Identification of SNP Markers Associated with Iron and Zinc Concentrations in Cicer Seeds

Author(s): Nur Karaca, Duygu Ates, Seda Nemli, Esin Ozkuru, Hasan Yilmaz, Bulent Yagmur, Canan Kartal, Muzaffer Tosun, Ozgul Ozdestan, Semih Otles, Abdullah Kahriman, Peter Chang, Muhammed Bahattin Tanyolac*

Journal Name: Current Genomics

Volume 21 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Cicer reticulatum L. is the wild progenitor of chickpea Cicer arietinum L., the fourth most important pulse crop in the world. Iron (Fe) and zinc (Zn) are vital micronutrients that play crucial roles in sustaining life by acting as co-factors for various proteins.

Aims and Objectives: In order to improve micronutrient-dense chickpea lines, this study aimed to investigate variability and detect DNA markers associated with Fe and Zn concentrations in the seeds of 73 cultivated (C. arietinum L.) and 107 C. reticulatum genotypes.

Methods: A set of 180 accessions was genotyped using 20,868 single nucleotide polymorphism (SNP) markers obtained from genotyping by sequencing analysis.

Results: The results revealed substantial variation in the seed Fe and Zn concentration of the surveyed population. Using STRUCTURE software, the population structure was divided into two groups according to the principal component analysis and neighbor-joining tree analysis. A total of 23 and 16 associated SNP markers related to Fe and Zn concentrations, respectively were identified in TASSEL software by the mixed linear model method. Significant SNP markers found in more than two environments were accepted as more reliable than those that only existed in a single environment.

Conclusion: The identified markers can be used in marker-assisted selection in chickpea breeding programs for the improvement of seed Fe and Zn concentrations in the chickpea.

Keywords: Association mapping studies, chickpea, C. arietinum, C. reticulatum, iron, zinc.

