Copper Hydrotalcite (Cu-HT) as an Efficient Catalyst for the Hydrogenation of CO2 to Formic Acid

Author(s): Minaxi S. Maru*, Parth Patel, Noor-ul H. Khan, Ram S. Shukla

Journal Name: Current Catalysis

Volume 9 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Hydrogenation of CO2 to energy-rich products over heterogeneous metal catalysts has gained much attention due to their commercial applications. Specifically, the first-row transition metal catalysts are very rarely reported and discussed for the production of formic acid from the hydrogenation of CO2. Herein, hydrotalcite supported copper metal has shown activity and efficiency to produce formic acid from the hydrogenation of CO2, without adding any additional base or promoter and was effectively recycled 4 times after separating by simple filtration without compromising the formic acid yield. Hydrotalcite supported copper-based catalyst (Cu-HT) was synthesized through the coprecipitation method and used as a heterogeneous catalyst for the hydrogenation of CO2. The precise copper metal content determined by ICP in Cu-HT is 0.00944 mmol. The catalyst afforded maximum TOF, 124 h-1 under the employed reaction conditions: 100 mg catalyst, 60 °C, 60 bar total pressure of CO2/H2 (1:1, p/p) with 60 mL of mixed methanol:water (5:1, v/v) solvent. Cu-HT catalyst was synthesised and thoroughly characterized by FT-IR, PXRD, SEM, TEM, XPS and BET surface area. The first-order kinetic dependence with respect to the catalyst amount, partial pressures of CO2, and of H2 was observed and a plausible reaction mechanism is suggested.

Background: CO2 hydrogenation to energy-rich products over heterogeneous metal catalysts has gained much attention due to their commercial applications. Specifically, the first-row transition metal catalysts are very rarely reported and discussed for the production of formic acid from the hydrogenation of CO2.

Objective: The aim is to investigate the heterogeneous catalyst systems, using solid soft base hydrotalcite supported Cu metal-based catalyst for effective and selective hydrogenation of CO2 to formic acid.

Methods: The Cu –HT catalyst was synthesized and characterized by FT-IR, PXRD, SEM, TEM, XPS and BET surface area in which the precise copper content was 0.00944 mmol. The Cu-HT catalysed hydrogenation of CO2 was carried out in the autoclave.

Results: The Cu-HT catalyst afforded maximum TOF of 124 h-1 under the employed reaction conditions: 100 mg catalyst, 60 °C, 60 bar total pressure of CO2/H2 (1:1, p/p) with 60 mL of mixed methanol: water (5:1, v/v) solvent, without adding any additional base or promoter and was recycled 4 times by simple filtration without compromising the formic acid yield. Formation of formic acid was observed to depend on the amount of the catalyst, partial pressures of CO2 and H2, total pressure, temperature and time.

Conclusion: Cu-HT based heterogeneous catalyst was found to be efficient for selective hydrogenation of CO2 to formic acid and was effectively recycled four times after elegantly separating by simple filtration.

Keywords: Formic acid, carbon dioxide, hydrogenation, copper hydrotalcite, heterogeneous catalyst.

