausanne) 2017; 8: 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[37]
Kapoor N, Thomas N. Oral antidiabetic agents: recently available novel oral antidiabetic agents in India: a clinical review. Curr Med Issues 2017; 15: 169-76.
[http://dx.doi.org/10.4103/cmi.cmi_39_17]
[38]
Kabel AM, Altowirqi R, Thobiti HA, Althumali A, Alharthi E. Pharmacological therapy of type 2 diabetes mellitus: new perspectives. EC Pharmacol Toxicol 2017; 4(1): 12-9.
[39]
Carvalho DS, de Almeida AA, Borges AF, Vannucci Campos D. Treatments for diabetes mellitus type II: New perspectives regarding the possible role of calcium and cAMP interaction. Eur J Pharmacol 2018; 830: 9-16.
[http://dx.doi.org/10.1016/j.ejphar.2018.04.002] [PMID: 29679542]
[40]
Otto-Buczkowska E, Jainta N. Pharmacological treatment in diabetes mellitus type 1 - insulin and what else? Int J Endocrinol Metab 2017; 16(1)e13008
[http://dx.doi.org/10.5812/ijem.13008] [PMID: 29696037]
[41]
Tripathy KD. Essentials of medical pharmacology. 6th ed. New Delhi: Jaypee Brothers Medical Publishers 2008.
[http://dx.doi.org/10.5005/jp/books/10282]
[42]
Inzucchi SE, Bergenstal RM, Buse JB. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2012; 55(6): 1577-96.
[http://dx.doi.org/10.1007/s00125-012-2534-0] [PMID: 22526604]
[43]
Pal M. Recent advances in glucokinase activators for the treatment of type 2 diabetes. Drug Discov Today 2009; 14(15-16): 784-92.
[http://dx.doi.org/10.1016/j.drudis.2009.05.013] [PMID: 19520181]
[44]
Pal M. Medicinal chemistry approaches for glucokinase activation to treat type 2 diabetes. Curr Med Chem 2009; 16(29): 3858-74.
[http://dx.doi.org/10.2174/092986709789177993] [PMID: 19747136]
[45]
Kaushik A, Kaushik M. Recent updates on glucokinase activators and glucokinase regulatory protein disrupters for the treatment of type 2 diabetes mellitus. Curr Diabetes Rev 2019; 15(3): 205-12.
[http://dx.doi.org/10.2174/1573399814666180724100749] [PMID: 30039763]
[46]
Matschinsky FM. Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes 1990; 39(6): 647-52.
[http://dx.doi.org/10.2337/diab.39.6.647] [PMID: 2189759]
[47]
Matschinsky FM, Zelent B, Doliba NM. Research and development of glucokinase activators for diabetes therapy: theoretical and practical aspects. Handbook of experimental pharmacology London:Springer 2011; 203: pp. 357-401.
[http://dx.doi.org/10.1007/978-3-642-17214-4_15]
[48]
Vinuela E, Salas M, Sols A. Glucokinase and hexokinase in liver in relation to glycogen synthesis. J Biol Chem 1963; 238(3): 1175-7.
[PMID: 13997409]
[49]
Sharma C, Manjeshwar R, Weinhouse S. Hormonal and dietary regulation of hepatic glucokinase. Adv Enzyme Regul 1964; 2: 189-200.
[http://dx.doi.org/10.1016/S0065-2571(64)80013-3] [PMID: 5863086]
[50]
Sols A, Salas M, Viñuela E. Induced biosynthesis of liver glucokinase. Adv Enzyme Regul 1964; 2: 177-88.
[http://dx.doi.org/10.1016/S0065-2571(64)80012-1] [PMID: 5863085]
[51]
Matschinsky FM, Ellerman JE. Metabolism of glucose in the islets of Langerhans. J Biol Chem 1968; 243(10): 2730-6.
[PMID: 4870741]
[52]
Iynedjian PB, Gjinovci A, Renold AE. Stimulation by insulin of glucokinase gene transcription in liver of diabetic rats. J Biol Chem 1988; 263(2): 740-4.
[PMID: 3275657]
[53]
Matschinsky FM, Porte D. Glucokinase activators (GKAs) promise a new pharmacotherapy for diabetics. F1000 Med Rep 2010; 2: 43.
[http://dx.doi.org/10.3410/M2-43] [PMID: 20948841]
[54]
Meglasson MD, Matschinsky FM. Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab Rev 1986; 2(3-4): 163-214.
[http://dx.doi.org/10.1002/dmr.5610020301] [PMID: 2943567]
[55]
Matschinsky F, Liang Y, Kesavan P. Glucokinase as pancreatic beta cell glucose sensor and diabetes gene. J Clin Invest 1993; 92(5): 2092-8.
[http://dx.doi.org/10.1172/JCI116809] [PMID: 8227324]
[56]
Matschinsky FM, Magnuson MA, Zelent D. The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy. Diabetes 2006; 55(1): 1-12.
[http://dx.doi.org/10.2337/diabetes.55.01.06.db05-0926] [PMID: 16380470]
[57]
Iynedjian PB. Molecular physiology of mammalian glucokinase. Cell Mol Life Sci 2009; 66(1): 27-42.
[http://dx.doi.org/10.1007/s00018-008-8322-9] [PMID: 18726182]
[58]
Van Schaftingen E, Detheux M, Veiga da Cunha M. Short-term control of glucokinase activity: role of a regulatory protein. FASEB J 1994; 8(6): 414-9.
[http://dx.doi.org/10.1096/fasebj.8.6.8168691] [PMID: 8168691]
[59]
Beck T, Miller BG. Structural basis for regulation of human glucokinase by glucokinase regulatory protein. Biochemistry 2013; 52(36): 6232-9.
[http://dx.doi.org/10.1021/bi400838t] [PMID: 23957911]
[60]
Walker DG, Rao S. The role of glucokinase in the phosphorylation of glucose by rat liver. Biochem J 1964; 90(2): 360-8.
[http://dx.doi.org/10.1042/bj0900360] [PMID: 5834248]
[61]
Matschinsky FM. Regulation of pancreatic beta-cell glucokinase: from basics to therapeutics. Diabetes 2002; 51(Suppl. 3): S394-404.
[http://dx.doi.org/10.2337/diabetes.51.2007.S394] [PMID: 12475782]
[62]
Al-Hasani H, Tschöp MH, Cushman SW. Two birds with one stone: novel glucokinase activator stimulates glucose-induced pancreatic insulin secretion and augments hepatic glucose metabolism. Mol Interv 2003; 3(7): 367-70.
[http://dx.doi.org/10.1124/mi.3.7.367] [PMID: 14993457]
[63]
Matschinsky FM. Assessing the potential of glucokinase activators in diabetes therapy. Nat Rev Drug Discov 2009; 8(5): 399-416.
[http://dx.doi.org/10.1038/nrd2850] [PMID: 19373249]
[64]
Grimsby J, Sarabu R, Corbett WL. Allosteric activators of glucokinase: potential role in diabetes therapy. Science 2003; 301(5631): 370-3.
[http://dx.doi.org/10.1126/science.1084073] [PMID: 12869762]
[65]
Sarabu R, Tilley JW, Grimsby J. The discovery of Piragliatin, a glucokinase activator Accounts in drug discovery: case studies in medicinal chemistry. London: The Royal Society of Chemistry 2010; pp. 51-70.
[http://dx.doi.org/10.1039/9781849731980-00051]
[66]
Sarabu R, Bizzarro FT, Corbett WL. Discovery of piragliatin--first glucokinase activator studied in type 2 diabetic patients. J Med Chem 2012; 55(16): 7021-36.
[http://dx.doi.org/10.1021/jm3008689] [PMID: 22809456]
[67]
Matschinsky FM, Zelent B, Doliba N. Glucokinase activators for diabetes therapy: May 2010 status report. Diabetes Care 2011; 34(S2)(Suppl. 2): S236-43.
[http://dx.doi.org/10.2337/dc11-s236] [PMID: 21525462]
[68]
Sarabu R, Berthel SJ, Kester RF, Tilley JW. Glucokinase activators as new type 2 diabetes therapeutic agents. Expert Opin Ther Pat 2008; 18(7): 759-68.
[http://dx.doi.org/10.1517/13543776.18.7.759]
[69]
Kamata K, Mitsuya M, Nishimura T, Eiki J, Nagata Y. Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure 2004; 12(3): 429-38.
[http://dx.doi.org/10.1016/j.str.2004.02.005] [PMID: 15016359]
[70]
Coghlan M, Leighton B. Glucokinase activators in diabetes management. Expert Opin Investig Drugs 2008; 17(2): 145-67.
[http://dx.doi.org/10.1517/13543784.17.2.145] [PMID: 18230050]
[71]
Perseghin G. Exploring the in vivo mechanisms of action of glucokinase activators in type 2 diabetes. J Clin Endocrinol Metab 2010; 95(11): 4871-3.