[1]
Diapari, M.; Sindhu, A.; Bett, K.; Deokar, A.; Warkentin, T.D.; Tar’an, B. Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicer arietinum L.). Genome, 2014, 57(8), 459-468.
[http://dx.doi.org/10.1139/gen-2014-0108] [PMID: 25434748]
[2]
Thudi, M.; Chitikineni, A.; Liu, X.; He, W.; Roorkiwal, M.; Yang, W.; Jian, J.; Doddamani, D.; Gaur, P.M.; Rathore, A.; Samineni, S.; Saxena, R.K.; Xu, D.; Singh, N.P.; Chaturvedi, S.K.; Zhang, G.; Wang, J.; Datta, S.K.; Xu, X.; Varshney, R.K. Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Sci. Rep., 2016, 6, 38636.
[http://dx.doi.org/10.1038/srep38636] [PMID: 27982107]
[3]
Upadhyaya, H.D.; Bajaj, D.; Das, S.; Kumar, V.; Gowda, C.L.; Sharma, S.; Tyagi, A.K.; Parida, S.K. Genetic dissection of seed-iron and zinc concentrations in chickpea. Sci. Rep., 2016, 6, 24050.
[http://dx.doi.org/10.1038/srep24050] [PMID: 27063651]
[4]
Zuo, Y.; Zhang, F. Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species: a review. Sustainable Agriculture; Springer, 2009, pp. 571-582.
[http://dx.doi.org/10.1007/978-90-481-2666-8_35]
[5]
Gupta, S.; Nawaz, K.; Parween, S.; Roy, R.; Sahu, K.; Kumar Pole, A.; Khandal, H.; Srivastava, R.; Kumar Parida, S.; Chattopadhyay, D. Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement. DNA Res., 2017, 24(1), 1-10.
[PMID: 27567261]
[6]
Singh, S.; Gumber, R.; Joshi, N.; Singh, K. Introgression from wild Cicer reticulatum to cultivated chickpea for productivity and disease resistance. Plant Breed., 2005, 124(5), 477-480.
[http://dx.doi.org/10.1111/j.1439-0523.2005.01146.x]
[7]
Upadhyaya, H.D.; Thudi, M.; Dronavalli, N.; Gujaria, N.; Singh, S.; Sharma, S.; Varshney, R.K. Genomic tools and germplasm diversity for chickpea improvement. Plant Genet. Resour., 2011, 9(1), 45.
[http://dx.doi.org/10.1017/S1479262110000468]
[8]
Jin, T.; Chen, J.; Zhu, L.; Zhao, Y.; Guo, J.; Huang, Y. Comparative mapping combined with homology-based cloning of the rice genome reveals candidate genes for grain zinc and iron concentration in maize. BMC Genet., 2015, 16(1), 17.
[http://dx.doi.org/10.1186/s12863-015-0176-1] [PMID: 25888360]
[9]
Welch, R.M.; Graham, R.D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot., 2004, 55(396), 353-364.
[http://dx.doi.org/10.1093/jxb/erh064] [PMID: 14739261]
[10]
Gebremedhin, S.; Enquselassie, F.; Umeta, M. Prevalence of prenatal zinc deficiency and its association with socio-demographic, dietary and health care related factors in rural Sidama, Southern Ethiopia: a cross-sectional study. BMC Public Health, 2011, 11(1), 898.
[http://dx.doi.org/10.1186/1471-2458-11-898] [PMID: 22126192]
[11]
Khush, G.S.; Lee, S.; Cho, J.-I.; Jeon, J.-S. Biofortification of crops for reducing malnutrition. Plant Biotechnol. Rep., 2012, 6(3), 195-202.
[http://dx.doi.org/10.1007/s11816-012-0216-5]
[12]
Garcia-Casal, M.N.; Peña-Rosas, J.P.; Pachón, H.; De-Regil, L.M.; Centeno, T.E.; Flores-Urrutia, M.C. Staple crops biofortified with increased micronutrient content: effects on vitamin and mineral status, as well as health and cognitive function in the general population. The Cochrane Library, 2016, p., 8.
[13]
White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol., 2009, 182(1), 49-84.
[http://dx.doi.org/10.1111/j.1469-8137.2008.02738.x] [PMID: 19192191]
[14]
Sonah, H.; O’Donoughue, L.; Cober, E.; Rajcan, I.; Belzile, F. Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnol. J., 2015, 13(2), 211-221.
[http://dx.doi.org/10.1111/pbi.12249] [PMID: 25213593]
[15]
Brachi, B.; Morris, G.P.; Borevitz, J.O. Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol., 2011, 12(10), 232.
[http://dx.doi.org/10.1186/gb-2011-12-10-232] [PMID: 22035733]
[16]
He, J.; Zhao, X.; Laroche, A.; Lu, Z.-X.; Liu, H.; Li, Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci., 2014, 5, 484.
[http://dx.doi.org/10.3389/fpls.2014.00484] [PMID: 25324846]
[17]