(a) Jacobson, M.Z. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci., 2009, 2, 148-173.
(b) Darensbourg, D.J. Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem. Rev., 2007, 107(6), 2388-2410.
[ PMID: 17447821]
(c) Dell’Amico, D.B.; Calderazzo, F.; Labella, L.; Marchetti, F.; Pampaloni, G. Converting carbon dioxide into carbamato derivatives. Chem. Rev., 2003, 103(10), 3857-3898.
[ PMID: 14531715]
(d) Palmer, D.A.; Van Eldik, R. The chemistry of metal carbonato and carbon dioxide complexes. Chem. Rev., 1983, 83, 651-731.
(a) Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. technological use of CO2. Chem. Rev., 2014, 114(3), 1709-1742.
[ PMID: 24313306]
(b) Statistics, I. CO2 emissions from fuel combustion-highlights, IEA, Paris, Cited July 2011. Reference: Available from: http://www. iea. org/co2highlights/co2highlights.pdf
(c) Arakawa, H.; Aresta, M.; Armor, J.N.; Barteau, M.A.; Beckman, E.J.; Bell, A.T.; Bercaw, J.E.; Creutz, C.; Dinjus, E.; Dixon, D.A.; Domen, K.; DuBois, D.L.; Eckert, J.; Fujita, E.; Gibson, D.H.; Goddard, W.A.; Goodman, D.W.; Keller, J.; Kubas, G.J.; Kung, H.H.; Lyons, J.E.; Manzer, L.E.; Marks, T.J.; Morokuma, K.; Nicholas, K.M.; Periana, R.; Que, L.; Rostrup-Nielson, J.; Sachtler, W.M.; Schmidt, L.D.; Sen, A.; Somorjai, G.A.; Stair, P.C.; Stults, B.R.; Tumas, W. Catalysis research of relevance to carbon management: Progress, challenges, and opportunities. Chem. Rev., 2001, 101(4), 953-996.
[] [PMID: 11709862]
(a) Sudakar, P.; Sivanesan, D.; Yoon, S. Copolymerization of Epichlorohydrin and CO2 Using Zinc Glutarate: An Additional Application of ZnGA in Polycarbonate Synthesis. Macromol. Rapid Commun., 2016, 37(9), 788-793.
[] [PMID: 26991465]
(b) Sivanesan, D.; Choi, Y.; Lee, J.; Youn, M.H.; Park, K.T.; Grace, A.N.; Kim, H-J.; Jeong, S.K. Carbon dioxide sequestration by using a model carbonic anhydrase complex in tertiary amine medium. ChemSusChem, 2015, 8(23), 3977-3982.
[] [PMID: 26564396]
(c) Maeda, C.; Miyazaki, Y.; Ema, T. Recent progress in catalytic conversions of carbon dioxide. Catal. Sci. Technol., 2014, 4, 1482-1497.
(d) Appel, A.M.; Bercaw, J.E.; Bocarsly, A.B.; Dobbek, H.; DuBois, D.L.; Dupuis, M.; Ferry, J.G.; Fujita, E.; Hille, R.; Kenis, P.J.A.; Kerfeld, C.A.; Morris, R.H.; Peden, C.H.F.; Portis, A.R.; Ragsdale, S.W.; Rauchfuss, T.B.; Reek, J.N.H.; Seefeldt, L.C.; Thauer, R.K.; Waldrop, G.L. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev., 2013, 113(8), 6621-6658.
[ PMID: 23767781]
(e) Darensbourg, D.J.; Wilson, S.J. What’s new with CO2? Recent advances in its copolymerization with oxiranes. Green Chem., 2012, 14, 2665-2671.
(f) Férey, G.; Serre, C.; Devic, T.; Maurin, G.; Jobic, H.; Llewellyn, P.L.; De Weireld, G.; Vimont, A.; Daturi, M.; Chang, J.S. Why hybrid porous solids capture greenhouse gases? Chem. Soc. Rev., 2011, 40(2), 550-562.
[ PMID: 21180728]
(g) Mikkelsen, M.; Jorgensen, M.; Krebs, F.C. Theteraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 2010, 3, 43-81.
(h) Riduan, S.N.; Zhang, Y. Recent developments in carbon dioxide utilization under mild conditions. Dalton Trans., 2010, 39(14), 3347-3357.
[] [PMID: 20379526]
Baiker, A. Utilization of carbon dioxide in heterogeneous catalytic synthesis. Appl. Organomet. Chem., 2000, 14, 751-762.
Grasemann, M.; Laurenczy, G. Formic acid as a hydrogen source – recent developments and future trends. Energy Environ. Sci., 2012, 5, 8171-8181.
Reutemann, W.; Kieczka, H. Formic acid, Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed; Wiley-VCH: Weinheim, 2011.