[http://dx.doi.org/10.1210/jc.2010-2049] [PMID: 21051584]
[72]
De Ceuninck F, Kargar C, Ilic C. Small molecule glucokinase activators disturb lipid homeostasis and induce fatty liver in rodents: a warning for therapeutic applications in humans. Br J Pharmacol 2013; 168(2): 339-53.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02184.x] [PMID: 22925001]
[73]
Rees MG, Gloyn AL. Small molecular glucokinase activators: has another new anti-diabetic therapeutic lost favour? Br J Pharmacol 2013; 168(2): 335-8.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02201.x] [PMID: 22946641]
[74]
Johnson D, Shepherd RM, Gill D, Gorman T, Smith DM, Dunne MJ. Glucose-dependent modulation of insulin secretion and intracellular calcium ions by GKA50, a glucokinase activator. Diabetes 2007; 56(6): 1694-702.
[http://dx.doi.org/10.2337/db07-0026] [PMID: 17360975]
[75]
Choi JM, Seo MH, Kyeong HH, Kim E, Kim HS. Molecular basis for the role of glucokinase regulatory protein as the allosteric switch for glucokinase. Proc Natl Acad Sci USA 2013; 110(25): 10171-6.
[http://dx.doi.org/10.1073/pnas.1300457110] [PMID: 23733961]
[76]
Efanov AM, Barrett DG, Brenner MB. A novel glucokinase activator modulates pancreatic islet and hepatocyte function. Endocrinology 2005; 146(9): 3696-701.
[http://dx.doi.org/10.1210/en.2005-0377] [PMID: 15919746]
[77]
Heuser S, Barrett DG, Berg M. Synthesis of novel cyclopropylic sulfones and sulfonamides acting as glucokinase activators. Tetrahedron Lett 2006; 47(16): 2675-8.
[http://dx.doi.org/10.1016/j.tetlet.2006.02.110]
[78]
Fyfe MCT, White JR, Taylor A. Glucokinase activator PSN-GK1 displays enhanced antihyperglycaemic and insulinotropic actions. Diabetologia 2007; 50(6): 1277-87.
[http://dx.doi.org/10.1007/s00125-007-0646-8] [PMID: 17415548]
[79]
Bebernitz GR, Beaulieu V, Dale BA. Investigation of functionally liver selective glucokinase activators for the treatment of type 2 diabetes. J Med Chem 2009; 52(19): 6142-52.
[http://dx.doi.org/10.1021/jm900839k] [PMID: 19746978]
[80]
Mitsuya M, Kamata K, Bamba M. Discovery of novel 3,6-disubstituted 2-pyridinecarboxamide derivatives as GK activators. Bioorg Med Chem Lett 2009; 19(10): 2718-21.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.137] [PMID: 19362831]
[81]
Li F, Zhu Q, Zhang Y, Feng Y, Leng Y, Zhang A. Design, synthesis, and pharmacological evaluation of N-(4-mono and 4,5-disubstituted thiazol-2-yl)-2-aryl-3-(tetrahydro-2H-pyran-4-yl)propanamides as glucokinase activators. Bioorg Med Chem 2010; 18(11): 3875-84.
[http://dx.doi.org/10.1016/j.bmc.2010.04.038] [PMID: 20472448]
[82]
Bonadonna RC, Heise T, Arbet-Engels C. Piragliatin (RO4389620), a novel glucokinase activator, lowers plasma glucose both in the postabsorptive state and after a glucose challenge in patients with type 2 diabetes mellitus: a mechanistic study. J Clin Endocrinol Metab 2010; 95(11): 5028-36.
[http://dx.doi.org/10.1210/jc.2010-1041] [PMID: 20739378]
[83]
Lang M, Seifert MH, Wolf KK. Discovery and hit-to-lead optimization of novel allosteric glucokinase activators. Bioorg Med Chem Lett 2011; 21(18): 5417-22.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.128] [PMID: 21813277]
[84]
Mao W, Ning M, Liu Z, Zhu Q, Leng Y, Zhang A. Design, synthesis, and pharmacological evaluation of benzamide derivatives as glucokinase activators. Bioorg Med Chem 2012; 20(9): 2982-91.
[http://dx.doi.org/10.1016/j.bmc.2012.03.008] [PMID: 22459213]
[85]
Ye N, Xu X, Li F. Investigation on the oxidation of aryl oxiranylmethanols and the synthesis of 2-aryl-N-thiazolyl-oxirane-2-carboxamides as glucokinase activators. Tetrahedron Lett 2012; 53(35): 4738-42.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.111]
[86]
Baltrusch S, Schmitt H, Brix A, Langer S, Lenzen S. Additive activation of glucokinase by the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and the chemical activator LY2121260. Biochem Pharmacol 2012; 83(9): 1300-6.
[http://dx.doi.org/10.1016/j.bcp.2012.01.020] [PMID: 22305745]
[87]
Pfefferkorn JA, Guzman-Perez A, Litchfield J. Discovery of (S)-6-(3-cyclopentyl-2-(4-(trifluoromethyl)-1H-imidazol-1-yl)propanamido)nicotinic acid as a hepatoselective glucokinase activator clinical candidate for treating type 2 diabetes mellitus. J Med Chem 2012; 55(3): 1318-33.
[http://dx.doi.org/10.1021/jm2014887] [PMID: 22196621]
[88]
Dunetz J, Berliner M, Xiang Y. Multikilogram synthesis of a hepatoselective glucokinase activator. Org Process Res Dev 2012; 16(10): 1635-45.
[http://dx.doi.org/10.1021/op300194c]
[89]
Qian Y, Corbett WL, Berthel SJ. Identification of RO4597014, a glucokinase activator studied in the clinic for the treatment of type 2 diabetes. ACS Med Chem Lett 2013; 4(4): 414-8.
[http://dx.doi.org/10.1021/ml400027y] [PMID: 24900686]
[90]
Erion DM, Lapworth A, Amor PA. The hepatoselective glucokinase activator PF-04991532 ameliorates hyperglycemia without causing hepatic steatosis in diabetic rats. PLoS One 2014; 9(5)e97139
[http://dx.doi.org/10.1371/journal.pone.0097139] [PMID: 24858947]
[91]
Behera PM, Behera DK, Satpati S. Molecular modeling and identification of novel glucokinase activators through stepwise virtual screening. J Mol Graph Model 2015; 57: 122-30.
[http://dx.doi.org/10.1016/j.jmgm.2015.01.012] [PMID: 25723349]
[92]
Sharma R, Litchfield J, Bergman A. Comparison of the circulating metabolite profile of PF-04991532, a hepatoselective glucokinase activator, across preclinical species and humans: potential implications in metabolites in safety testing assessment. Drug Metab Dispos 2015; 43(2): 190-8.
[http://dx.doi.org/10.1124/dmd.114.061218] [PMID: 25384899]
[93]
de Assis TM, Gajo GC, de Assis LC. QSAR models guided by molecular dynamics applied to human glucokinase activators. Chem Biol Drug Des 2016; 87(3): 455-66.
[http://dx.doi.org/10.1111/cbdd.12683] [PMID: 26547388]
[94]
Deshpande AM, Bhuniya D, De S. Discovery of liver-directed glucokinase activator having anti-hyperglycemic effect without hypoglycemia. Eur J Med Chem 2017; 133: 268-86.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.042] [PMID: 28390958]
[95]
Xu J, Lin S, Myers RW. Discovery of orally active hepatoselective glucokinase activators for treatment of Type II Diabetes Mellitus. Bioorg Med Chem Lett 2017; 27(9): 2063-8.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.088] [PMID: 28284809]
[96]
Cheruvallath ZS, Gwaltney SL II, Sabat M. Discovery of potent and orally active 1,4-disubstituted indazoles as novel allosteric glucokinase activators. Bioorg Med Chem Lett 2017; 27(12): 2678-82.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.041] [PMID: 28512030]
[97]
Patidar D, Narayan S, Malviya R, Yaduwanshi PS. Study and design of benzamide and pyridinecarboxamide derivatives as a glucokinase activator. World J Pharm Res 2018; 7(7): 980-91.
[98]
Zhu XX, Zhu DL, Li XY. Dorzagliatin (HMS5552), a novel dual-acting glucokinase activator, improves glycaemic control and pancreatic β-cell function in patients with type 2 diabetes: A 28-day treatment study using biomarker-guided patient selection. Diabetes Obes Metab 2018; 20(9): 2113-20.
[http://dx.doi.org/10.1111/dom.13338] [PMID: 29707866]
[99]
McKerrecher D, Allen JV, Bowker SS. Discovery, synthesis and biological evaluation of novel glucokinase activators. Bioorg Med Chem Lett 2005; 15(8): 2103-6.
