Zinc Poisoning - Symptoms, Causes, Treatments

Author(s): Mehrdad Rafati Rahimzadeh, Mehravar Rafati Rahimzadeh, Sohrab Kazemi, Ali Akbar Moghadamnia*

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 20 , Issue 15 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Zinc poisoning has been reported from many parts of the world. It is one of the global health problems that affect many organs, if exposed by inhalation of zinc vapors or by consumption of contaminated food and water. Long term exposure to zinc compounds from different sources such as air, water, soil, and food, lead to toxic effects on body systems, especially digestive, respiratory, and nerve systems, and also causes cancer. Zinc levels can be determined in blood, urine, hair, and nails. Patients with zinc toxicity need chelating agents, other pharmacological treatment, protective lung ventilation, extracorporeal membrane oxygenation (ECMO), and supportive care.

Keywords: Zinc, poisoning, inhalation, chelating agents, toxicity, extracorporeal membrane oxygenation (ECMO).

[1]
Rafati-Rahimzadeh, M.; Moghaddamnia, A.A. Organophosphorus compounds poisoning. Majallah-i Danishgah-i Ulum-i Pizishki-i Babul, 2010, 12, 71-85.
[2]
Rafati Rahimzadeh, M.; Rafati Rahimzadeh, M.; Kazemi, S.; Moghadamnia, A.A. Cadmium toxicity and treatment: An update. Caspian J. Intern. Med., 2017, 8(3), 135-145.
[PMID: 28932363]
[3]
Rafati-Rahimzadeh, M.; Rafati-Rahimzadeh, M.; Kazemi, S.; Moghadamnia, A.A. Current approaches of the management of mercury poisoning: need of the hour. Daru, 2014, 22(1), 46.
[http://dx.doi.org/10.1186/2008-2231-22-46] [PMID: 24888360]
[4]
Rafati-Rahimzadeh, M.; Rafati-Rahimzadeh, M.; Kazemi, S.; Moghaddamnia, A. An update on lead poisoning. Majallah-i Danishgah-i Ulum-i Pizishki-i Babul, 2015, 16(15), 33-50.
[5]
Rafati-Rahimzadeh, M.; Rafati-Rahimzadeh, M.; Moghadamnia, A. Arsenic compounds toxicity. Majallah-i Danishgah-i Ulum-i Pizishki-i Babul, 2013, 15(2), 51-68.
[6]
Duffus, J.H. Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl. Chem., 2002, 74(5), 793-807.
[http://dx.doi.org/10.1351/pac200274050793]
[7]
Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model., 2012, 52(7), 1757-1768.
[http://dx.doi.org/10.1021/ci3001277] [PMID: 22587354]
[8]
Osredkar, J.; Sustar, N. Copper and zinc, biological role and significance of copper/zinc imbalance. J. Clinic. Toxicol. Sci., 2011, 3, 2161-0495.
[9]
Ciubotariu, D.; Ghiciuc, C.M.; LupuXoru, C.E. Zinc involvement in opioid addiction and analgesia--should zinc supplementation be recommended for opioid-treated persons? Subst. Abuse Treat. Prev. Policy, 2015, 10(1), 29.
[http://dx.doi.org/10.1186/s13011-015-0025-2] [PMID: 26238243]
[10]
Kambe, T.; Tsuji, T.; Hashimoto, A.; Itsumura, N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol. Rev., 2015, 95(3), 749-784.
[http://dx.doi.org/10.1152/physrev.00035.2014] [PMID: 26084690]
[11]
King, J.C. Zinc: An essential but elusive nutrient. Am. J. Clin. Nutr., 2011, 94(2), 679S-684S.
[http://dx.doi.org/10.3945/ajcn.110.005744] [PMID: 21715515]
[12]
Plum, L.M.; Rink, L.; Haase, H. The essential toxin: impact of zinc on human health. Int. J. Environ. Res. Public Health, 2010, 7(4), 1342-1365.