Zhiming, Yu. Zhongguo Huagong Shangpin Daquan; Chinese Commodity Press: Beijing, 1984, Vol. 1, .
Jiang, H.L.; Singh, S.K.; Yan, J.M.; Zhang, X.B.; Xu, Q. Liquid phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions. ChemSusChem, 2010, 3(5), 541-549.
[] [PMID: 20379965]
Uhm, S.; Lee, H.J.; Lee, J. Understanding underlying processes in formic acid fuel cells. Phys. Chem. Chem. Phys., 2009, 11(41), 9326-9336.
[] [PMID: 19830313]
Moret, S.; Dyson, P.J.; Laurenczy, G. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nat. Commun., 2014, 5, 4017.
[] [PMID: 24886955]
von der Assen, N.; Voll, P.; Peters, M.; Bardow, A. Life cycle assessment of CO2 capture and utilization: a tutorial review. Chem. Soc. Rev., 2014, 43(23), 7982-7994.
[] [PMID: 24441866]
aWesselbaum, S.; Hintermair, U.; Leitner, W. Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base. Angew. Chem. Int. Ed. Engl., 2012, 51(34), 8585-8588.
[] [PMID: 22807319]
(b) Preti, D.; Resta, C.; Squarcialupi, S.; Fachinetti, G. Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst. Angew. Chem. Int. Ed. Engl., 2011, 50(52), 12551-12554.
[] [PMID: 22057843]
(c) Fellay, C.; Dyson, P.J.; Laurenczy, G. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Angew. Chem. Int. Ed. Engl., 2008, 47(21), 3966-3968.
[] [PMID: 18393267]
(d) Jessop, P.G.; Ikariya, T.; Noyori, R. Homogeneous hydrogenation of carbon dioxide. Chem. Rev., 1995, 95, 259-272.
(e) Zhang, J.Z.; Li, Z.; Wang, H.; Wang, C.Y. Homogeneous catalytic synthesis of formic acid (salts) by hydrogenation of CO2 with H2 in the presence of ruthenium species. J. Mol. Catal. Chem., 1996, 112, 9-14.
Kiso, Y.; Saeki, K. Jpn; Kokai Tokyo Koho: JP, 1977, p. 52036617.
(a) Ziebart, C.; Federsel, C.; Anbarasan, P.; Jackstell, R.; Baumann, W.; Spannenberg, A.; Beller, M. Well-defined iron catalyst for improved hydrogenation of carbon dioxide and bicarbonate. J. Am. Chem. Soc., 2012, 134(51), 20701-20704.
[] [PMID: 23171468]
(b) Tanaka, R.; Yamashita, M.; Nozaki, K. Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes. J. Am. Chem. Soc., 2009, 131(40), 14168-14169.
[] [PMID: 19775157]
(a) Ogo, S.; Kabe, R.; Hayashi, H.; Harada, R.; Fukuzumi, S. Mechanistic investigation of CO2 hydrogenation by Ru(II) and Ir(III) aqua complexes under acidic conditions: Two catalytic systems differing in the nature of the rate determining step. Dalton Trans., 2006, (39), 4657-4663.
[] [PMID: 17028673]
(b) Hayashi, H.; Ogo, S.; Fukuzumi, S. Aqueous hydrogenation of carbon dioxide catalysed by water-soluble ruthenium aqua complexes under acidic conditions. Chem. Commun. (Camb.), 2004, (23), 2714-2715.
[] [PMID: 15568081]
Sudheesh, N.; Parmar, J.N.; Shukla, R.S. Hydroformylation of propene heterogeneously catalyzed by HRh(CO)(PPh3)3 encapsulated in to hexagonal mesoporous silica-Parametric variation and mass transfer study. Appl. Catal. A Gen., 2012, 415-416, 124-131.
Sudheesh, N.; Chaturvedi, A.K.; Shukla, R.S. RhCl(TPPTS)3 encapsulated into the hexagonal mesoporous silica as an efficient heterogeneous catalyst for hydroformylation of vinyl esters. Appl. Catal. A Gen., 2011, 409-410, 99-105.
Sudheesh, N.; Sharma, S.K.; Shukla, R.S.; Jasra, R.V. Investigations on the kinetics of hydroformylation of 1-hexene using HRh(CO)(PPh3)3 encapsulated hexagonal mesoporous silica as a heterogeneous catalyst. J. Mol. Catal. Chem., 2010, 316, 23-29.