von Wettberg, E.J.B.; Chang, P.L.; Başdemir, F.; Carrasquila-Garcia, N.; Korbu, L.B.; Moenga, S.M.; Bedada, G.; Greenlon, A.; Moriuchi, K.S.; Singh, V.; Cordeiro, M.A.; Noujdina, N.V.; Dinegde, K.N.; Shah Sani, S.G.A.; Getahun, T.; Vance, L.; Bergmann, E.; Lindsay, D.; Mamo, B.E.; Warschefsky, E.J.; Dacosta-Calheiros, E.; Marques, E.; Yilmaz, M.A.; Cakmak, A.; Rose, J.; Migneault, A.; Krieg, C.P.; Saylak, S.; Temel, H.; Friesen, M.L.; Siler, E.; Akhmetov, Z.; Ozcelik, H.; Kholova, J.; Can, C.; Gaur, P.; Yildirim, M.; Sharma, H.; Vadez, V.; Tesfaye, K.; Woldemedhin, A.F.; Tar’an, B.; Aydogan, A.; Bukun, B.; Penmetsa, R.V.; Berger, J.; Kahraman, A.; Nuzhdin, S.V.; Cook, D.R. Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nat. Commun., 2018, 9(1), 649.
[http://dx.doi.org/10.1038/s41467-018-02867-z] [PMID: 29440741]
[18]
Kacar, B.; Inal, A. Chemical analysis of plant and soil. II; Soil Analyses, Publications of Agriculture Fac. of Univ. of Ankara, 1972, p. 453.
[19]
McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; DePristo, M.A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res., 2010, 20(9), 1297-1303.
[http://dx.doi.org/10.1101/gr.107524.110] [PMID: 20644199]
[20]
Varshney, R.K.; Song, C.; Saxena, R.K.; Azam, S.; Yu, S.; Sharpe, A.G.; Cannon, S.; Baek, J.; Rosen, B.D.; Tar’an, B.; Millan, T.; Zhang, X.; Ramsay, L.D.; Iwata, A.; Wang, Y.; Nelson, W.; Farmer, A.D.; Gaur, P.M.; Soderlund, C.; Penmetsa, R.V.; Xu, C.; Bharti, A.K.; He, W.; Winter, P.; Zhao, S.; Hane, J.K.; Carrasquilla-Garcia, N.; Condie, J.A.; Upadhyaya, H.D.; Luo, M.C.; Thudi, M.; Gowda, C.L.; Singh, N.P.; Lichtenzveig, J.; Gali, K.K.; Rubio, J.; Nadarajan, N.; Dolezel, J.; Bansal, K.C.; Xu, X.; Edwards, D.; Zhang, G.; Kahl, G.; Gil, J.; Singh, K.B.; Datta, S.K.; Jackson, S.A.; Wang, J.; Cook, D.R. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol., 2013, 31(3), 240-246.
[http://dx.doi.org/10.1038/nbt.2491] [PMID: 23354103]
[21]
(a)DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.; Rivas, M.A.; Hanna, M.; McKenna, A.; Fennell, T.J.; Kernytsky, A.M.; Sivachenko, A.Y.; Cibulskis, K.; Gabriel, S.B.; Altshuler, D.; Daly, M.J. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet., 2011, 43(5), 491-498.
[http://dx.doi.org/10.1038/ng.806] [PMID: 21478889]
(b)Van der Auwera, G. A.; Carneiro, M. O.; Hartl, C.; Poplin, R.; del Angel, G.; Levy‐Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J. From FastQ data to high‐confidence variant calls: the genome analysis toolkit best practices pipeline. Curr.Protoc. Bioinformatics, 2013, 43(1110), 11.10. 1-11.10. 33..
[http://dx.doi.org/10.1002/0471250953.bi1110s43]
[22]
Ozkuru, E.; Ates, D.; Nemli, S.; Erdogmus, S.; Karaca, N.; Yilmaz, H.; Yagmur, B.; Kartal, C.; Tosun, M.; Ozdestan, O. Association mapping of loci linked to copper, phosphorus, and potassium concentrations in the seeds of C. arietinum and C. reticulatum. Genomics, 2019, 111(6), 1873-1881.
[PMID: 30594584]
[23]
Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155(2), 945-959.
[PMID: 10835412]
[24]
Team, R.C. R: a language and environment for statistical computing; R Foundation for Statistical Computing: Vienna, Austria, 2013.
[25]
Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23(19), 2633-2635.
[http://dx.doi.org/10.1093/bioinformatics/btm308] [PMID: 17586829]
[26]
Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 1995, 289-300.
[http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x]
[27]
Bonferroni, C. E. Il calcolo delle assicurazioni su gruppi di teste.Studi in onore del professore salvatore ortu carboni, Rome; , 1935, pp. 13-60.
[28]
(a)Khazaei, H.; Podder, R.; Caron, C.T.; Kundu, S.S.; Diapari, M.; Vandenberg, A.; Bett, K.E. Marker-trait association analysis of iron and zinc concentration in lentil (Lens culinaris Medik.) seeds. Plant Genome, 2017, 10(2)
[http://dx.doi.org/10.3835/plantgenome2017.02.0007] [PMID: 28724070]
