Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

General Research Article

Lemon Juice as a Biocatalyst Under Ultrasound Irradiation: Synthesis and Pharmacological Evaluation of 2-amino 1,3,4-thiadiazoles

Author(s): Malavattu G. Prasad, Chapala V. Lakshmi, Naresh K. Katari* and Manojit Pal*

Volume 20, Issue 11, 2020

Page: [1379 - 1386] Pages: 8

DOI: 10.2174/1871520620666200409143513

Price: $65

Abstract

Background: The 2-amino 1,3,4-thiadiazole framework has attracted considerable interest because of its prevalence in compounds possessing a wide range of pharmacological properties including anticancer/antitumor activities. Though a number of methods have been reported for the synthesis of this class of compounds, some of them are not straightforward, inexpensive and environmentally friendly.

Objective: To synthesize 2-amino-1,3,4-thiadiazole derivatives that could act as potential anticancer agents.

Methods: The use of lemon juice as an inexpensive and readily available biocatalyst was explored in the synthesis of 2-amino 1,3,4-thiadiazole derivatives. Accordingly, a convenient method has been developed for the rapid synthesis of this class of compounds under a mild and non-hazardous reaction condition in good yields. The methodology involved the reaction of various acid hydrazides with TMSNCS in the presence of lemon juice in PEG-400 at room temperature (25-30ºC) under ultrasound irradiation. These compounds were assessed for their cytotoxic properties against two different metastatic breast cancer cell lines e.g., MDAMB-231 and MCF-7 and subsequently against SIRT1.

Results: The 2-amino 1,3,4-thiadiazole derivatives 3a, 3i, 3j and 3l showed promising growth inhibition of MDAMB- 231 and MCF-7 cell lines and SIRT1 inhibition in vitro. Indeed, 3i was found to be a potent inhibitor of SIRT1.

Conclusion: An ultrasound-assisted method facilitated by lemon juice has been developed to synthesize 2-amino- 1,3,4-thiadiazole derivatives that could act as potential anticancer agents.

Keywords: 1 3 4-thiadiazole, ultrasound, lemon juice, PEG-400, cytotoxicity, SIRT1.