[http://dx.doi.org/10.1016/j.bmcl.2005.01.087] [PMID: 15808477]
[100]
McKerrecher D, Allen JV, Caulkett PWR. Design of a potent, soluble glucokinase activator with excellent in vivo efficacy. Bioorg Med Chem Lett 2006; 16(10): 2705-9.
[http://dx.doi.org/10.1016/j.bmcl.2006.02.022] [PMID: 16503142]
[101]
Iino T, Tsukahara D, Kamata K. Discovery of potent and orally active 3-alkoxy-5-phenoxy-N-thiazolyl benzamides as novel allosteric glucokinase activators. Bioorg Med Chem 2009; 17(7): 2733-43.
[http://dx.doi.org/10.1016/j.bmc.2009.02.038] [PMID: 19282189]
[102]
Iino T, Hashimoto N, Sasaki K. Structure-activity relationships of 3,5-disubstituted benzamides as glucokinase activators with potent in vivo efficacy. Bioorg Med Chem 2009; 17(11): 3800-9.
[http://dx.doi.org/10.1016/j.bmc.2009.04.040] [PMID: 19427223]
[103]
Nishimura T, Iino T, Mitsuya M. Identification of novel and potent 2-amino benzamide derivatives as allosteric glucokinase activators. Bioorg Med Chem Lett 2009; 19(5): 1357-60.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.053] [PMID: 19188063]
[104]
Zhang L, Li H, Zhu Q. Benzamide derivatives as dual-action hypoglycemic agents that inhibit glycogen phosphorylase and activate glucokinase. Bioorg Med Chem 2009; 17(20): 7301-12.
[http://dx.doi.org/10.1016/j.bmc.2009.08.045] [PMID: 19758809]
[105]
Iino T, Hashimoto N, Hasegawa T, Chiba M, Eiki J, Nishimura T. Metabolic activation of N-thiazol-2-yl benzamide as glucokinase activators: Impacts of glutathione trapping on covalent binding. Bioorg Med Chem Lett 2010; 20(5): 1619-22.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.041] [PMID: 20138764]
[106]
Pike KG, Allen JV, Caulkett PWR. Design of a potent, soluble glucokinase activator with increased pharmacokinetic half-life. Bioorg Med Chem Lett 2011; 21(11): 3467-70.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.093] [PMID: 21515051]
[107]
Li Y, Zhang YL, Hu SQ. Design, synthesis and biological evaluation of novel glucokinase activators. Chin Chem Lett 2011; 22(1): 73-6.
[http://dx.doi.org/10.1016/j.cclet.2010.07.023]
[108]
Eiki J, Nagata Y, Futamura M. Pharmacokinetic and pharmacodynamic properties of the glucokinase activator MK-0941 in rodent models of type 2 diabetes and healthy dogs. Mol Pharmacol 2011; 80(6): 1156-65.
[http://dx.doi.org/10.1124/mol.111.074401] [PMID: 21937665]
[109]
Meininger GE, Scott R, Alba M. Effects of MK-0941, a novel glucokinase activator, on glycemic control in insulin-treated patients with type 2 diabetes. Diabetes Care 2011; 34(12): 2560-6.
[http://dx.doi.org/10.2337/dc11-1200] [PMID: 21994424]
[110]
Zhang L, Chen X, Liu J. Discovery of novel dual-action antidiabetic agents that inhibit glycogen phosphorylase and activate glucokinase. Eur J Med Chem 2012; 58: 624-39.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.020] [PMID: 23178962]
[111]
Jain N, Pathak A, Mundada A. 3D QSAR study of novel potent benzamide derivatives as glucokinase activator for antidiabetic activity. J Pharm Res 2012; 5(8): 4045-57.
[112]
Ericsson H, Sjöberg F, Heijer M. The glucokinase activator AZD6370 decreases fasting and postprandial glucose in type 2 diabetes mellitus patients with effects influenced by dosing regimen and food. Diabetes Res Clin Pract 2012; 98(3): 436-44.
[http://dx.doi.org/10.1016/j.diabres.2012.09.025] [PMID: 23010558]
[113]
Park K. Identification of YH-GKA, a novel benzamide glucokinase activator as therapeutic candidate for type 2 diabetes mellitus. Arch Pharm Res 2012; 35(12): 2029-33.
[http://dx.doi.org/10.1007/s12272-012-1201-9] [PMID: 23263798]
[114]
Bowler JM, Hervert KL, Kearley ML, Miller BG. Small-molecule allosteric activation of human glucokinase in the absence of glucose. ACS Med Chem Lett 2013; 4(7): 580-4.
[http://dx.doi.org/10.1021/ml400061x] [PMID: 24294411]
[115]
Jain N, Mundada A, Pathak A. QSAR studies of novel potent benzamide derivatives as glucokinase activators. Med Chem Res 2012; 22(9): 4331-7.
[http://dx.doi.org/10.1007/s00044-012-0435-x]
[116]
Sjöstrand M, Ericsson H, Hartford M, Norjavaara E, Eriksson JW. Pharmacodynamic effects of the oral glucokinase activator AZD6370 after single doses in healthy volunteers assessed with euglycaemic clamp. Diabetes Obes Metab 2013; 15(1): 35-41.
[http://dx.doi.org/10.1111/j.1463-1326.2012.01672.x] [PMID: 22958202]
[117]
Park K, Lee BM, Kim YH. Discovery of a novel phenylethyl benzamide glucokinase activator for the treatment of type 2 diabetes mellitus. Bioorg Med Chem Lett 2013; 23(2): 537-42.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.018] [PMID: 23218712]
[118]
Lu J, Lei L, Huan Y. Design, synthesis, and activity evaluation of GK/PPARγ dual-target-directed ligands as hypoglycemic agents. ChemMedChem 2014; 9(5): 922-7.
[http://dx.doi.org/10.1002/cmdc.201400009] [PMID: 24737574]
[119]
Park K, Lee BM, Hyun KH. Discovery of 3-(4-methanesulfonylphenoxy)-N-[1-(2-methoxy-ethoxymethyl)-1H-pyrazol-3-yl]-5-(3-methylpyridin-2-yl)-benzamide as a novel glucokinase activator (GKA) for the treatment of type 2 diabetes mellitus. Bioorg Med Chem 2014; 22(7): 2280-93.
[http://dx.doi.org/10.1016/j.bmc.2014.02.009] [PMID: 24588963]
[120]
Park K, Lee BM, Hyun KH, Han T, Lee DH, Choi HH. Design and synthesis of acetylenyl benzamide derivatives as novel glucokinase activators for the treatment of T2DM. ACS Med Chem Lett 2015; 6(3): 296-301.
[http://dx.doi.org/10.1021/ml5004712] [PMID: 25815149]
[121]
Lei L, Liu Q, Liu S. Antidiabetic potential of a novel dual-target activator of glucokinase and peroxisome proliferator activated receptor-γ. Metabolism 2015; 64(10): 1250-61.
[http://dx.doi.org/10.1016/j.metabol.2015.06.014] [PMID: 26189598]
[122]
Wang Z, Shi X, Zhang H. Discovery of cycloalkyl-fused N-thiazol-2-yl-benzamides as tissue non-specific glucokinase activators: Design, synthesis, and biological evaluation. Eur J Med Chem 2017; 139: 128-52.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.051] [PMID: 28800453]
[123]
Singh R, Lather V, Pandita D, Judge V, Arumugam KN, Grewal AS. Synthesis, docking and antidiabetic activity of some newer benzamide derivatives as potential glucokinase activators. Lett Drug Des Discov 2017; 14(5): 540-53.
[http://dx.doi.org/10.2174/1570180813666160819125342]
[124]
Charaya N, Pandita D, Grewal AS, Lather V. Design, synthesis and biological evaluation of novel thiazol-2-yl benzamide derivatives as glucokinase activators. Comput Biol Chem 2018; 73: 221-9.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.02.018] [PMID: 29518630]
[125]
Lei L, Liu S, Li Y. The potential role of glucokinase activator SHP289-04 in anti-diabetes and hepatic protection. Eur J Pharmacol 2018; 826: 17-23.
[http://dx.doi.org/10.1016/j.ejphar.2018.02.036] [PMID: 29477658]
[126]
McKerrecher D, Steven A. Design and development of the glucokinase activator AZD1656Complete accounts of integrated drug discovery and development: recent examples from the pharmaceutical industry. Washington: American Chemical Society 2018; Vol. 1: pp. 185-220.
[http://dx.doi.org/10.1021/bk-2018-1307.ch007]
[127]
Grewal AS, Kharb R, Dua JS, Lather V. Molecular docking assessment of N-heteroaryl substituted benzamide derivatives as glucokinase activators. Asian J Pharm Pharmacol 2019; 5(1): 129-36.