(b)Alomari, D.Z.; Eggert, K.; von Wirén, N.; Pillen, K.; Röder, M.S. Genome-wide association study of calcium accumulation in grains of European wheat cultivars. Front. Plant Sci., 2017, 8
[http://dx.doi.org/10.3389/fpls.2017.01797]
(c)Diapari, M.; Sindhu, A.; Warkentin, T.D.; Bett, K.; Tar’an, B. Population structure and marker-trait association studies of iron, zinc and selenium concentrations in seed of field pea (Pisum sativum L.). Mol. Breed., 2015, 35(1), 30.
[http://dx.doi.org/10.1007/s11032-015-0252-2]
[29]
(a)Suwarto, N. Genotype× environment interaction for iron concentration of rice in central Java of Indonesia. Rice Sci., 2011, 18(1), 75-78.
[http://dx.doi.org/10.1016/S1672-6308(11)60011-5]
(b)Chandel, G.; Banerjee, S.; See, S.; Meena, R.; Sharma, D.; Verulkar, S. Effects of different nitrogen fertilizer levels and native soil properties on rice grain Fe, Zn and protein contents. Rice Sci., 2010, 17(3), 213-227.
[http://dx.doi.org/10.1016/S1672-6308(09)60020-2]
[30]
Ray, H.; Bett, K.; Tar’an, B.; Vandenberg, A.; Thavarajah, D.; Warkentin, T. Mineral micronutrient content of cultivars of field pea, chickpea, common bean, and lentil grown in Saskatchewan, Canada. Crop Sci., 2014, 54(4), 1698-1708.
[http://dx.doi.org/10.2135/cropsci2013.08.0568]
[31]
Khazaei, H.; Podder, R.; Caron, C.T.; Kundu, S.S.; Diapari, M.; Vandenberg, A.; Bett, K.E. Marker-trait association analysis of iron and zinc concentration in lentil (Lens culinaris Medik.) seeds. Plant Genome, 2017, 10(2)
[http://dx.doi.org/10.3835/plantgenome2017.02.0007] [PMID: 28724070]
[32]
Mamo, B.E.; Barber, B.L.; Steffenson, B.J. Genome-wide association mapping of zinc and iron concentration in barley landraces from Ethiopia and Eritrea. J. Cereal Sci., 2014, 60(3), 497-506.
[http://dx.doi.org/10.1016/j.jcs.2014.08.007]
[33]
Ghandilyan, A.; Ilk, N.; Hanhart, C.; Mbengue, M.; Barboza, L.; Schat, H.; Koornneef, M.; El-Lithy, M.; Vreugdenhil, D.; Reymond, M.; Aarts, M.G. A strong effect of growth medium and organ type on the identification of QTLs for phytate and mineral concentrations in three Arabidopsis thaliana RIL populations. J. Exp. Bot., 2009, 60(5), 1409-1425.
[http://dx.doi.org/10.1093/jxb/erp084] [PMID: 19346258]
[34]
Abbo, S.; Berger, J.; Turner, N.C. Evolution of cultivated chickpea: four bottlenecks limit diversity and  Ā constrain adaptation. Funct. Plant Biol., 2003, 30(10), 1081-1087.
[http://dx.doi.org/10.1071/FP03084]
[35]
Zhang, H.; Mittal, N.; Leamy, L.J.; Barazani, O.; Song, B.H. Back into the wild-Apply untapped genetic diversity of wild relatives for crop improvement. Evol. Appl., 2016, 10(1), 5-24.
[http://dx.doi.org/10.1111/eva.12434] [PMID: 28035232]
[36]
(a)Gregorio, G.B.; Senadhira, D.; Htut, H.; Graham, R.D. Breeding for trace mineral density in rice. Food Nutr. Bull., 2000, 21(4), 382-386.
[http://dx.doi.org/10.1177/156482650002100407]
(b)Graham, R.D.; Welch, R.M.; Bouis, H.E. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv. Agron., 2001, 70, 77-142.
[http://dx.doi.org/10.1016/S0065-2113(01)70004-1]
[37]
(a)Rawat, N.; Tiwari, V.K.; Singh, N.; Randhawa, G.S.; Singh, K.; Chhuneja, P.; Dhaliwal, H.S. Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genet. Resour. Crop Evol., 2009, 56(1), 53.
[http://dx.doi.org/10.1007/s10722-008-9344-8]
(b)Chhuneja, P.; Dhaliwal, H.; Bains, N.; Singh, K. Aegilops kotschyi and Aegilops tauschii as sources for higher levels of grain iron and zinc. Plant Breed., 2006, 125(5), 529-531.
[http://dx.doi.org/10.1111/j.1439-0523.2006.01223.x]
[38]
(a)Myles, S.; Peiffer, J.; Brown, P.J.; Ersoz, E.S.; Zhang, Z.; Costich, D.E.; Buckler, E.S. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell, 2009, 21(8), 2194-2202.
[http://dx.doi.org/10.1105/tpc.109.068437] [PMID: 19654263]
(b)Racedo, J.; Gutiérrez, L.; Perera, M.F.; Ostengo, S.; Pardo, E.M.; Cuenya, M.I.; Welin, B.; Castagnaro, A.P. Genome-wide association mapping of quantitative traits in a breeding population of sugarcane. BMC Plant Biol., 2016, 16(1), 142.