Graphical Abstract
[1]
Haider, S.; Alam, M.S.; Hamid, H. 1,3,4-Thiadiazoles: A potent multi targeted pharmacological scaffold. Eur. J. Med. Chem., 2015, 92, 156-177.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.035] [PMID: 25553540]
[2]
Sonia, G.; Ravi, T.K. Oxadiazolo pyrrolidine carboxamides as enoyl-ACP reductase inhibitors: Design, synthesis and antitubercular activity screening. Med. Chem. Res., 2013, 22, 3428-3433.
[http://dx.doi.org/10.1007/s00044-012-0340-3]
[3]
Khalilullah, H.; Ahsan, M.J.; Hedaitullah, M.; Khan, S.; Ahmed, B. 1,3,4-oxadiazole: A biologically active scaffold. Mini Rev. Med. Chem., 2012, 12(8), 789-801.
[http://dx.doi.org/10.2174/138955712801264800] [PMID: 22512560]
[4]
Jatav, V.; Mishra, P.; Kashaw, S.; Stables, J.P. Synthesis and CNS depressant activity of some novel 3-[5-substituted 1,3,4-thiadiazole-2-yl]-2-styryl quinazoline-4(3H)-ones. Eur. J. Med. Chem., 2008, 43(1), 135-141.
[http://dx.doi.org/10.1016/j.ejmech.2007.02.004] [PMID: 17418452]
[5]
Yusuf, M.; Khan, R.A.; Ahmed, B. Syntheses and anti-depressant activity of 5-amino-1, 3, 4-thiadiazole-2-thiol imines and thiobenzyl derivatives. Bioorg. Med. Chem., 2008, 16(17), 8029-8034.
[http://dx.doi.org/10.1016/j.bmc.2008.07.056] [PMID: 18693019]
[6]
Schenone, S.; Brullo, C.; Bruno, O.; Bondavalli, F.; Ranise, A.; Filippelli, W.; Rinaldi, B.; Capuano, A.; Falcone, G. New 1,3,4-thiadiazole derivatives endowed with analgesic and anti-inflammatory activities. Bioorg. Med. Chem., 2006, 14(6), 1698-1705.
[http://dx.doi.org/10.1016/j.bmc.2005.10.064] [PMID: 16310359]
[7]
Mishra, P.; Rajak, H.; Mehta, A. Synthesis of Schiff bases of 2-amino-5-aryl-1,3,4-oxadiazoles and their evaluation for antimicrobial activities. J. Gen. Appl. Microbiol., 2005, 51(2), 133-141.
[http://dx.doi.org/10.2323/jgam.51.133] [PMID: 15942874]
[8]
Oruç, E.E.; Rollas, S.; Kandemirli, F.; Shvets, N.; Dimoglo, A.S. 1,3,4-thiadiazole derivatives. Synthesis, structure elucidation, and structure-antituberculosis activity relationship investigation. J. Med. Chem., 2004, 47(27), 6760-6767.
[http://dx.doi.org/10.1021/jm0495632] [PMID: 15615525]
[9]
(a)Elson, P.J.; Kvols, L.K.; Vogl, S.E.; Glover, D.J.; Hahn, R.G.; Trump, D.L.; Carbone, P.P.; Earle, J.D.; Davis, T.E. Phase II trials of 5-day vinblastine infusion (NSC 49842), L-alanosine (NSC 153353), acivicin (NSC 163501), and aminothiadiazole (NSC 4728) in patients with recurrent or metastatic renal cell carcinoma Invest. New Drugs, 1988, 6(2), 97-103.
[http://dx.doi.org/10.1007/BF00195367] [PMID: 3170135]
(b)Nelson, J.A.; Rose, L.M.; Bennett, L.L., Jr Mechanism of action of 2-amino-1,3,4-thiadiazole (NSC 4728). Cancer Res., 1977, 37(1), 182-187.
[PMID: 187332]
(c)Asbury, R.F.; Blessing, J.A.; McGuire, W.P.; Hanjani, P.; Mortel, R. Aminothiadiazole (NSC 4728) in patients with advanced carcinoma of the endometrium. A phase II study of the Gynecologic Oncology group. Am. J. Clin. Oncol., 1990, 13(1), 39-41.
[http://dx.doi.org/10.1097/00000421-199002000-00011] [PMID: 2407103]
[10]
(a)Rzeski, W.; Matysiak, J.; Kandefer-Szerszeń, M. Anticancer, neuroprotective activities and computational studies of 2-amino- 1,3,4-thiadiazole based compound. Bioorg. Med. Chem., 2007, 15(9), 3201-3207.
[http://dx.doi.org/10.1016/j.bmc.2007.02.041] [PMID: 17350846]