[http://dx.doi.org/10.31024/ajpp.2019.5.1.18]
[128]
Grewal AS, Sharma K, Singh S, Singh V, Pandita D, Lather V. Design, synthesis and antidiabetic activity of novel sulfamoyl benzamide derivatives as glucokinase activators. J Pharm Technol Res Manag 2018; 6(2): 113-22.
[129]
Grewal AS, Kharb R, Prasad DN, Dua JS, Lather V. N-pyridin-2-yl benzamide analogues as allosteric activators of glucokinase: Design, synthesis, in vitro, in silico and in vivo evaluation. Chem Biol Drug Des 2019; 93(3): 364-72.
[http://dx.doi.org/10.1111/cbdd.13423] [PMID: 30369030]
[130]
Grewal AS, Kharb R, Prasad DN, Dua JS, Lather V. Design, synthesis and evaluation of novel 3,5-disubstituted benzamide derivatives as allosteric glucokinase activators. BMC Chem 2019; 13(1): 2.
[http://dx.doi.org/10.1186/s13065-019-0532-8] [PMID: 31384754]
[131]
Castelhano AL, Dong H, Fyfe MC. Glucokinase-activating ureas. Bioorg Med Chem Lett 2005; 15(5): 1501-4.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.083] [PMID: 15713416]
[132]
Zhang L, Tian K, Li Y. Novel phenyl-urea derivatives as dual-target ligands that can activate both GK and PPARγ. Acta Pharm Sin B 2012; 2(6): 588-97.
[http://dx.doi.org/10.1016/j.apsb.2012.10.002]
[133]
Du X, Hinklin RJ, Xiong Y. C5-alkyl-2-methylurea-substituted pyridines as a new class of glucokinase activators. ACS Med Chem Lett 2014; 5(12): 1284-9.
[http://dx.doi.org/10.1021/ml500341w] [PMID: 25516785]
[134]
Li Y, Tian K, Qin A. Discovery of novel urea derivatives as dual-target hypoglycemic agents that activate glucokinase and PPARγ. Eur J Med Chem 2014; 76: 182-92.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.024] [PMID: 24583379]
[135]
Hinklin RJ, Aicher TD, Anderson DA. Discovery of 2-pyridylureas as glucokinase activators. J Med Chem 2014; 57(19): 8180-6.
[http://dx.doi.org/10.1021/jm501204z] [PMID: 25203462]
[136]
Dransfield PJ, Pattaropong V, Lai S. Novel series of potent glucokinase activators leading to the discovery of AM-2394. ACS Med Chem Lett 2016; 7(7): 714-8.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00140] [PMID: 27437083]
[137]
Semenov AV, Tarasova IV, Khramov VS, Semenova EV, Inchina VI, Vakaeva SS. Glucokinase activators based on N-aryl-N′-pyridin-2-ylurea derivatives. Pharm Chem J 2018; 52(3): 209-12.
[http://dx.doi.org/10.1007/s11094-018-1792-7]
[138]
Vella A, Freeman JLR, Dunn I, Keller K, Buse JB, Valcarce C. Targeting hepatic glucokinase to treat diabetes with TTP399, a hepatoselective glucokinase activator. Sci Transl Med 2019; 11(475)eaau3441
[http://dx.doi.org/10.1126/scitranslmed.aau3441] [PMID: 30651321]
[139]
Egan A, Vella A. TTP399: an investigational liver-selective glucokinase (GK) activator as a potential treatment for type 2 diabetes. Expert Opin Investig Drugs 2019; 28(9): 741-7.
[http://dx.doi.org/10.1080/13543784.2019.1654993] [PMID: 31398075]
[140]
Pfefferkorn JA, Lou J, Minich ML. Pyridones as glucokinase activators: identification of a unique metabolic liability of the 4-sulfonyl-2-pyridone heterocycle. Bioorg Med Chem Lett 2009; 19(12): 3247-52.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.107] [PMID: 19435665]
[141]
Litchfield J, Sharma R, Atkinson K. Intrinsic electrophilicity of the 4-methylsulfonyl-2-pyridone scaffold in glucokinase activators: role of glutathione-S-transferases and in vivo quantitation of a glutathione conjugate in rats. Bioorg Med Chem Lett 2010; 20(21): 6262-7.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.095] [PMID: 20829042]
[142]
Cheruvallath ZS, Gwaltney SL II, Sabat M. Design, synthesis and SAR of novel glucokinase activators. Bioorg Med Chem Lett 2013; 23(7): 2166-71.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.093] [PMID: 23434031]
[143]
Takahashi K, Hashimoto N, Nakama C. The design and optimization of a series of 2-(pyridin-2-yl)-1H-benzimidazole compounds as allosteric glucokinase activators. Bioorg Med Chem 2009; 17(19): 7042-51.
[http://dx.doi.org/10.1016/j.bmc.2009.05.037] [PMID: 19736020]
[144]
Ishikawa M, Nonoshita K, Ogino Y. Discovery of novel 2-(pyridine-2-yl)-1H-benzimidazole derivatives as potent glucokinase activators. Bioorg Med Chem Lett 2009; 19(15): 4450-4.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.038] [PMID: 19540111]
[145]
Song H, Tian K, Lei L. Novel N-(pyrimidin-4-yl)thiazol-2-amine derivatives as dual-action hypoglycemic agents that activate GK and PPARγ. Acta Pharm Sin B 2011; 1(3): 166-71.
[http://dx.doi.org/10.1016/j.apsb.2011.07.002]
[146]
Hinklin RJ, Boyd SA, Chicarelli MJ. Identification of a new class of glucokinase activators through structure-based design. J Med Chem 2013; 56(19): 7669-78.
[http://dx.doi.org/10.1021/jm401116k] [PMID: 24015910]
[147]
Iino T, Sasaki Y, Bamba M. Discovery and structure-activity relationships of a novel class of quinazoline glucokinase activators. Bioorg Med Chem Lett 2009; 19(19): 5531-8.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.064] [PMID: 19726182]
[148]
Sidduri A, Grimsby JS, Corbett WL. 2,3-Disubstituted acrylamides as potent glucokinase activators. Bioorg Med Chem Lett 2010; 20(19): 5673-6.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.029] [PMID: 20805029]
[149]
Pfefferkorn JA, Tu M, Filipski KJ. The design and synthesis of indazole and pyrazolopyridine based glucokinase activators for the treatment of type 2 diabetes mellitus. Bioorg Med Chem Lett 2012; 22(23): 7100-5.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.082] [PMID: 23089526]
[150]
Bonn P, Brink DM, Fägerhag J. The discovery of a novel series of glucokinase activators based on a pyrazolopyrimidine scaffold. Bioorg Med Chem Lett 2012; 22(24): 7302-5.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.090] [PMID: 23149230]
[151]
Filipski KJ, Guzman-Perez A, Bian J. Pyrimidone-based series of glucokinase activators with alternative donor-acceptor motif. Bioorg Med Chem Lett 2013; 23(16): 4571-8.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.036] [PMID: 23831135]
[152]
Lu M, Li P, Bandyopadhyay G. Characterization of a novel glucokinase activator in rat and mouse models. PLoS One 2014; 9(2)e88431
[http://dx.doi.org/10.1371/journal.pone.0088431] [PMID: 24533087]
[153]
Taha MO, Habash M, Hatmal MM, Abdelazeem AH, Qandil A. Ligand-based modeling followed by in vitro bioassay yielded new potent glucokinase activators. J Mol Graph Model 2015; 56: 91-102.
[http://dx.doi.org/10.1016/j.jmgm.2014.12.003] [PMID: 25574766]
[154]
Paczal A, Bálint B, Wéber C. Structure-activity relationship of azaindole-based glucokinase activators. J Med Chem 2016; 59(2): 687-706.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01594] [PMID: 26685731]
[155]
Xu J, Lin S, Myers RW. Novel, highly potent systemic glucokinase activators for the treatment of Type 2 Diabetes Mellitus. Bioorg Med Chem Lett 2017; 27(9): 2069-73.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.085] [PMID: 28284804]
[156]
Zhang L, Hu S, Lei L. Design, synthesis and evaluation of novel derivatives of orotic acid amide as potent glucokinase activators. Lett Drug Des Discov 2017; 14: 252-61.
[http://dx.doi.org/10.2174/1570180813666161013150056]
[157]
Wang P, Liu H, Chen L, Duan Y, Chen Q, Xi S. Effects of a novel glucokinase activator, HMS5552, on glucose metabolism in a rat model of type 2 diabetes mellitus. J Diabetes Res 2017; 20175812607
[http://dx.doi.org/10.1155/2017/5812607] [PMID: 28191470]
[158]
Yellapu NK, Kilaru RB, Chamarthi N, Pvgk S, Matcha B. Structure based design, synthesis and biological evaluation of amino phosphonate derivatives as human glucokinase activators. Comput Biol Chem 2017; 68: 118-30.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.02.011] [PMID: 28327441]
[159]
Dzyurkevich MS, Babkov DA, Shtyrlin NV. Pyridoxine dipharmacophore derivatives as potent glucokinase activators for the treatment of type 2 diabetes mellitus. Sci Rep 2017; 7(1): 16072.
