Screening of Antioxidant and α-Glucosidase Inhibitory Activities of Indian Medicinal Plants

Author(s): Pavan K. Mujawdiya, Suman Kapur*

Journal Name: Current Enzyme Inhibition

Volume 16 , Issue 2 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background and Objective: Chronic diseases are associated with low-grade inflammation and oxidative damage. Traditional medicines have been used to manage these disorders due to their high polyphenol content and potent antioxidant activity. We evaluated the in-vitro anti-diabetic and antioxidant potential of extracts of several medicinal plants namely, Mangifera indica, Terminalia arjuna, Moringa oleifera, Albizia lebbeck, Terminalia chebula and Hippophae rhamnoides.

Methods: Total polyphenol, flavonoid, and saponin contents were estimated by standard methods. Antioxidant activity was measured using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. The anti-diabetic potential was evaluated using in-vitro α-glucosidase inhibition assay.

Results: Terminalia chebula was found to be the richest in both polyphenols (566.5 ± 21.9 μg Gallic acid equivalents/mg of dry weight) and flavonoids (190.67 ± 10.78 quercetin equivalents/mg of dry weight). Extract of Terminalia arjuna was the richest source of saponins (171.92 ± 12.48 μg saponin equivalents/mg of dry weight). All plant extracts showed potent anti-oxidant activity as reflected by their IC50 values in DPPH assay, with Albizia lebbeck (IC50 = 1.35 μg/ml) being the most potent. All plant extracts also showed potent anti-diabetic activity as inferred from their ability to inhibit α- glucosidase, the principal enzyme involved in the metabolism of dietary carbohydrates in the intestine. It was observed that all tested extracts were more potent (IC50 2.53 to 227 μg/ml) in comparison to the standard α-glucosidase inhibitor Acarbose (IC50=2.7 mg/ml).

Conclusion: The plant extracts of Mangifera indica, Terminalia arjuna, Moringa oleifera, Albizia lebbeck, Terminalia chebula, and Hippophae rhamnoides possess potent antioxidant and α- glucosidase inhibitory potential and can aid in the management of postprandial hyperglycemia and oxidative damage.

Keywords: Antidiabetic, antioxidants, hyperglycemia, insulin resistance, metabolic syndrome, oxidative stress.