(b)Matysiak, J.; Opolski, A. Synthesis and antiproliferative activity of N-substituted 2-amino-5-(2,4-dihydroxyphenyl)-1,3,4- thiadiazoles. Bioorg. Med. Chem., 2006, 14(13), 4483-4489.
[http://dx.doi.org/10.1016/j.bmc.2006.02.027] [PMID: 16517170]
(c)Nelson, J.A.; Rose, L.M.; Bennett, L.L. Effects of 2-amino-1,3,4-thiadiazole on ribonucleotide pools of leukemia L1210 cells. Cancer Res., 1976, 36(4), 1375-1378.
[PMID: 130972]
[11]
Tsukamoto, K.; Suno, M.; Igarashi, K.; Kozai, Y.; Sugino, Y. Mechanism of action of 2,2′-(methylenediimino)bis-1,3,4-thiadiazole (NSC 143019), an antitumor agent. Cancer Res., 1975, 35(10), 2631-2636.
[PMID: 125625]
[12]
Rajak, H.; Agarawal, A.; Parmar, P.; Thakur, B.S.; Veerasamy, R.; Sharma, P.C.; Kharya, M.D. 2,5-Disubstituted-1,3,4-oxadiazoles/thiadiazole as surface recognition moiety: Design and synthesis of novel hydroxamic acid based histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(19), 5735-5738.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.022] [PMID: 21875796]
[13]
Supuran, C.T.; Scozzafava, A. Carbonic anhydrase inhibitors--Part 94. 1,3,4-thiadiazole-2-sulfonamidederivatives as antitumor agents? Eur. J. Med. Chem., 2000, 35(9), 867-874.
[http://dx.doi.org/10.1016/S0223-5234(00)00169-0] [PMID: 11203012]
[14]
Jung, K.Y.; Kim, S.K.; Gao, Z.G.; Gross, A.S.; Melman, N.; Jacobson, K.A.; Kim, Y-C. Structure-activity relationships of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists. Bioorg. Med. Chem., 2004, 12(3), 613-623.
[http://dx.doi.org/10.1016/j.bmc.2003.10.041] [PMID: 14738972]
[15]
Juszczak, M.; Matysiak, J.; Szeliga, M.; Pożarowski, P.; Niewiadomy, A.; Albrecht, J.; Rzeski, W. 2-Amino-1,3,4-thiadiazole derivative (FABT) inhibits the extracellular signal-regulated kinase pathway and induces cell cycle arrest in human non-small lung carcinoma cells. Bioorg. Med. Chem. Lett., 2012, 22(17), 5466-5469.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.036] [PMID: 22877634]
[16]
Kumar, D.; Vaddula, B.R.; Chang, K.H.; Shah, K. One-pot synthesis and anticancer studies of 2-arylamino-5-aryl-1,3,4-thiadiazoles. Bioorg. Med. Chem. Lett., 2011, 21(8), 2320-2323.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.083] [PMID: 21429743]
[17]
Wu, J.; Li, J.; Xu, M.H.; Liu, D. Structure-activity relationship and interaction studies of new SIRT1 inhibitors with the scaffold of 3-(furan-2-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole. Bioorg. Med. Chem. Lett., 2014, 24(14), 3050-3056.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.028] [PMID: 24880902]
[18]
Vaziri, H.; Dessain, S.K.; Ng Eaton, E.; Imai, S.I.; Frye, R.A.; Pandita, T.K.; Guarente, L.; Weinberg, R.A. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 2001, 107(2), 149-159.
[http://dx.doi.org/10.1016/S0092-8674(01)00527-X] [PMID: 11672523]
[19]
Lain, S.; Hollick, J.J.; Campbell, J.; Staples, O.D.; Higgins, M.; Aoubala, M.; McCarthy, A.; Appleyard, V.; Murray, K.E.; Baker, L.; Thompson, A.; Mathers, J.; Holland, S.J.; Stark, M.J.; Pass, G.; Woods, J.; Lane, D.P.; Westwood, N.J. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell, 2008, 13(5), 454-463.
[http://dx.doi.org/10.1016/j.ccr.2008.03.004] [PMID: 18455128]
[20]