[http://dx.doi.org/10.1038/s41598-017-16405-2] [PMID: 29167582]
[160]
Bano S, Khan AU, Asghar F, Usman M, Badshah A, Ali S. Computational and pharmacological evaluation of ferrocene-based acyl ureas and homoleptic cadmium carboxylate derivatives for anti-diabetic potential. Front Pharmacol 2018; 8: 1001.
[http://dx.doi.org/10.3389/fphar.2017.01001] [PMID: 29387011]
[161]
Fujieda H, Kogami M, Sakairi M. Discovery of a potent glucokinase activator with a favorable liver and pancreas distribution pattern for the treatment of type 2 diabetes mellitus. Eur J Med Chem 2018; 156: 269-94.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.060] [PMID: 30006171]
[162]
Hikino H, Ishiyama M, Suzuki Y, Konno C. Mechanisms of hypoglycemic activity of ganoderan B: a glycan of Ganoderma lucidum fruit bodies. Planta Med 1989; 55(5): 423-8.
[http://dx.doi.org/10.1055/s-2006-962057] [PMID: 2682700]
[163]
Qian-Cutrone J, Ueki T, Huang S. Glucolipsin A and B, two new glucokinase activators produced by Streptomyces purpurogeniscleroticus and Nocardia vaccinii. J Antibiot (Tokyo) 1999; 52(3): 245-55.
[http://dx.doi.org/10.7164/antibiotics.52.245] [PMID: 10348039]
[164]
Kang YJ, Jung UJ, Lee MK. Eupatilin, isolated from Artemisia princeps Pampanini, enhances hepatic glucose metabolism and pancreatic beta-cell function in type 2 diabetic mice. Diabetes Res Clin Pract 2008; 82(1): 25-32.
[http://dx.doi.org/10.1016/j.diabres.2008.06.012] [PMID: 18703253]
[165]
Singh AB, Singh N, Akanksha , Jayendra , Maurya R, Srivastava AK. Coagulanolide modulates hepatic glucose metabolism in C57BL/KsJ-db/db mice. Hum Exp Toxicol 2012; 31(10): 1056-65.
[http://dx.doi.org/10.1177/0960327112438289] [PMID: 23060434]
[166]
Mahmoodi M, Zarei S, Rezaeian M. Persian shallot (Allium hirtifolium Boiss) extract elevates glucokinase (GCK) activity and gene expression in diabetic rats. Am J Plant Sci 2013; 4(7): 1393-9.
[http://dx.doi.org/10.4236/ajps.2013.47170]
[167]
Angadi KK, Gundampati RK, Jagannadham MV, Kandru A. Molecular docking studies of guggultetrol from Nymphaea pubescens with target glucokinase (GK) related to type-II diabetes. J Appl Pharm Sci 2013; 3(2): 127-31.
[168]
Angadi KK, Gundampati RK, Jagannadhamb MV, Kandru A. In-vitro biological studies of crude extracts and isolation of novel compound from Nymphaea pubescens leaf. J Free Rad Antioxid Photon 2013; 139: 122-9.
[169]
Min Q, Cai X, Sun W. Identification of mangiferin as a potential Glucokinase activator by structure-based virtual ligand screening. Sci Rep 2017; 7: 44681.
[http://dx.doi.org/10.1038/srep44681] [PMID: 28317897]
[170]
Jeyabaskar S, Viswanathan T, Mahendran R, Nishandhini M. In silico molecular docking studies to investigate interactions of natural camptothecin molecule with diabetic enzymes. Res J Phar Technol 2017; 10(9): 2917-22.
[http://dx.doi.org/10.5958/0974-360X.2017.00515.7]
[171]
Grewal AS, Sharma N, Singh S, Arora S. Molecular docking studies of phenolic compounds from Syzygium cumini with multiple targets of type 2 diabetes. J Pharm Technol Res Manag 2018; 6(2): 125-33.
[172]
Ighodaro OM, Akinloye OA, Ugbaja RN, Omotainse SO. Sapium ellipticum (Hochst) Pax ethanol leaf extract modulates glucokinase and glucose-6-phosphatase activities in streptozotocin induced diabetic rats. Asian Pac J Trop Biomed 2017; 7(6): 544-8.
[http://dx.doi.org/10.1016/j.apjtb.2017.05.009]
[173]
Grimsby J, Berthel SJ, Sarabu R. Glucokinase activators for the potential treatment of type 2 diabetes. Curr Top Med Chem 2008; 8(17): 1524-32.
[http://dx.doi.org/10.2174/156802608786413483] [PMID: 19075763]
[174]
Harrison C. Patent watch. Drug metabolite claims are patentable. Nat Rev Drug Discov 2009; 8(11): 838-9.
[http://dx.doi.org/10.1038/nrd3046] [PMID: 19876036]
[175]
Sarabu R, Berthel SJ, Kester RF, Tilley JW. Novel glucokinase activators: a patent review (2008 - 2010). Expert Opin Ther Pat 2011; 21(1): 13-33.
[http://dx.doi.org/10.1517/13543776.2011.542413] [PMID: 21155690]
[176]
Filipski KJ, Futatsugi K, Pfefferkorn JA, Stevens BD. Glucokinase activators. Pharm Pat Anal 2012; 1(3): 301-11.
[http://dx.doi.org/10.4155/ppa.12.26] [PMID: 24236843]
[177]
Pfefferkorn JA. Strategies for the design of hepatoselective glucokinase activators to treat type 2 diabetes. Expert Opin Drug Discov 2013; 8(3): 319-30.
[http://dx.doi.org/10.1517/17460441.2013.748744] [PMID: 23289965]
[178]
Bizzarro FT, Corbett WL, Focella A. inventor; Hoffmann-La Roche, assignee. Glucokinase activators World Intellectual Property Organization WO 2000058293. 2000.
[179]
Caulkett P, Johnstone C, Mckerrecher D, Pike KG. inventor; AstraZeneca, assignee. Pyridine carboxylic acid derivatives as glucokinase modulators World Intellectual Property Organization WO 2005044801. 2005.
[180]
Johnstone C, Mckerrecher D, Pike KG. inventor; AstraZeneca, assignee. Benzoyl amino pyridyl carboxylic acid derivatives useful as glucokinase (GLK) activators World Intellectual Property Organization WO 2005054200. 2005.
[181]
Caulkett P, Johnstone C, Mckerrecher D, Pike KG. inventor; AstraZeneca, assignee. Benzoyl amino pyridyl carboxylic acid derivatives useful as glucokinase (GLK) activators World Intellectual Property Organization WO 2005056530. 2005.
[182]
Johnstone C, Mckerrecher D, Pike KG. inventor; AstraZeneca, assignee. Benzamide derivatives and their use as glucokinae activating agents World Intellectual Property Organization WO 2005080359. 2005.
[183]
Johnstone C, Mckerrecher D, Pike KG, Waring MJ. inventor; AstraZeneca, assignee. Benzamide derivatives that act upon the glucokinase enzyme World Intellectual Property Organization WO 2006040529. 2006.
[184]
Johnstone C, James R, Mckerrecher D. Inventor; AstraZeneca, assignee. Compound effecting glucokinase European Patent EP 1661563. 2006.
[185]
Johnstone C, Mckerrecher D, Pike KG. inventor; AstraZeneca, assignee. Benzoyl amino pyridyl carboxylic acid derivatives as glucokinase activators European Patent EP 1689741. 2006 Aug;
[186]
Mckerrecher D, Pike KG, Waring M. inventor; AstraZeneca, assignee. Heteroaryl benzamide derivatives for use as GLK activators in the treatment of diabetes World Intellectual Property Organization WO 2006125972. 2006 Nov;
[187]
Mckerrecher D, Pike KG, Waring M. inventor; AstraZeneca, assignee. 2-Heterocyclyloxybenzoyl amino heterocyclyl compounds as modulators of glucokinase for the treatment of type 2 diabetes World Intellectual Property Organization 2007007040. 2007 Jan;
[188]
Mckerrecher D, Pike KG, Waring MJ. inventor; AstraZeneca, assignee. Heteroarylcarbamoyl-benzene derivatives for the treatment of diabetes World Intellectual Property Organization WO 2007017649. 2007.
[189]
Murray A, Lau J, Jeppesen L, Vedso P. inventor; TransTech Pharma, assignee. Benzamide glucokinase activators World Intellectual Property Organization WO 2007125103. 2007.
[190]
Martin NG, Mckerrecher D, Pike KG, Waring MJ. inventor; Astra- Zeneca, assignee. Benzoyl amino heterocyclyl compounds as glucokinase (GLK) activators World Intellectual Property Organization WO 2008050117. 2008.
[191]
Chen S, Cheng P, Smirk R. inventor; Bristol-Myers Squibb, assignee. 1,3-Dihydroxy substituted phenylamide glucokinase activators World Intellectual Property Organization WO 2008154563. 2008.
[192]
Tian F, Dang Q, Prasad GS. inventor; Metabasis Therapeutics, assignee. Novel activators of glucokinase World Intellectual Property Organization WO 2009023718. 2009.
[193]
Burgdorf L, Carniato D, Emde U, Beier N, De Gleitz J, De Charon C. inventor; Merck Patent GmbH, assignee. N-(Pyrazole-3-yl)- benzamide derivatives as glucokinase activators World Intellectual Property Organization WO 2009046802. 2009.
[194]
Murray A, Lau J, Jeppesen L. inventor; TransTech, assignee. Benzamide glucokinase activators United States patent US 20100331379. 2010.
[195]
Kharul R. inventor; Cadila Healthcare, assignee. Disubstituted benzamide derivatives as glucokinase (GK) activators World Intellectual Property Organization WO 2010150280. 2010.
[196]
Yi W, Han T, Lee K. inventor; Yuhan Corporation, assignee. Novel glucokinase activators and processes for the preparation thereof World Intellectual Property Organization WO 2011081280. 2011.
[197]
Deshpande A, Kandalkar S, Naik K, Dave B, Bhuniya D, Palle V. inventor; Advinus Therapeutics, assignee. Benzamide compounds as glucokinase activators and their pharmaceutical application World Intellectual Property Organization WO 2011095997. 2011.
[198]
Park KJ, Lee BM, Lee DH, Choi HH, Hyun KH, Lee CH. inventor; Yuhan Corporation, assignee. Novel phenylethynyl benzamide glucokinase activator and method for preparing same World Intellectual Property Organization WO 2014112798. 2014.
[199]
Park KJ, Lee BM, Lee DH, Choi HH, Hyun KH, Lee CH. inventor; Yuhan Corporation, assignee. Phenoxybenzamide glucokinase activator containing novel heteroaryl and method for preparing same World Intellectual Property Organization WO 2014112799. 2014.
[200]
Duan W, Shen X, Chen J. inventor; Chinese Academy of Sciences, assignee. N-Substituted-3,5-disubstituted benzamide compound and preparation method and application thereof World Intellectual Property Organization WO 2016112863. 2016.
[201]
Cheng P, Meng W, Liu M, Wang B, Zhao R. inventor; Bristol- Myers Squibb, assignee. Glucokinase activators and methods of using same World Intellectual Property Organization WO 2018017910. 2018.
[202]
Cheng P, Meng W, Liu M, Wang B, Zhao R. inventor; Bristol- Myers Squibb Company, assignee. Glucokinase activators and methods of using same United States patent US 20190233449. 2019.
[203]
Mahaney PE. Alkynyl Phenyl Heteroaromatic Glucokinase Activators. World Intellectual Property Organization WO 2001083465. 2001.
[204]
Bizzaro FT, Corbett WL, Grippo JF. inventor; Hoffmann-La Roche, assignee. Heteroaromatic glucokinase activators United States patent US 20010039344. 2001.
[205]
Bizzarro FT, Haynes NE, Sarabu R. inventor; Hoffmann-La Roche, assignee. Para-amine substituted phenylamide glucokinase activators World Intellectual Property Organization WO 2001085707. 2001.
[206]
Corbett WE, Haynes NE, Sarabu R. inventor; Hoffmann-La Roche, assignee. Substituted phenylacetamides and their use as glucokinase activators World Intellectual Property Organization WO 2001085706. 2001.
[207]
Kester RF, Sarabu R. inventor; Hoffmann-La Roche, assignee. Alpha-acyl and alpha-heteroatom-substituted benzene acetamide glucokinase activators World Intellectual Property Organization WO 2002008209. 2002.
[208]
Corbett WL, Grimsby JS, Haynes NE. inventor; Hoffmann-La Roche, assignee. Substituted phenylacetamides and their use as glucokinase activators World Intellectual Property Organization WO 2003095438. 2003.
[209]
Polisetti D, Kodra J, Lau J. inventor; Novo Nordisk, assignee. Aryl carbonyl derivatives as therapeutic agents World Intellectual Property Organization WO 2004002481. 2004.
[210]
Corbett WL. inventor; Hoffmann-La Roche, assignee. Indole-3- carboxamides as glucokinase activators United States patent US 20040067939. 2004.
[211]
Weichert AG, Barrett DG, Heuser S, Riedl R, Tebbe MJ, Zaliani A. inventor; Eli Lilly and Company, assignee. Substituted arylcyclopropylacetamides as glucokinase activators World Intellectual Property Organization WO 2004063179. 2004.
[212]
Lau JF, Vedsoe P, Kodra JT. inventor; Novo Nordisk, assignee. N-Heteroaryl indole carboxamides and analogues thereof, for use as glucokinase activators in the treatment of diabetes World Intellectual Property Organization WO 2005049019. 2005.
[213]
Fyfe MCT, Shah VK. inventor; Prosidion Ltd., assignee. Substituted phenylacetamides and their use as glucokinase activators World Intellectual Property Organization WO 2006016194. 2006.
[214]
Jeppesen L, Kristiansen M. inventor; Novo Nordisk, assignee. Heteroaromatic glucokinase activators World Intellectual Property Organization WO 2006058923. 2006.
[215]
Bebernitz GR. inventor; Novartis Ag, assignee. 3-Cyclyl-2-(4- sulfamoyl-phenyl)-N-cyclyl-propionamide derivatives useful in the treatment of impaired glucose tolerance and diabetes World Intellectual Property Organization WO 2007041365. 2007.
[216]
Cheruvallath Z, Feng J, Guntupalli P. inventor; Takeda San Diego, assignee. Glucokinase activators World Intellectual Property Organization WO 2007104034. 2007.
[217]
Berthel S, Kester R, Murphy D. inventor; Hoffmann-La Roche, assignee. Pyrazole glucokinase activators United States patent US US20080021032. 2008.
[218]
Cheruvallath Z, Feng J, Guntupalli P. inventor; Takeda San Diego, assignee. Piperazine derivatives as glucokinase activators World Intellectual Property Organization WO 2008116107. 2008.
[219]
Bhuniya D, Kapkoti GS, Warrier JS. inventor; Advinus Therapeutics, assignee. Pyrrole-2-carboxamide derivatives as glucokinase activators, their process and pharmaceutical application World Intellectual Property Organization WO 2008149382. 2008.
[220]
Bhuniya D, Sandeep B, Gobind S, Venkata P, De S, Mookhtiar K. inventor; Advinus Therapeutics, assignee. Acetamide derivatives as glucokinase activators, their process and medicinal applications World Intellectual Property Organization WO 2009047798. 2009.
[221]
Shi Y, Cheng PTW, Wang Y, Ryono DE. inventor; Bristol-Myers Squibb, assignee. Novel glucokinase activators and methods of using same World Intellectual Property Organization WO 2009018065. 2009.
[222]
Saal C, Burgdorf ZT, Emde U, Beier N, Gleitz J, Charon C. inventor; Merck Patent GmbH, assignee. 5-Oxo-2,3,4,5-tetrahydrobenzo[ b]oxepine-4-carboxylic acid amides and 2,3-dihydrobenzo[ b]oxepine-4-carboxylic acid amides for treatment and prevention of diabetes Typ 1 and 2 World Intellectual Property Organization WO 2009109270. 2009.
[223]
Berthel SJ, Brinkman JA, Hayden S. inventor; Hoffmann-La Roche, assignee. Pyrrolidinone glucokinase activators World Intellectual Property Organization WO 2009127546. 2009.
[224]
Berthel SJ, Haynes NE, Kester RF. inventor; Hoffmann-La Roche, assignee. Pyridazinone glucokinase activators World Intellectual Property Organization WO 2009127544. 2009.
[225]
Benbow JW, Pfefferkorn JA. inventor; TransTech, assignee. Substituted pyrazinone amides United States patent US 20100184777. 2010.
[226]
Ling AL, Pfefferkorn JA. inventor; Pfizer, assignee. Benzofuranyl derivatives United States patent US 20100234285. 2010.
[227]
Haynes NE, Scott NR, Tilley JW. inventor; Hoffmann-La Roche, assignee. Pyridone glucokinase activators World Intellectual Property Organization WO 2011009845. 2011.
[228]
Lau J, Kodra J, Guzei M. inventor; Novo Nordisk, assignee. Amide derivatives useful as glucokinase activators European Patent EP 2305648.. 2011.
[229]
Sarabu R. inventor; Hoffmann-La Roche, assignee. 3-Oxo-3,9- dihydro-1h-chromeno[2,3-c]pyrroles as glucokinase activators World Intellectual Property Organization WO 2011157682. 2011.
[230]
Bhuniya D, Dave B, Deshpande A. inventor; Advinus Therapeutics, assignee. Acetamide compounds, their process and pharmaceutical application World Intellectual Property Organization WO 2012020357. 2012.
[231]
Cheruvallath Z, Gwaltney SL, Jennings AJ. inventor; Takeda California, assignee. Glucokinase activators United States patent US 20140045859. 2014.
[232]
Fukuda Y, Asahina Y, Takadoi M, Yamamoto M. inventor; Kyorin Pharmaceutical, assignee. Cyclopentyl-acrylamide derivative United States patent US 8946440. 2015.
[233]
Tian F, Dang Q, Prasad GS. inventor; Metabasis Therapeutics, assignee. Novel activators of glucokinase United States patent US 20170096440,. 2017.
[234]
Tian F, Dang Q, Prasad SG. inventor; Metabasis Therapeutics, assignee. Activators of glucokinase United States patent US 10174062.. 2019.
[235]
Chen S, Corbett WL, Guertin KR. inventor; Hoffmann-La Roche, assignee. 5-Substituted-pyrazine or pyridine glucokinase activators World Intellectual Property Organization WO 2004052869. 2004.
[236]
Aicher TD, Lee WM, Hinklin RJ, Chicarelli MJ, Boyd SA, Condroski KR. inventor; Array Biopharma, assignee. Glucokinase activators World Intellectual Property Organization WO 2007053345. 2007.
[237]
Aicher TD, Boyd SA, Chicarelli MJ. inventor; Array Biopharma, assignee. Pyridin-2-amine derivatives and their use as glucokinase activators Canadian Patent CA 2637172.. 2007.
[238]
Aicher TD, Boyd SA, Chicarelli MJ, Condroski KR, Hinklin RJ, Singh A. inventor; Array Biopharma, assignee. 2-Aminopyridine analogs as glucokinase activators World Intellectual Property Organization WO 2007117381. 2007.
[239]
Aicher TD, Boyd SA, Chicarelli MJ. inventor; Array Biopharma, assignee. 2-Aminopyridine derivatives as glucokinase activators World Intellectual Property Organization WO 2008091770. 2008.
[240]
Aicher TD, Boyd SA, Chicarelli MJ. inventor; Array Biopharma, assignee. Pyridin-2-yl-amino-1,2,4-thiadiazole derivatives as glucokinase activators for the treatment of diabetes mellitus World Intellectual Property Organization WO 2009042435. 2009.
[241]
Burgdorf LT, Beier N, Gleitz J, Charon C, Cravo D. inventor; Merck Patent GmbH, assignee. Pyridine derivatives useful as glucokinase activators World Intellectual Property Organization WO 2009046784. 2009.
[242]
Meng W, Cheng PTW. inventor; Bristol-Myers Squibb, assignee. Novel glucokinase activators and methods of using same United States patent US 20130029939.. 2013.
[243]
Aicher TD, Boyd SA, Chicarelli MJ, Condroski KR, Hinklin RJ, Singh A. inventor; Array Biopharma, assignee. 2-Aminopyridine analog as glucokinase activator Japan Patent JP 2013245220. 2013.
[244]
Goodnow R Jr, Le K. inventor; Hoffmann-La Roche, assignee. Hydantoin-containing glucokinase activators World Intellectual Property Organization WO 2001083478. 2001.
[245]
Feng J, Gwaltney SL, Hosfield DJ. inventor; Takeda San Diego, assignee. Glucokinase activators World Intellectual Property Organization WO 2007075847. 2007.
[246]
Cao SX, Feng J, Gwaltney SL. inventor; Takeda San Diego, assignee. Indazole and isoindole derivatives as glucokinase activating agents World Intellectual Property Organization WO 2007143434. 2007.
[247]
Cho M, Kim H, Kim K, Kim S, Park H, Yoon S. inventor; Lg Life Sciences, assignee. Glucokinase activators and pharmaceutical compositions containing the same as an active ingredient World Intellectual Property Organization WO 2009082152. 2009.
[248]
Corbett JW, Guzman-Perez A, Pfefferkorn JA, Tu MM. inventor; Pfizer, assignee. Substituted indazole amides and their use as glucokinase activators World Intellectual Property Organization WO 2010103438. 2010.
[249]
Berthel SJ, Chen L, Corbett WL. inventor; Hoffmann-La Roche, assignee. Azaindole glucokinase activators World Intellectual Property Organization WO 2011073117. 2011.
[250]
Berthel SJ, Kester RF, Orzechowski L. inventor; Hoffmann-La Roche, assignee. Isoindolinone derivatives World Intellectual Property Organization WO 2012150202. 2012.
[251]
Corbett WL, Grimbsy JS, Haynes NE, Kester RF, Mahaney PE, Sarabu R. inventor; Hoffmann-La Roche, assignee. Fused heteroaromatic glucokinase activators World Intellectual Property Organization WO 2002046173. 2002.
[252]
Hashimoto H, Mizutani K, Yoshida A. inventor; Japan Tobacco Inc., assignee. Fused ring compounds and use thereof United States patent US 20030050320,. 2003.
[253]
Caulkett P, Mckerrecher D, Newcombe N, Pike KG, Waring M. inventor; AstraZeneca, assignee. 2-Phenyl substituted imidazol [4,5b] pyridine/ pyrazine and purine derivatives as glucokinase modulators World Intellectual Property Organization WO 2006125958. 2006.
[254]
Caulkett P, Mckerrecher D, Newcombe N, Pike KG, Robb G, Waring M. nventor; AstraZeneca, assignee. Heterobicyclic compounds as glucokinase activators World Intellectual Property Organization WO 2007031739. 2007.
[255]
Dave S, Deshpande A, Kurhade S, Cobalt B, Bhuniya D, Palle V. inventor; Advinus Therapeutics, assignee. Fused nitrogen heterocyclic compounds, process of preparation and uses thereof World Intellectual Property Organization WO 2011080755. 2011.
[256]
Andreevich RN, Sergeevna DN, Akhmetovich IR. assignee. 7-(4- Methoxyphenyl)-5-phenyl-4,5-dihydro-[1,2,4]triazolo[1,5- a]pyrimidine as activator of glucokinase and inhibitor of dipeptidyl peptidase of type 4 and method of its production Russian Patent RU 0002642432.. 2018.
[257]
Murray A, Lau J, Jeppesen L. inventor; Novo Nordisk, assignee. Heteroaryl-ureas and their use as glucokinase activators World Intellectual Property Organization WO 2005066145. 2005.
[258]
Lau J, Murray A, Vedso P, Kristiansen M, Jeppesen L. inventor; Novo Nordisk, assignee. Urea glucokinase activators World Intellectual Property Organization WO 2007006814. 2007.
[259]
Murray A, Lau J, Vedsoe P, Jeppesen L, Kristiansen M. inventor; Novo Nordisk, assignee. Dicycloalkylcarbamoyl ureas as glucokinase activators World Intellectual Property Organization WO 2007006761. 2007.
[260]
Murray A, Lau J, Vedso P, Kristiansen M, Jeppesen L. inventor; Novo Nordisk, assignee. Dicycloalkyl urea glucokinase activators European Patent EP 1904466.. 2008.
[261]
Houze JB, Dransfield P, Pattaropong V. inventor; Array Biopharma, assignee. Urea compounds as GKA activators World Intellectual Property Organization WO 2013086397. 2013.
[262]
Ziyang C. inventor; Foshan Saives Medical Technology, assignee. N-Adamantane amide type compound containing p-nitrophenyl, preparation method and application thereof Chinese Patent CN 104628616.. 2015.
[263]
Ziyang C. inventor; Foshan Saives Medical Technology, assignee. N-Phenyl adamantane amide type glucokinase activator as well as preparation method and application thereof Chinese Patent CN 104610112.. 2015.
[264]
Ziyang C. inventor; Foshan Saives Medical Technology, assignee. A class of phenyl substituted by alkoxy N-adamantane amide compounds and use thereof Chinese Patent CN 104610114.. 2015.
[265]
Ziyang C. inventor; Foshan Saives Medical Technology, assignee. N-Phenyl adamantane amide type compound containing nitrobenzene and application of N-phenyl adamantane amide type compound Chinese Patent CN 104610115.. 2015.
[266]
Ziyang C. inventor; Foshan Saives Medical Technology, assignee. Glucokinase activator containing glucosamide structure, preparation method and application of glucokinase activator to treatment of type II diabetes mellitus Chinese Patent CN 104672218.. 2015.
[267]
Ziyang C. inventor; Foshan Saives Medical Technology, assignee. Glucokinase activator containing glucosamide and pyridine structure and application of glucokinase activator Chinese Patent CN 104610241.. 2015.