[http://dx.doi.org/10.1186/s12870-016-0829-x] [PMID: 27342657]
(c)Zhu, C.; Gore, M.; Buckler, E.S.; Yu, J. Status and prospects of association mapping in plants. Plant Genome, 2008, 1(1), 5-20.
[http://dx.doi.org/10.3835/plantgenome2008.02.0089]
[39]
Kushwaha, U.K.S.; Mangal, V.; Bairwa, A.K.; Adhikari, S.; Ahmed, T.; Bhat, P.; Yadav, A.; Dhaka, N.; Prajapati, D.R.; Gaur, A. Association mapping, principles and techniques. J. Biol. Environ. Eng, 2017, 2(1), 1-9.
[40]
Bischoff, V.; Selbig, J.; Scheible, W.-R. Involvement of TBL/DUF231 proteins into cell wall biology. Plant Signal. Behav., 2010, 5(8), 1057-1059.
[http://dx.doi.org/10.4161/psb.5.8.12414] [PMID: 20657172]
[41]
Bischoff, V.; Nita, S.; Neumetzler, L.; Schindelasch, D.; Urbain, A.; Eshed, R.; Persson, S.; Delmer, D.; Scheible, W.R. TRICHOME BIREFRINGENCE and its homolog At5g01360 encode novel plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis thaliana. Plant Physiol., 2010, 153(2), 590-602.
[42]
Rice, G.I.; Bond, J.; Asipu, A.; Brunette, R.L.; Manfield, I.W.; Carr, I.M.; Fuller, J.C.; Jackson, R.M.; Lamb, T.; Briggs, T.A.; Ali, M.; Gornall, H.; Couthard, L.R.; Aeby, A.; Attard-Montalto, S.P.; Bertini, E.; Bodemer, C.; Brockmann, K.; Brueton, L.A.; Corry, P.C.; Desguerre, I.; Fazzi, E.; Cazorla, A.G.; Gener, B.; Hamel, B.C.; Heiberg, A.; Hunter, M.; van der Knaap, M.S.; Kumar, R.; Lagae, L.; Landrieu, P.G.; Lourenco, C.M.; Marom, D.; McDermott, M.F.; van der Merwe, W.; Orcesi, S.; Prendiville, J.S.; Rasmussen, M.; Shalev, S.A.; Soler, D.M.; Shinawi, M.; Spiegel, R.; Tan, T.Y.; Vanderver, A.; Wakeling, E.L.; Wassmer, E.; Whittaker, E.; Lebon, P.; Stetson, D.B.; Bonthron, D.T.; Crow, Y.J. Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet., 2009, 41(7), 829-832.
[http://dx.doi.org/10.1038/ng.373] [PMID: 19525956]
[43]
Hammani, K.; Okuda, K.; Tanz, S.K.; Chateigner-Boutin, A.-L.; Shikanai, T.; Small, I. A study of new Arabidopsis chloroplast RNA editing mutants reveals general features of editing factors and their target sites. Plant Cell, 2009, 21(11), 3686-3699.
[http://dx.doi.org/10.1105/tpc.109.071472] [PMID: 19934379]
[44]
(a)Garcia, V.; Bruchet, H.; Camescasse, D.; Granier, F.; Bouchez, D.; Tissier, A. AtATM is essential for meiosis and the somatic response to DNA damage in plants. Plant Cell, 2003, 15(1), 119-132.
[http://dx.doi.org/10.1105/tpc.006577] [PMID: 12509526]
(b)Friesner, J.D.; Liu, B.; Culligan, K.; Britt, A.B. Ionizing radiation-dependent γ-H2AX focus formation requires ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3-related. Mol. Biol. Cell, 2005, 16(5), 2566-2576.
[http://dx.doi.org/10.1091/mbc.e04-10-0890] [PMID: 15772150]
[45]
Vespa, L.; Couvillion, M.; Spangler, E.; Shippen, D.E. ATM and ATR make distinct contributions to chromosome end protection and the maintenance of telomeric DNA in Arabidopsis. Genes Dev., 2005, 19(18), 2111-2115.
[http://dx.doi.org/10.1101/gad.1333805] [PMID: 16166376]
[46]
Grotz, N.; Fox, T.; Connolly, E.; Park, W.; Guerinot, M.L.; Eide, D. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc. Natl. Acad. Sci. USA, 1998, 95(12), 7220-7224.
[http://dx.doi.org/10.1073/pnas.95.12.7220] [PMID: 9618566]
[47]
Noguero, M.; Atif, R.M.; Ochatt, S.; Thompson, R.D. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Sci., 2013, 209, 32-45.
[http://dx.doi.org/10.1016/j.plantsci.2013.03.016] [PMID: 23759101]
[48]
Guo, Y.; Qin, G.; Gu, H.; Qu, L-J. Dof5.6/HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in Arabidopsis. Plant Cell, 2009, 21(11), 3518-3534.
[http://dx.doi.org/10.1105/tpc.108.064139] [PMID: 19915089]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 3
Year: 2020
Page: [212 - 223]
Pages: 12
DOI: 10.2174/1389202921666200413150951
Price: $65

Article Metrics

PDF: 20
HTML: 1