[http://dx.doi.org/10.3390/ijerph7041342] [PMID: 20617034]
[13]
Lichten, L.A.; Cousins, R.J. Mammalian zinc transporters: Nutritional and physiologic regulation. Annu. Rev. Nutr., 2009, 29, 153-176.
[http://dx.doi.org/10.1146/annurev-nutr-033009-083312] [PMID: 19400752]
[14]
Hara, T.; Takeda, T.A.; Takagishi, T.; Fukue, K.; Kambe, T.; Fukada, T. Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J. Physiol. Sci., 2017, 67(2), 283-301.
[http://dx.doi.org/10.1007/s12576-017-0521-4] [PMID: 28130681]
[15]
Ni, H.; Li, C.; Feng, X.; Cen, J.N. Effects of forced running exercise on cognitive function and its relation to zinc homeostasis-related gene expression in rat hippocampus. Biol. Trace Elem. Res., 2011, 142(3), 704-712.
[http://dx.doi.org/10.1007/s12011-010-8793-z] [PMID: 20703826]
[16]
Ni, H.; Feng, X.; Xiao, Z.J.; Tao, L.Y.; Jin, M.F. Dynamic pattern of gene expression of ZnT-4, caspase-3, LC3, and PRG-3 in rat cerebral cortex following flurothyl-induced recurrent neonatal seizures. Biol. Trace Elem. Res., 2011, 143(3), 1607-1615.
[http://dx.doi.org/10.1007/s12011-011-8982-4] [PMID: 21286846]
[17]
Ni, H.; Jiang, Y.W.; Xiao, Z.J.; Tao, L.Y.; Jin, M.F.; Wu, X.R. Dynamic pattern of gene expression of ZnT-1, ZnT-3 and PRG-1 in rat brain following flurothyl-induced recurrent neonatal seizures. Toxicol. Lett., 2010, 194(3), 86-93.
[http://dx.doi.org/10.1016/j.toxlet.2010.02.008] [PMID: 20167268]
[18]
Tapiero, H.; Tew, K.D. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed. Pharmacother., 2003, 57(9), 399-411.
[http://dx.doi.org/10.1016/S0753-3322(03)00081-7] [PMID: 14652165]
[19]
Ruttkay-Nedecky, B.; Nejdl, L.; Gumulec, J.; Zitka, O.; Masarik, M.; Eckschlager, T.; Stiborova, M.; Adam, V.; Kizek, R. The role of metallothionein in oxidative stress. Int. J. Mol. Sci., 2013, 14(3), 6044-6066.
[http://dx.doi.org/10.3390/ijms14036044] [PMID: 23502468]
[20]
Laity, J.H.; Andrews, G.K. Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1). Arch. Biochem. Biophys., 2007, 463(2), 201-210.
[http://dx.doi.org/10.1016/j.abb.2007.03.019] [PMID: 17462582]
[21]
Formigari, A.; Irato, P.; Santon, A. Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2007, 146(4), 443-459.
[http://dx.doi.org/10.1016/j.cbpc.2007.07.010] [PMID: 17716951]
[22]
Truong-Tran, A.Q.; Carter, J.; Ruffin, R.E.; Zalewski, P.D. The role of zinc in caspase activation and apoptotic cell death.Zinc Biochemistry, Physiology, and Homeostasis; Springer, 2001, pp. 129-144.
[http://dx.doi.org/10.1007/978-94-017-3728-9_7]
[23]
McLaughlin, B.; Pal, S.; Tran, M.P.; Parsons, A.A.; Barone, F.C.; Erhardt, J.A.; Aizenman, E. p38 activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J. Neurosci., 2001, 21(10), 3303-3311.
[http://dx.doi.org/10.1523/JNEUROSCI.21-10-03303.2001] [PMID: 11331359]
[24]
Sun, X-M.; MacFarlane, M.; Zhuang, J.; Wolf, B.B.; Green, D.R.; Cohen, G.M. Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J. Biol. Chem., 1999, 274(8), 5053-5060.