[1]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[2]
Davies, M.J.; D’Alessio, D.A.; Fradkin, J.; Kernan, W.N.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tsapas, A.; Wexler, D.J.; Buse, J.B. Management of hyperglycemia in type 2 diabetes, 2018.A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 2018, 41(12), 2669-2701.
[http://dx.doi.org/10.2337/dci18-0033] [PMID: 30291106]
[3]
Chawla, A.; Chawla, R.; Jaggi, S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab., 2016, 20(4), 546-551.
[http://dx.doi.org/10.4103/2230-8210.183480] [PMID: 27366724]
[4]
Liu, X.; Wang, L.; Wang, P.; Liu, R.; Yang, K.; Qian, X.; Fan, J.; Yu, S.; Li, Y.; Wang, C. The dynamics of type 2 diabetes mellitus prevalence and management rates among rural populations in Henan Province. China. J. Diabetes Res., 2017, 20179092759
[http://dx.doi.org/10.1155/2017/9092759] [PMID: 28326333]
[5]
Oguntibeju, O.O. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int. J. Physiol. Pathophysiol. Pharmacol., 2019, 11(3), 45-63.
[PMID: 31333808]
[6]
Costa, N.T.; Veiga Iriyoda, T.M.; Kallaur, A.P.; Delongui, F.; Alfieri, D.F.; Lozovoy, M.A.; Amin, R.B.; Delfino, V.D.; Dichi, I.; Simão, A.N. Influence of insulin resistance and TNF-α on the inflammatory process, oxidative stress, and disease activity in patients with rheumatoid arthritis. Oxid. Med. Cell. Longev., 2016, 20168962763
[http://dx.doi.org/10.1155/2016/8962763] [PMID: 27340510]
[7]
Kazeem, M.I.; Adamson, J.O.; Ogunwande, I.A. Modes of inhibition of α -amylase and α -glucosidase by aqueous extract of Morinda lucida Benth leaf. BioMed Res. Int., 2013, 2013527570
[http://dx.doi.org/10.1155/2013/527570] [PMID: 24455701]
[8]
Kumar, S.; Narwal, S.; Kumar, V.; Prakash, O. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev., 2011, 5(9), 19-29.
[http://dx.doi.org/10.4103/0973-7847.79096] [PMID: 22096315]
[9]
Mohammad, A.Z.; Mina, P. Searching for A-glucosidase inhibitory activity in hexane extracts by some plants from Kurdistan province. Int. J. Adv. Biol. Biomed. Res., 2015, 3(3), 291-296.
[10]
DiNicolantonio, J.J.; Bhutani, J.; O’Keefe, J.H. Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Heart, 2015, 2(1)e000327
[http://dx.doi.org/10.1136/openhrt-2015-000327] [PMID: 26512331]
[11]
Szymanska, R.; Pospíšil, P.; Kruk, J. Plant-derived antioxidants in disease prevention 2018. Oxid. Med. Cell. Longev., 2018, 20182068370
[http://dx.doi.org/10.1155/2018/2068370] [PMID: 30622663]
[12]
Kankanampati, K.; Rosaline, M.; Pushkala, K.; Velayudam, D.; Kapur, S. Ethanolic extract of Mangiferaindica seed kernel ameliorates visceral fat via improvement in lipid metabolism in high fat diet induced obese mice. J. Pharm. Res., 2012, 5(10), 4974-4978.
[13]
Ravipati, A.S.; Zhang, L.; Koyyalamudi, S.R.; Jeong, S.C.; Reddy, N.; Bartlett, J.; Smith, P.T.; Shanmugam, K.; Münch, G.; Wu, M.J.; Satyanarayanan, M.; Vysetti, B. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement. Altern. Med., 2012, 12, 173.
[http://dx.doi.org/10.1186/1472-6882-12-173] [PMID: 23038995]
[14]
Goel, N.; Sirohi, S.K.; Dwivedi, J. Estimation of total saponins and evaluate their effect on in vitro methanogenesis introduction and rumen fermentation pattern in wheat straw based diet. J. Adv. Vet. Res., 2012, (2), 120-126.
[15]
Aksoy, L.; Kolay, E.; Ağılönü, Y.; Aslan, Z.; Kargıoğlu, M. Free radical scavenging activity, total phenolic content, total antioxidant status, and total oxidant status of endemic Thermopsis turcica. Saudi J. Biol. Sci., 2013, 20(3), 235-239.
[http://dx.doi.org/10.1016/j.sjbs.2013.02.003] [PMID: 23961240]
[16]
Moradi-Afrapoli, F.; Asghari, B.; Saeidnia, S.; Ajani, Y.; Mirjani, M.; Malmir, M. In vitro α-glucosidase inhibitory activity of phenolic constituents from aerial parts of Polygonum hyrcanicum. Daru, 2012, 20(1), 37.
[http://dx.doi.org/10.1186/2008-2231-20-37] [PMID: 23351720]
[17]
Rowley, W.R.; Bezold, C.; Arikan, Y.; Byrne, E.; Krohe, S. Diabetes 2030: insights from yesterday, today, and future trends. Popul. Health Manag., 2017, 20(1), 6-12.
[http://dx.doi.org/10.1089/pop.2015.0181] [PMID: 27124621]
[18]
Kalra, S.; Chadha, M.; Sharma, S.K.; Unnikrishnan, A.G. Untapped diamonds for untamed diabetes: The α-glucosidase inhibitors. Indian J. Endocrinol. Metab., 2014, 18(2), 138-141.
[http://dx.doi.org/10.4103/2230-8210.129102] [PMID: 24741507]
[19]
Ouassou, H.; Zahidi, T.; Bouknana, S.; Bouhrim, M.; Mekhfi, H.; Ziyyat, A.; Legssyer, A.; Aziz, M.; Bnouham, M. Inhibition of α-glucosidase, intestinal glucose absorption, and antidiabetic properties by carallumaeuropaea. Evid. Based Complementary Altern. Med., 2018, 2018,9589472.