[268]
Ziyang C. inventor; Foshan Saives Medical Technology, assignee. Compound containing glucosamide pyridine and alkoxypyrazine structure and application of compound Chinese Patent CN 104610242.. 2015.
[269]
Ziyang C. inventor; Foshan Saives Medical Technology, assignee. Glucokinase activator containing glucosamide and pyridine structure and application thereof Chinese Patent CN 104610243.. 2015.
[270]
Ziyang C. inventor; Foshan Saives Medical Technology, assignee. Compound containing glucosamide pyridine and alkoxy pyrazinyl structure and application thereof Chinese Patent CN 104592214,. 2015.
[271]
Bebernitz GR. inventor; Novartis Ag, assignee. Substituted (thiazol- 2-yl)-amide or sulfonamide as glycokinase activators useful in the treatment of type 2 diabetes World Intellectual Property Organization WO 2004050645. 2004.
[272]
Bebernitz GR, Gupta RC, Jagtap VV, Mandhare AB, Tuli D. inventor; Novartis Ag, assignee. Sulfonamide-thiazolpyridine derivatives as glucokinase activators useful the treatment of type 2 diabetes World Intellectual Property Organization WO 2005095418. 2005.
[273]
Bebernitz GR, Kerman L. inventor; Novartis Ag, assignee. Sulfonamide derivatives as glycokinase activators useful in the treatment of type 2 diabetes World Intellectual Property Organization WO 2007041366. 2007.
[274]
Ziyang C. inventor; Foshan Saives Medical Technology, assignee. Glucokinase activator containing quinoline structure as well as preparation method and application thereof Chinese Patent CN 104672133.. 2015.
[275]
Ziyang C. inventor; Foshan Saives Medical Technology, assignee. Glucokinase Activator containing nitroquinoline structure and application of glucokinase activator Chinese Patent CN 104628616.. 2015.
[276]
Ziyang C. inventor; Foshan Saives Medical Technology, assignee. Glucokinase activator containing quinoline and cyano benzene structure, and application thereof Chinese Patent CN 104592113.. 2015.
[277]
Burgdorf LT, Emde U, Gleitz J, Beier N, Charon C. inventor; Merck Patent GmbH, assignee. Glucokinase activators World Intellectual Property Organization WO 2009106203. 2009.
[278]
Burgdorf L, Emde U, Graits J, Bahia N, Sharon C. inventor; Merck Patent GmbH, assignee. Glucokinase activator Japan Patent JP 2014208665.. 2014.
[279]
Sidduri A. inventor; Hoffmann-La Roche, assignee. Tetrazolylphenyl acetamide glucokinase activators World Intellectual Property Organization WO 2002014312. 2002.
[280]
Guertin KR. inventor; Hoffmann-La Roche, assignee. Isoindolin-1- one glucokinase activators World Intellectual Property Organization WO 2002048106. 2002.
[281]
Caulkett P, Currie G, Hargreaves R, Hayter B, James R. inventor; AstraZeneca, assignee. Vinyl phenyl derivatives as GLK activators World Intellectual Property Organization WO 2003000262. 2003.
[282]
Cao SX, Feng J, Gwaltney SL. inventor; Takeda San Diego, assignee. Glucokinase activators World Intellectual Property Organization WO 2007061923. 2007.
[283]
Ryono DE, Cheng P, Bolton S. inventor; Bristol-Myers Squibb, assignee. Phosphonate and phosphinate compounds as glucokinase activators World Intellectual Property Organization WO 2008005964. 2008.
[284]
Berthel S, Kester R, Murphy D. nventor; Hoffmann-La Roche, assignee. Oxime glucokinase activators United States patent US 20080146625.. 2009.
[285]
Mookhtiar KA, Bhuniya D, Dave B. inventor; Advinus Therapeutics, assignee. 2,2,2-Tri-substituted acetamide derivatives as glucokinase activators, their process and pharmaceutical application World Intellectual Property Organization WO 2008104994. 2008.
[286]
Badiger S, Fosgerau K, Wrong N. inventor; Rheoscience, assignee. Azine compounds as glucokinase activators World Intellectual Property Organization WO 2009083553. 2009.
[287]
Bender S, Burgdorf LT, Emde U, Beier N, Gleitz J, Charon C. inventor; Merck Patent GmbH, assignee. Beta-amino acid derivatives for treatment of diabetes World Intellectual Property Organization WO 2009092432. 2009.
[288]
Benbow JW, Lou J, Pfefferkorn JA, Tu MM. inventor; Pfizer, assignee. Fluorinated heteroaryls World Intellectual Property Organization WO 2010013161. 2010.
[289]
Corbett WL, Sarabu R, Sidduri A. inventor; Hoffmann-La Roche, assignee. Trans olefinic glucokinase activators World Intellectual Property Organization WO 2001044216. 2001.
[290]
Well MA, Agejas-Chicharro FJ. inventor; Eli Lilly and Company, assignee. Arylcyclopropylacetamide derivatives useful as glucokinase activators World Intellectual Property Organization WO 2010080333. 2010.
[291]
Aspnes GE, Didiuk MT, Guzman-Perez A, Maguire RJ. inventor; Pfizer, assignee. 2-(3,5-Disubstitutedphenyl)pyrimidin-4(3H)-one derivatives World Intellectual Property Organization WO 2011158149. 2011.
[292]
Tian F, Dang Q, Prasad GS. inventor; Metabasis Therapeutics, assignee. Activators of glucokinase United States patent US 20150119365.. 2015.
[293]
Guolei Z, Yuan H, Yunping Z. inventor; Beijing Venturepharm Biotech Azaindole, assignee. Compound used as glucokinase activator Chinese Patent CN 106518866.. 2017.
[294]
Liu S, Ammirati MJ, Song X. Insights into mechanism of glucokinase activation: observation of multiple distinct protein conformations. J Biol Chem 2012; 287(17): 13598-610.
[http://dx.doi.org/10.1074/jbc.M111.274126] [PMID: 22298776]
[295]
Zhang J, Li C, Chen K, Zhu W, Shen X, Jiang H. Conformational transition pathway in the allosteric process of human glucokinase. Proc Natl Acad Sci USA 2006; 103(36): 13368-73.
[http://dx.doi.org/10.1073/pnas.0605738103] [PMID: 16938872]
[296]
Antoine M, Boutin JA, Ferry G. Binding kinetics of glucose and allosteric activators to human glucokinase reveal multiple conformational states. Biochemistry 2009; 48(23): 5466-82.
[http://dx.doi.org/10.1021/bi900374c] [PMID: 19459610]
[297]
Petit P, Antoine M, Ferry G. The active conformation of human glucokinase is not altered by allosteric activators. Acta Crystallogr D Biol Crystallogr 2011; 67(Pt 11): 929-35.
[http://dx.doi.org/10.1107/S0907444911036729] [PMID: 22101819]
[298]
Heredia VV, Carlson TJ, Garcia E, Sun S. Biochemical basis of glucokinase activation and the regulation by glucokinase regulatory protein in naturally occurring mutations. J Biol Chem 2006; 281(52): 40201-7.
[http://dx.doi.org/10.1074/jbc.M607987200] [PMID: 17082186]
[299]
Anderka O, Boyken J, Aschenbach U, Batzer A, Boscheinen O, Schmoll D. Biophysical characterization of the interaction between hepatic glucokinase and its regulatory protein: impact of physiological and pharmacological effectors. J Biol Chem 2008; 283(46): 31333-40.
[http://dx.doi.org/10.1074/jbc.M805434200] [PMID: 18809676]
[300]
Nakamura A, Terauchi Y, Ohyama S. Impact of small-molecule glucokinase activator on glucose metabolism and beta-cell mass. Endocrinology 2009; 150(3): 1147-54.
[http://dx.doi.org/10.1210/en.2008-1183] [PMID: 19008318]
[301]
Nakamura A, Terauchi Y. Present status of clinical deployment of glucokinase activators. J Diabetes Investig 2015; 6(2): 124-32.
[http://dx.doi.org/10.1111/jdi.12294] [PMID: 25802718]
[302]
Oh YS, Lee YJ, Park K, Choi HH, Yoo S, Jun HS. Treatment with glucokinase activator, YH-GKA, increases cell proliferation and decreases glucotoxic apoptosis in INS-1 cells. Eur J Pharm Sci 2014; 51: 137-45.
[http://dx.doi.org/10.1016/j.ejps.2013.09.005] [PMID: 24056026]
[303]
Scheen AJ. New hope for glucokinase activators in type 2 diabetes? Lancet Diabetes Endocrinol 2018; 6(8): 591-3.
[http://dx.doi.org/10.1016/S2213-8587(18)30133-5] [PMID: 29735393]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 21
Year: 2020
Published on: 14 April, 2020
Page: [2510 - 2552]
Pages: 43
DOI: 10.2174/1381612826666200414163148
Price: $65

Article Metrics

PDF: 28
HTML: 3