Ota, H.; Tokunaga, E.; Chang, K.; Hikasa, M.; Iijima, K.; Eto, M.; Kozaki, K.; Akishita, M.; Ouchi, Y.; Kaneki, M. Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene, 2006, 25(2), 176-185.
[http://dx.doi.org/10.1038/sj.onc.1209049] [PMID: 16170353]
[21]
Peck, B.; Chen, C.Y.; Ho, K.K.; Di Fruscia, P.; Myatt, S.S.; Coombes, R.C.; Fuchter, M.J.; Hsiao, C.D.; Lam, E.W.F. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol. Cancer Ther., 2010, 9(4), 844-855.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0971] [PMID: 20371709]
[22]
Ghosh, A.; Sengupta, A.; Seerapu, G.P.K.; Nakhi, A.; Shivaji Ramarao, E.V.V.; Bung, N.; Bulusu, G.; Pal, M.; Haldar, D. A novel SIRT1 inhibitor, 4bb induces apoptosis in HCT116 human colon carcinoma cells partially by activating p53. Biochem. Biophys. Res. Commun., 2017, 488(3), 562-569.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.089] [PMID: 28526414]
[23]
Nakhi, A.; Archana, S.; Seerapu, G.P.K.; Chennubhotla, K.S.; Kumar, K.L.; Kulkarni, P.; Haldar, D.; Pal, M. AlCl3-mediated hydroarylation-heteroarylation in a single pot: A direct access to densely functionalized olefins of pharmacological interest. Chem. Commun. (Camb.), 2013, 49(56), 6268-6270.
[http://dx.doi.org/10.1039/c3cc42840k] [PMID: 23732749]
[24]
Legrand, L.; Lozach, N. Sulfur heterocycles. CIV. Neighboring group participation in reactions of 1,2-dihydro-3,1-benzothiazine-4-thiones. Bull. Soc. Chim. Fr., 1985, 859-864.
[25]
Dogan, H.N.; Duran, A.; Rollas, S.; Sener, G.; Uysal, M.K.; Gülen, D. Synthesis of new 2,5-disubstituted-1,3,4-thiadiazoles and preliminary evaluation of anticonvulsant and antimicrobial activities. Bioorg. Med. Chem., 2002, 10(9), 2893-2898.
[http://dx.doi.org/10.1016/S0968-0896(02)00143-8] [PMID: 12110309]
[26]
Hwang, J.Y.; Choi, H-S.; Lee, D-H.; Gong, Y-D. Solid-phase synthesis of 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives via selective, reagent-based cyclization of acyldithiocarbazate resins. J. Comb. Chem., 2005, 7(6), 816-819.
[http://dx.doi.org/10.1021/cc0500957] [PMID: 16283790]
[27]
Kaleta, Z.; Makowski, B.T.; Soós, T.; Dembinski, R. Thionation using fluorous Lawesson’s reagent. Org. Lett., 2006, 8(8), 1625-1628.
[http://dx.doi.org/10.1021/ol060208a] [PMID: 16597126]
[28]
Rasmussen, P.B.; Pedersen, U.; Thompson, I.; Yde, B.S.; Lawesson, O. Studies on organophosphorus compounds. XLIX. An improved method for the preparation of 2,5-disubstituted 1,3,4-thiadiazoles and 1,3,4-thiadiazole-2(3H)-thiones. Bull. Soc. Chim. Fr., 1985, 62-65.
[29]
Aryanasab, F.; Halimehjani, A.Z.; Saidi, M.R. Dithiocarbamate as an efficient intermediate for the synthesis of 2-amino-1,3,4-thiadiazoles in water. Tetrahedron Lett., 2010, 51, 790-792.
[http://dx.doi.org/10.1016/j.tetlet.2009.11.100]
[30]
Baxendale, I.R.; Ley, S.V.; Martinelli, M. The rapid preparation of 2-aminosulfonamide-1,3,4-oxadiazoles using polymer-supported reagents and microwave heating. Tetrahedron, 2005, 61, 5323-5349.
[http://dx.doi.org/10.1016/j.tet.2005.03.062]
[31]
Kumar, H.; Javed, S.A.; Khan, S.A.; Amir, M. 1,3,4-Oxadiazole/thiadiazole and 1,2,4-triazole derivatives of biphenyl-4-yloxy acetic acid: synthesis and preliminary evaluation of biological properties. Eur. J. Med. Chem., 2008, 43(12), 2688-2698.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.039] [PMID: 18395299]
[32]