[http://dx.doi.org/10.1155/2018/9589472.]
[20]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[21]
Adebiyi, O.E.; Olayemi, F.O.; Ning-Hua, T.; Guang-Zhi, Z. In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of Grewiacarpinifolia. BJBAS, 2017, 6(1), 10-14.
[http://dx.doi.org/10.1016/j.bjbas.2016.12.003]
[22]
Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci., 2018, 63(1), 68-78.
[http://dx.doi.org/10.1016/j.advms.2017.05.005] [PMID: 28822266]
[23]
Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of antioxidants and natural products in inflammation. Oxid. Med. Cell. Longev., 2016, 2016,5276130.
[http://dx.doi.org/10.1155/2016/5276130] [PMID: 27803762]
[24]
Limanto, A.; Simamora, A.; Santoso, AW.; Timotius, KH. Antioxidant, a-glucosidase inhibitory activity and molecular docking study of gallic acid, quercetin and rutin: A comparative study. Molecul. Cellul. Biomed. Sci, 2019, 3, 67-74.
[25]
Shivakumar, R.; Venkatarangaiah, K.; Shastri, S.; Nagaraja, R.B.; Sheshagiri, A. Antibacterial property and molecular docking studies of leaf calli phytochemicals of Brideliascandens Wild. Pharmacogn. J., 2018, 10(6), 1221-1229.
[http://dx.doi.org/10.5530/pj.2018.6.209]
[26]
Peng, X.; Zhang, G.; Liao, Y.; Gong, D. Inhibitory kinetics and mechanism of kaempferol on α-glucosidase. Food Chem., 2016, 190, 207-215.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.088] [PMID: 26212963]
[27]
Bansode, T.S.; Salalkar, B.K. Strategies in the design of antidiabetic drugs from Terminalia-chebula retz. Using in silico and in vitro approach. MicroMedicine, 2016, 4, 60-67.
[28]
Gurjar, S.; Pal, A.; Kapur, S. Triphala and its constituents ameliorate visceral adiposity from a high-fat diet in mice with diet-induced obesity. Altern. Ther. Health Med., 2012, 18(6), 38-45.
[PMID: 23251942]
[29]
Ceriello, A. Diabetic complications: from oxidative stress to inflammatory cardiovascular disorders. Medicographia, 2011, 33, 29-34.
[30]
Karuppannan, K.; Subramanian, D.P.; Venugopal, S. Phytopharmacological properties of Albizia species: a review. Int. J. Pharm. Pharm. Sci., 2013, (5), 70-73.
[31]
Shah, K.A.; Patel, M.B.; Patel, R.J.; Parmar, P.K. Mangifera indica (mango). Pharmacogn. Rev., 2010, 4(7), 42-48.
[http://dx.doi.org/10.4103/0973-7847.65325] [PMID: 22228940]
[32]
Sekar, V.; Chakraborty, S.; Mani, S.; Sali, V.K.; Vasanthi, H.R. Mangiferin from Mangifera indica fruits reduces postprandial glucose level by inhibiting α-glucosidase and α-amylase activity. S. Afr. J. Bot., 2019, (120), 129-134.
[http://dx.doi.org/10.1016/j.sajb.2018.02.001]
[33]
Saini, RK.; Sivanesan, I.; Keum, YS. Phytochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance. 3 Biotech,, 2016, 6(2), 203..
[34]
Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness, 2016, 5(2), 49-56.
[http://dx.doi.org/10.1016/j.fshw.2016.04.001]
[35]
Patel, C.A.; Divakar, K.; Santani, D.; Solanki, H.K.; Thakkar, J.H. Remedial Prospective of Hippophae rhamnoides Linn. (Sea Buckthorn). ISRN Pharmacol., 2012, 2012436857
[http://dx.doi.org/10.5402/2012/436857] [PMID: 22530142]
[36]
Amalraj, A.; Gopi, S. Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: A review. J. Tradit. Complement. Med., 2016, 7(1), 65-78.
[http://dx.doi.org/10.1016/j.jtcme.2016.02.003] [PMID: 28053890]
[37]
Bag, A.; Bhattacharyya, S.K.; Chattopadhyay, R.R. The development of Terminalia chebula Retz. (Combretaceae) in clinical research. Asian Pac. J. Trop. Biomed., 2013, 3(3), 244-252.
[http://dx.doi.org/10.1016/S2221-1691(13)60059-3] [PMID: 23620847]
[38]
Bhatia, A.; Singh, B.; Arora, R.; Arora, S. In vitro evaluation of the α-glucosidase inhibitory potential of methanolic extracts of traditionally used antidiabetic plants. BMC Complement Altern. Med., 2019, 19(1), 74.
[http://dx.doi.org/10.1186/s12906-019-2482-z] [PMID: 30909900]
[39]
Ibitoye, O.B.; Olofinsan, K.A.; Teral, K.; Ghali, U.M.; Ajiboye, T.O. Bioactivity‐guided isolation of antidiabetic principles from the methanolic leaf extract of Bryophyllum pinnatum. J. Food Biochem., 2018, 42,e12627.
[http://dx.doi.org/10.1111/jfbc.12627]
[40]
Phongpaichit, S.; Nikom, J.; Rungjindamai, N.; Sakayaroj, J.; Hutadilok-Towatana, N.; Rukachaisirikul, V.; Kirtikara, K. Biological activities of extracts from endophytic fungi isolated from Garcinia plants. FEMS Immunol. Med. Microbiol., 2007, 51(3), 517-525.
[http://dx.doi.org/10.1111/j.1574-695X.2007.00331.x] [PMID: 17888010]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 2
Year: 2020
Published on: 14 April, 2020
Page: [145 - 154]
Pages: 10
DOI: 10.2174/1573408016666200414153108
Price: $65

Article Metrics

PDF: 12
HTML: 2