[http://dx.doi.org/10.1074/jbc.274.8.5053] [PMID: 9988752]
[25]
Chimienti, F.; Seve, M.; Richard, S.; Mathieu, J.; Favier, A. Role of cellular zinc in programmed cell death: temporal relationship between zinc depletion, activation of caspases, and cleavage of Sp family transcription factors. Biochem. Pharmacol., 2001, 62(1), 51-62.
[http://dx.doi.org/10.1016/S0006-2952(01)00624-4] [PMID: 11377396]
[26]
Walsh, J.G.; Cullen, S.P.; Sheridan, C.; Lüthi, A.U.; Gerner, C.; Martin, S.J. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc. Natl. Acad. Sci. USA, 2008, 105(35), 12815-12819.
[http://dx.doi.org/10.1073/pnas.0707715105] [PMID: 18723680]
[27]
Brentnall, M.; Rodriguez-Menocal, L.; De Guevara, R.L.; Cepero, E.; Boise, L.H. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol., 2013, 14(1), 32.
[http://dx.doi.org/10.1186/1471-2121-14-32] [PMID: 23834359]
[28]
Huber, K.L.; Hardy, J.A. Mechanism of zinc-mediated inhibition of caspase-9. Protein Sci., 2012, 21(7), 1056-1065.
[http://dx.doi.org/10.1002/pro.2090] [PMID: 22573662]
[29]
Siemankowski, L.M.; Morreale, J.; Briehl, M.M. Antioxidant defenses in the TNF-treated MCF-7 cells: selective increase in MnSOD. Free Radic. Biol. Med., 1999, 26(7-8), 919-924.
[http://dx.doi.org/10.1016/S0891-5849(98)00273-1] [PMID: 10232835]
[30]
Feng, P.; Li, T.; Guan, Z.; Franklin, R.B.; Costello, L.C. The involvement of Bax in zinc-induced mitochondrial apoptogenesis in malignant prostate cells. Mol. Cancer, 2008, 7(1), 25.
[http://dx.doi.org/10.1186/1476-4598-7-25] [PMID: 18331646]
[31]
Feng, P.; Li, T.L.; Guan, Z.X.; Franklin, R.B.; Costello, L.C. Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate, 2002, 52(4), 311-318.
[http://dx.doi.org/10.1002/pros.10128] [PMID: 12210492]
[32]
Elms, A. Goldfrank’s toxicologic emergencies. Acad. Emerg. Med., 2011, 18(10), e85-e85.
[http://dx.doi.org/10.1111/j.1553-2712.2011.01179.x]
[33]
De, W.G.; Sabbe, M.; Meulemans, A.; Desmet, K.; Delooz, H. An acute zinc chloride poisoning in a child: Was chelator therapy effective? Europ. J. Emergency Med.: Official J. Europ. Society Emergency Med., 1998, 5(1), 67-69.
[34]
El Idrissi, A.; van Berkel, L.; Bonekamp, N.E.; Dalemans, D.J.; van der Heyden, M.A. The toxicology of zinc chloride smoke producing bombs and screens. Clin. Toxicol. (Phila.), 2017, 55(3), 167-174.
[http://dx.doi.org/10.1080/15563650.2016.1271125] [PMID: 28074704]
[35]
Cooper, R.G. Zinc toxicology following particulate inhalation. Indian J. Occup. Environ. Med., 2008, 12(1), 10-13.
[http://dx.doi.org/10.4103/0019-5278.40809] [PMID: 20040991]
[36]
Roney, N.; Osier, M.; Paikoff, S.J.; Smith, C.V.; Williams, M.; De Rosa, C.T. ATSDR evaluation of potential for human exposure to zinc. Toxicol. Ind. Health, 2007, 23(5-6), 247-308.
[http://dx.doi.org/10.1177/0748233707083761] [PMID: 18386523]
[37]
Hsu, H-H.; Tzao, C.; Chang, W-C.; Wu, C-P.; Tung, H-J.; Chen, C.Y.; Perng, W.C. Zinc chloride (smoke bomb) inhalation lung injury: clinical presentations, high-resolution CT findings, and pulmonary function test results. Chest, 2005, 127(6), 2064-2071.
[http://dx.doi.org/10.1378/chest.127.6.2064] [PMID: 15947321]
[38]
Bartzatt, R. Neurological Impact of Zinc Excess and Deficiency In vivo. Eur. J. Nutr. Food Saf., 2017, 7(3), 155.
[http://dx.doi.org/10.9734/EJNFS/2017/35783]
[39]
Jafek, B.W.; Linschoten, M.R.; Murrow, B.W. Anosmia after intranasal zinc gluconate use. Am. J. Rhinol., 2004, 18(3), 137-141.
[http://dx.doi.org/10.1177/194589240401800302] [PMID: 15283486]
[40]
Hsieh, H.; Vignesh, K.S.; Deepe, G.S., Jr; Choubey, D.; Shertzer, H.G.; Genter, M.B. Mechanistic studies of the toxicity of zinc gluconate in the olfactory neuronal cell line Odora. Toxicol. In Vitro, 2016, 35, 24-30.
[http://dx.doi.org/10.1016/j.tiv.2016.05.003] [PMID: 27179668]
[41]
Morris, D.R.; Levenson, C.W. Ion channels and zinc: Mechanisms of neurotoxicity and neurodegeneration. J. Toxicol., 2012., 2012.
[http://dx.doi.org/10.1155/2012/785647]
[42]
Nielsen, N.H.; Menne, T. Allergic contact dermatitis caused by zinc pyrithione associated with pustular psoriasis. Am. J. Contact Dermat.: Official J. Am. Contact Dermatit. Society, 1997, 8(3), 170-171.
[43]
Gupta, M.; Mahajan, V.K.; Mehta, K.S.; Chauhan, P.S. Zinc therapy in dermatology: A review. Dermatol. Res. Pract., 2014, 2014, 709152.
[http://dx.doi.org/10.1155/2014/709152] [PMID: 25120566]
[44]
Fukuda, H.; Ebara, M.; Yamada, H.; Arimoto, M.; Okabe, S. Trace elements and cancer. Japan Med. Assoc. J., 2004, 47(8), 391-395.
[45]
Sahu, D.; Kannan, G.; Vijayaraghavan, R.; Anand, T.; Khanum, F. Nanosized zinc oxide induces toxicity in human lung cells. ISRN Toxicol. 2013,, 2013.
[http://dx.doi.org/10.1155/2013/316075]
[46]
Brugger, D.; Windisch, W.M. Strategies and challenges to increase the precision in feeding zinc to monogastric livestock. Anim Nutr, 2017, 3(2), 103-108.
[http://dx.doi.org/10.1016/j.aninu.2017.03.002] [PMID: 29767077]
[47]
Jeng, H.A.; Swanson, J. Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 2006, 41(12), 2699-2711.
[http://dx.doi.org/10.1080/10934520600966177] [PMID: 17114101]
[48]
Araujo-Lima, C.F.; Nunes, R.J.; Carpes, R.M.; Aiub, C.A.; Felzenszwalb, I. Pharmacokinetic and toxicological evaluation of a zinc gluconate-based chemical sterilant using in vitro and in silico approaches. BioMed. Res. Int. 2017, 2017.
[http://dx.doi.org/10.1155/2017/5746768]
[49]
Ghayour-Mobarhan, M.; Taylor, A.; New, S.A.; Lamb, D.J.; Ferns, G.A. Determinants of serum copper, zinc and selenium in healthy subjects. Ann. Clin. Biochem., 2005, 42(Pt 5), 364-375.
[http://dx.doi.org/10.1258/0004563054889990] [PMID: 16168192]
[50]
Kondo, T.; Takahashi, M.; Watanabe, S.; Ebina, M.; Mizu, D.; Ariyoshi, K.; Asano, M.; Nagasaki, Y.; Ueno, Y. An autopsy case of zinc chloride poisoning. Leg. Med. (Tokyo), 2016, 21, 11-14.
[http://dx.doi.org/10.1016/j.legalmed.2016.05.002] [PMID: 27497327]
[51]
Böckerman, P.; Bryson, A.; Viinikainen, J.; Viikari, J.; Lehtimäki, T.; Vuori, E.; Keltikangas-Järvinen, L.; Raitakari, O.; Pehkonen, J. The serum copper/zinc ratio in childhood and educational attainment: A population-based study. J. Public Health (Oxf.), 2016, 38(4), 696-703.
[http://dx.doi.org/10.1093/pubmed/fdv187] [PMID: 28158705]
[52]
Bornhorst, J.A.; McMillin, G.A. Trace and toxic elemental testing in the clinical laboratory. Lab. Med., 2015, 37(11), 690-695.
[http://dx.doi.org/10.1309/XN6BLHL1Q14VXG9M]
[53]
Sandström, B. Diagnosis of zinc deficiency and excess in individuals and populations. Food Nutr. Bull., 2001, 22(2), 133-137.
[http://dx.doi.org/10.1177/156482650102200203]
[54]
Ayodele, J.; Bayero, A. Lead and zinc concentrations in hair and nail of some Kano inhabitants. Afr. J. Environ. Sci. Technol., 2009, 3(6), 164-170.
[55]
Han, T.H.; Lee, J.; Kim, Y.J. Hair zinc level analysis and correlative micronutrients in children presenting with malnutrition and poor growth. Pediatr. Gastroenterol. Hepatol. Nutr., 2016, 19(4), 259-268.
[http://dx.doi.org/10.5223/pghn.2016.19.4.259] [PMID: 28090471]
[56]
Kim, J.E.; Yoo, S.R.; Jeong, M.G.; Ko, J.Y.; Ro, Y.S. Hair zinc levels and the efficacy of oral zinc supplementation in patients with atopic dermatitis. Acta Derm. Venereol., 2014, 94(5), 558-562.
[http://dx.doi.org/10.2340/00015555-1772] [PMID: 24473704]
[57]
Puig, S.; Scharitzer, M.; Cengiz, K.; Jetzinger, E.; Rupprecht, L. Effects of gastric acid on euro coins: Chemical reaction and radiographic appearance after ingestion by infants and children. Emerg. Med. J., 2004, 21(5), 553-556.
[http://dx.doi.org/10.1136/emj.2002.004879] [PMID: 15333527]
[58]
Harish, D.; Chavali, K.; Singh, A.; Kumar, A. Recent advances in the management of poisoning cases. J. Indian Acad. Forensic Med., 2011, 33(1), 74-79.
[59]
Thanacoody, R.; Caravati, E.M.; Troutman, B.; Höjer, J.; Benson, B.; Hoppu, K.; Erdman, A.; Bedry, R.; Mégarbane, B. Position paper update: whole bowel irrigation for gastrointestinal decontamination of overdose patients. Clin. Toxicol. (Phila.), 2015, 53(1), 5-12.
[http://dx.doi.org/10.3109/15563650.2014.989326] [PMID: 25511637]
[60]
Clements, E.A.; Shaskos, J.B. Current controversies in gastrointestinal decontamination. J. Pharm. Pract., 2005, 18(3), 209-220.
[http://dx.doi.org/10.1177/0897190005276750]
[61]
Albertson, T.E.; Owen, K.P.; Sutter, M.E.; Chan, A.L. Gastrointestinal decontamination in the acutely poisoned patient. Int. J. Emerg. Med., 2011, 4(1), 65.
[http://dx.doi.org/10.1186/1865-1380-4-65] [PMID: 21992527]
[62]
Lahner, E.; Annibale, B.; Delle Fave, G. Systematic review: Impaired drug absorption related to the co-administration of antisecretory therapy. Aliment. Pharmacol. Ther., 2009, 29(12), 1219-1229.
[http://dx.doi.org/10.1111/j.1365-2036.2009.03993.x] [PMID: 19302263]
[63]
Stefanidou, M.; Maravelias, C.; Dona, A.; Spiliopoulou, C. Zinc: a multipurpose trace element. Arch. Toxicol., 2006, 80(1), 1-9.
[http://dx.doi.org/10.1007/s00204-005-0009-5] [PMID: 16187101]
[64]
Farrell, C.P.; Morgan, M.; Rudolph, D.S.; Hwang, A.; Albert, N.E.; Valenzano, M.C.; Wang, X.; Mercogliano, G.; Mullin, J.M. Proton pump inhibitors interfere with zinc absorption and zinc body stores. Gastroenterol. Res., 2011, 4(6), 243-251.
[http://dx.doi.org/10.4021/gr379w] [PMID: 27957023]
[65]
Mahboob, H.; Richeson, R., III; McCain, R. Zinc chloride smoke inhalation induced severe acute respiratory distress syndrome: First survival in the united states with extended duration (five weeks) therapy with high dose corticosteroids in combination with lung protective ventilation. Case reports in critical care, 2017, 2017.
[66]
Karunanidhi, K.; Manohar, V.; Mohan, N.; Sreekrishnan, T.; Gireeshkumar, K. Aspartate aminotransferase level as a prognostic marker in acute zinc phosphide poisoning. J. Acad. Emergency Med., 2016, 15(1), 39.
[67]
Oghabian, Z.; Afshar, A.; Rahimi, H.R. Hepatotoxicity due to zinc phosphide poisoning in two patients: role of N-acetylcysteine. Clin. Case Rep., 2016, 4(8), 768-772.
[http://dx.doi.org/10.1002/ccr3.618] [PMID: 27525081]
[68]
Rowin, J.; Lewis, S.L. Copper deficiency myeloneuropathy and pancytopenia secondary to overuse of zinc supplementation. J. Neurol. Neurosurg. Psychiatry, 2005, 76(5), 750-751.
[http://dx.doi.org/10.1136/jnnp.2004.046987] [PMID: 15834043]
[69]
Chian, C.-F.; Wu, C.-P.; Chen, C.-W.; Su, W.-L.; Yeh, C.-B. Acute respiratory distress syndrome after zinc chloride inhalation: survival after extracorporeal life support and corticosteroid treatment. Am. J. Crit. Care, 2009. ajcc2009908.
[70]
Kanji, H.D.; McCallum, J.; Norena, M.; Wong, H.; Griesdale, D.E.; Reynolds, S.; Isac, G.; Sirounis, D.; Gunning, D.; Finlayson, G.; Dodek, P. Early veno-venous extracorporeal membrane oxygenation is associated with lower mortality in patients who have severe hypoxemic respiratory failure: A retrospective multicenter cohort study. J. Crit. Care, 2016, 33, 169-173.
[http://dx.doi.org/10.1016/j.jcrc.2016.01.010] [PMID: 26971033]
[71]
Tillmann, B.W.; Klingel, M.L.; Iansavichene, A.E.; Ball, I.M.; Nagpal, A.D. Extracorporeal membrane oxygenation (ECMO) as a treatment strategy for severe acute respiratory distress syndrome (ARDS) in the low tidal volume era: A systematic review. J. Crit. Care, 2017, 41, 64-71.
[http://dx.doi.org/10.1016/j.jcrc.2017.04.041] [PMID: 28499130]
[72]
Fan, E.; Gattinoni, L.; Combes, A.; Schmidt, M.; Peek, G.; Brodie, D.; Muller, T.; Morelli, A.; Ranieri, V.M.; Pesenti, A.; Brochard, L.; Hodgson, C.; Van Kiersbilck, C.; Roch, A.; Quintel, M.; Papazian, L. Venovenous extracorporeal membrane oxygenation for acute respiratory failure: A clinical review from an international group of experts. Intensive Care Med., 2016, 42(5), 712-724.
[http://dx.doi.org/10.1007/s00134-016-4314-7] [PMID: 27007108]
[73]
Peek, G.J.; Mugford, M.; Tiruvoipati, R.; Wilson, A.; Allen, E.; Thalanany, M.M.; Hibbert, C.L.; Truesdale, A.; Clemens, F.; Cooper, N.; Firmin, R.K.; Elbourne, D. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): A multicentre randomised controlled trial. Lancet, 2009, 374(9698), 1351-1363.
[http://dx.doi.org/10.1016/S0140-6736(09)61069-2] [PMID: 19762075]
[74]
Muñoz, J.; Santa-Teresa, P.; Tomey, M.J.; Visedo, L.C.; Keough, E.; Barrios, J.C.; Sabell, S.; Morales, A. Extracorporeal membrane oxygenation (ECMO) in adults with acute respiratory distress syndrome (ARDS): A 6-year experience and case-control study. Heart Lung, 2017, 46(2), 100-105.
[http://dx.doi.org/10.1016/j.hrtlng.2017.01.003] [PMID: 28215409]
[75]
Flora, S.J.; Pachauri, V. Chelation in metal intoxication. Int. J. Environ. Res. Public Health, 2010, 7(7), 2745-2788.
[http://dx.doi.org/10.3390/ijerph7072745] [PMID: 20717537]
[76]
Van De Sande, M.M.; Wirtz, S.; Vos, E.; Verhagen, H. Short review of calcium disodium ethylene diamine tetra acetic acid as a food additive. Europ. J. Food Res. Rev., 2014, 4(4), 408.
[77]
Crinnion, W.J. EDTA redistribution of lead and cadmium into the soft tissues in a human with a high lead burden - should DMSA always be used to follow EDTA in such cases? Altern. Med. Rev., 2011, 16(2), 109-112.
[PMID: 21649453]
[78]
Mikirova, N.; Casciari, J.; Hunninghake, R.; Riordan, N. EDTA chelation therapy in the treatment of toxic metals exposure. Spatula DD, 2011, 1(2), 81-89.
[http://dx.doi.org/10.5455/spatula.20110504045803]
[79]
Sears, M.E. Chelation: harnessing and enhancing heavy metal detoxification—a review. Scientif. World J., 2013, 2013.
[80]
Katzung, B.G.; Masters, S.B.; Trevor, A.J. LANGE Basic Science; McGraw-Hill Education, 2012.
[81]
Flora, S.J.; Bhadauria, S.; Pachauri, V.; Yadav, A. Monoisoamyl 2, 3-dimercaptosuccinic acid (MiADMSA) demonstrates higher efficacy by oral route in reversing arsenic toxicity: a pharmacokinetic approach. Basic Clin. Pharmacol. Toxicol., 2012, 110(5), 449-459.
[http://dx.doi.org/10.1111/j.1742-7843.2011.00836.x] [PMID: 22117535]
[82]
Rooney, J.P. The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology, 2007, 234(3), 145-156.
[http://dx.doi.org/10.1016/j.tox.2007.02.016] [PMID: 17408840]
[83]
Brent, J.; Wallace, K.; Burkhart, K.; Phillips, S.; Donavan, J. Critical care toxicology: Diagnosis and management of the critically poisoned patient, 1st ed; Elsevier Mosby, 2005.
[84]
Flora, S.J.; Chouhan, S.; Kannan, G.M.; Mittal, M.; Swarnkar, H. Combined administration of taurine and monoisoamyl DMSA protects arsenic induced oxidative injury in rats. Oxid. Med. Cell. Longev., 2008, 1(1), 39-45.
[http://dx.doi.org/10.4161/oxim.1.1.6481] [PMID: 19794907]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 15
Year: 2020
Published on: 14 April, 2020
Page: [1489 - 1498]
Pages: 10
DOI: 10.2174/1389557520666200414161944
Price: $65

Article Metrics

PDF: 33
HTML: 2