Sharma, S.K.; Parikh, P.A.; Jasra, R.V. Ruthenium containing hydrotalcite as a solid base catalyst for >CC< double bond isomerization in perfumery chemicals. J. Mol. Catal. Chem., 2010, 317, 27-33.
Sudheesh, N.; Sharma, S.K.; Shukla, R.S.; Jasra, R.V. HRh(CO)(PPh3)3 encapsulated mesopores of hexagonal mesoporous silica (HMS) acting as nanophase reactors for effective catalytic hydroformylation of olefins. J. Mol. Catal. Chem., 2008, 296, 61-70.
Sharma, S.K.; Srivastava, V.K.; Shukla, R.S.; Parikh, P.A.; Jasra, R.V. One-pot synthesis of C8 aldehydes/alcohols from propylene using eco-friendly hydrotalcite supported HRhCO(PPh3)3 catalyst. New J. Chem., 2007, 31, 277-286.
Jasra, R.V.; Srivastava, V.K.; Shukla, R.S.; Bajaj, H.C.; Bhatt, S.D. Process for preparing aldol derivatives from alkenes using catalyst. US Patent 7294745B2, 2007.
Maru, M.S.; Ram, S.; Shukla, R.S.; Khan, N.H. Ruthenium-hydrotalcite (Ru-HT) as an effective heterogeneous catalyst for the selective hydrogenation of CO2 to formic acid. Mol.Catal., 2018, 446, 23-30.
Patel, P.; Nandi, S.; Maru, M.S.; Kureshy, R.I.; Khan, N.H. Nitrogen- rich graphitic carbon stabilized cobalt nanoparticles as an effective heterogeneous catalyst for hydrogenation of CO2 to formate. J. CO₂ Util, 2018, 25, 310-314.
Senthilkumar, S.; Maru, M.S.; Somani, R.S.; Bajaj, H.C.; Neogi, S. Unprecedented NH2-MIL-101(Al)/n-Bu4NBr system as solvent-free heterogeneous catalyst for efficient synthesis of cyclic carbonates via CO2 cycloaddition. Dalton Trans., 2018, 47(2), 418-428.
[] [PMID: 29220049]
Maru, M.S.; Ram, S.; Advani, J.H.; Shukla, R.S. Selective and Direct Hydrogenation of CO2 for the Synthesis of Formic Acid over a Rhodium Hydrotalcite (Rh‐HT) Catalyst. ChemistrySelect, 2017, 2, 3823-3830.
Khokhar, M.D.; Shukla, R.S.; Jasra, R.V. Selective oxidation of methane by molecular oxygen catalyzed by a bridged binuclear ruthenium complex at moderate pressures and ambient temperature. J. Mol. Catal. Chem., 2009, 299, 108-116.
Das, J.; Das, D.; Parida, K.M. Preparation and characterization of Mg-Al hydrotalcite-like compounds containing cerium. J. Colloid Interface Sci., 2006, 301(2), 569-574.
[] [PMID: 16780859]
(a) Salvi, A.M.; Langerame, F.; Macchia, A.; Sammartino, M.P.; Tabasso, M.L. XPS characterization of (copper-based) coloured stains formed on limestone surfaces of outdoor Roman monuments. Chem. Cent. J., 2012, 6(Suppl. 2), S10.
[] [PMID: 22594435]
(b) Kim, K.S. Charge transfer transition accompanying x-ray photoionization in transition-metal compounds. J. Electron Spectrosc. Relat. Phenom., 1974, 3, 217.
(a) Gaudin, P.; Fioux, P.; Dorge, S.; Nouali, H.; Vierling, M.; Fiani, E.; Molière, M. Brilhac, J.–F.; Patarin, J. Formation and role of Cu+ species on highly dispersed CuO/SBA-15 mesoporous materials for SOx removal: An XPS study. Fuel Process. Technol., 2016, 153, 129-136.
(b) Wang, Y.; Qu, F.; Liu, J.; Wang, Y.; Zhou, J. Ruan, S. Enhanced H2S sensing characteristics of CuO-NiO core-shell microspheres sensors. Sens. Actuator B-Chem., 2015, 209, 515-523.
(c) Arellano, U.; Shen, J.M.; Wanga, J.A.; Timko, M.T.; Chen, L.F.; Rodríguez, J.T.V.; Asomoza, M.; Estrella, A.; Vargas, O.A.G.; Llanos, M.E. Dibenzothiophene oxidation in a model diesel fuel using CuO/GC catalysts and H2O2 in the presence of acetic acid under acidic condition. Fuel, 2015, 149, 15-25.
Rubina, M.S.; Vasil’kov, A.Yu.; Naumkin, A.V.; Shtykova, E.V.; Abramchuk, S.S.; Alghuthaymi, M.A.; Abd-Elsalam, K.A. Synthesis and characterization of chitosan–copper nanocomposites and their fungicidal activity against two sclerotia-forming plant pathogenic fungi. J. Nanostruct. Chem., 2017, 7, 249-258.
Crivello, M.; Pérez, C.; Herrero, E.; Ghione, G. Casuscelli, S. -Castellón, E.R. Characterization of AlCu and AlCuMg mixed oxides and their catalytic activity in dehydrogenation of 2-octanol. Catal. Today, 2005, 107–108, 215-222.
Liu, Y.; Ma, L.; Zhang, D.; Hanc, G.; Chang, Y. A simple route to prepare a Cu2O–CuO–GN nanohybrid for high-performance electrode materials. RSC Advances, 2017, 7, 12027.
Ehsan, M.A.; Naeem, R.; McKee, V.; Saeed, A.H.; Pandikumar, A.; Huang, N.M.; Mazhar, M. Electrochemical sensing of nitrite using a copper–titanium oxide composite derived from a hexanuclearcomplex. RSC Advances, 2016, 6, 27852-27861.
Fleutot, S.; Dupin, J-C.; Renaudin, G.; Martinez, H. Intercalation and grafting of benzene derivatives into zinc-aluminum and copper-chromium layered double hydroxide hosts: An XPS monitoring study. Phys. Chem. Chem. Phys., 2011, 13(39), 17564-17578.
[] [PMID: 21892473]
(a) Oshima, K.; Shinagawa, T.; Nogami, Y.; Manabe, R.; Ogo, S.; Sekine, Y. Low temperature catalytic reverse water gas shift reaction assisted by an electric field. Catal. Today, 2014, 232, 27-32.
(b) Himeda, Y. Highly efficient hydrogen evolution by decomposition of formic acid using an iridium catalyst with 4,4′-dihydroxy-2,2′-bipyridine. Green Chem., 2009, 11, 2018-2022.
(c) Hyde, J.R.; Walsh, B.; Singh, J.; Poliakoff, M. Continuous hydrogenation reactions in supercritical CO2 “without gases”. Green Chem., 2005, 7, 357-361.
(d) Fan, Li.; Sakaiya, Y.; Fujimoto, K. Low-temperature methanol synthesis from carbon dioxide and hydrogen via formic ester. App. Catal. Gen, 1999, 180, L11-L13.
(e) Darensbourg, D.J.; Ovalles, C. Anionic Group 6B metal carbonyls as homogeneous catalysts for carbon dioxide/hydrogen activation. The production of alkyl formates. J. Am. Chem. Soc., 1984, 106, 3750-3754.
Stephen, H.; Stephen, T. Solubilities of Inorganic and Organic Compounds; Pergamon Press New York, 1963, I,. Part I and II.
(a) Leitner, W.; Dinjus, E. GaBtier, F. Activation of carbon dioxide: IV. Rhodium-catalysed hydrogenation of carbon dioxide to formic acid. J. Organomet. Chem., 1994, 475, 257-266.
(b) Jessop, P.G.; Ikariya, T.; Noyori, R. Homogeneous catalytic hydrogenation of supercritical carbon dioxide. Nature, 1994, 368, 231.
(c) Gassner, F.; Leitner, W. Hydrogenation of carbon dioxide to formic acid using water-soluble rhodium catalysts J. Chem. Sot. Chem. Commun., 1993, 1465-1466.
(a) Joo, F. Aqueous Organometallic Catalysis; Kluwer Academic Publishers: Dordrecht, 2001.
(b) Cavani, F.; Trifiro, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today, 1991, 11, 173-301.
(a) Kochem, A.; Molloy, J.K.; Gellon, G.; Leconte, N.; Philouze, C.; Berthiol, F.; Jarjayes, O.; Thomas, F. A Structurally Characterized CuIII Complex Supported by a Bis(anilido) Ligand and Its Oxidative Catalytic Activity. Chemistry, 2017, 23(56), 13929-13940.
[] [PMID: 28742929]
(b) Chang, H-C.; Lo, F-C.; Liu, W-C.; Lin, T-H.; Liaw, W-F.; Kuo, T-S.; Lee, W-Z. Ambient stable trigonal bipyramidal copper(III) complexes equipped with an exchangeable axial ligand. Inorg. Chem., 2015, 54(11), 5527-5533.
[] [PMID: 25993313]
(c) Casitas, A.; Ribas, X. The role of organometallic copper(III) complexes in homogeneous catalysis Chem. Sci. (Camb.), 2013, 4, 2301.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 10 September, 2020
Page: [59 - 71]
Pages: 13
DOI: 10.2174/2211544709999200413110411
Price: $25

Article Metrics

PDF: 29