Guda, D.R.; Cho, H.M.; Lee, M.E. Mild and convenient one-pot synthesis of 2-amino-1,3,4-thiadiazoles using trimethylsilyl isothiocyanate (TMSNCS). RSC Advances, 2013, 3, 6813-6816.
[http://dx.doi.org/10.1039/c3ra00159h]
[33]
Pal, R. Fruit juice: A natural, green and biocatalyst system in organic synthesis. Open J. Org. Chem., 2013, 1, 47-56.
[http://dx.doi.org/10.12966/ojoc.10.02.2013]
[34]
Deshmukh, M.B.; Patil, S.S.; Jadhav, S.D.; Pawar, P.B. Green approach for Knoevenagel condensation of aromatic aldehydes. Synth. Commun., 2012, 42, 1177-1183.
[http://dx.doi.org/10.1080/00397911.2010.537423]
[35]
Patil, S.; Jadhav, S.D.; Deshmuk, M.B. Natural acid catalyzed multi-component reactions as a green approach. Arch. Appl. Sci. Res., 2011, 3, 203-208.
[36]
Patil, S.; Jhadav, S.D.; Patil, U.P. Natural acid catalyzed synthesis of schiff base under solvent-free condition: As a green approach. Arch. Appl. Sci. Res., 2012, 4, 1074-1078.
[37]
Sachdeva, H.; Saroj, R.; Khaturia, S.; Dwivedi, D. EnvironEconomic synthesis and characterization of some new 1,2,4- triazole derivatives as organic fluorescent materials and potent fungicidal agents. Org. Chem. Int., 2013. ID 659107
[38]
Kumar, S.K.; Rambabu, D.; Kumar, C.H.V.; Sreenivas, B.Y.; Prasad, K.R.S.; Rao, M.V.B.; Pal, M. Catalysis by Amberlyst-15 under ultrasound in water: A green synthesis of 1,2,4-benzothiadiazine-1,1-dioxides and their spiro derivatives. RSC Advances, 2013, 3, 24863-24867.
[http://dx.doi.org/10.1039/c3ra44703k]
[39]
Feng, H.; Ying, X.; Peng, Y.; Van der Eycken, E.V.; Liu, C.; Zhao, S.; Song, G. FeCl3-promoted synthesis of 1,3,4-thiadiazoles under combined microwave and ultrasound irradiation in water. Monatsh. Chem., 2013, 144, 681-686.
[http://dx.doi.org/10.1007/s00706-012-0846-x]
[40]
Nelson, C.E. Lemon juice composition. U.S. Patent 2215334A, 1938.
[41]
Sharma, P.; Rashmi, S.; Kumar, G.V. Rapid synthesis of amides from ketoximes using citric acid monohydrate over TBAB under green chemistry conditions. J. Adv. Chem. Sci., 2016, 2, 180-182.
[42]
Mason, T.J.; Peters, D. Practical Sonochemistry; Ellis Horwood: New York, NY, USA, 1991.
[43]
Mason, T.J. Sonochemistry and the environment - providing a “green” link between chemistry, physics and engineering. Ultrason. Sonochem., 2007, 14(4), 476-483.
[http://dx.doi.org/10.1016/j.ultsonch.2006.10.008] [PMID: 17207652]
[44]
Plumb, J.A. Cell sensitivity assays: The MTT assay. Methods Mol. Med., 2004, 88, 165-169.
[PMID: 14634227]
[45]
Li, H.; Li, H.; Qu, H.; Zhao, M.; Yuan, B.; Cao, M.; Cui, J. Suramin inhibits cell proliferation in ovarian and cervical cancer by downregulating heparanase expression. Cancer Cell Int., 2015, 15, 52.
[http://dx.doi.org/10.1186/s12935-015-0196-y] [PMID: 26052253]
[46]
Milne, J.C.; Lambert, P.D.; Schenk, S.; Carney, D.P.; Smith, J.J.; Gagne, D.J.; Jin, L.; Boss, O.; Perni, R.B.; Vu, C.B.; Bemis, J.E.; Xie, R.; Disch, J.S.; Ng, P.Y.; Nunes, J.J.; Lynch, A.V.; Yang, H.; Galonek, H.; Israelian, K.; Choy, W.; Iffland, A.; Lavu, S.; Medvedik, O.; Sinclair, D.A.; Olefsky, J.M.; Jirousek, M.R.; Elliott, P.J.; Westphal, C.H. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature, 2007, 450(7170), 712-716.
[http://dx.doi.org/10.1038/nature06261] [PMID: 18046409]
[47]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy