Effects of Matrix Stiffness on the Differentiation of Multipotent Stem Cells

Author(s): Weidong Zhang, Genglei Chu, Huan Wang, Song Chen, Bin Li*, Fengxuan Han*

Journal Name: Current Stem Cell Research & Therapy

Volume 15 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Differentiation of stem cells, a crucial step in the process of tissue development, repair and regeneration, can be regulated by a variety of mechanical factors such as the stiffness of extracellular matrix. In this review article, the effects of stiffness on the differentiation of stem cells, including bone marrow-derived stem cells, adipose-derived stem cells and neural stem cells, are briefly summarized. Compared to two-dimensional (2D) surfaces, three-dimensional (3D) hydrogel systems better resemble the native environment in the body. Hence, the studies which explore the effects of stiffness on stem cell differentiation in 3D environments are specifically introduced. Integrin is a well-known transmembrane molecule, which plays an important role in the mechanotransduction process. In this review, several integrin-associated signaling molecules, including caveolin, piezo and Yes-associated protein (YAP), are also introduced. In addition, as stiffness-mediated cell differentiation may be affected by other factors, the combined effects of matrix stiffness and viscoelasticity, surface topography, chemical composition, and external mechanical stimuli on cell differentiation are also summarized.

Keywords: Matrix stiffness, stem cell, cell differentiation, mechanotransduction, integrin, combined effect.

[1]
Sundelacruz S, Levin M, Kaplan DL. Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS One 2008; 3(11)e3737
[http://dx.doi.org/10.1371/journal.pone.0003737] [PMID: 19011685]
[2]
Sundelacruz S, Levin M, Kaplan DL. Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev Rep 2009; 5(3): 231-46.
[http://dx.doi.org/10.1007/s12015-009-9080-2] [PMID: 19562527]
[3]
Shi R, Borgens RB. Three-dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic pattern. Dev Dyn 1995; 202(2): 101-14.
[http://dx.doi.org/10.1002/aja.1002020202] [PMID: 7734729]
[4]
Borgens RB, Vanable JW, Jaffe LF. Bioelectricity and regeneration: large currents leave the stumps of regenerating newt limbs. Proc Natl Acad Sci USA 1977; 74(10): 4528-32.http://www.ncbi.nlm.nih.gov/pubmed/270701
[5]
Illingworth CM, Barker AT. Measurement of electrical currents emerging during the regenera-tion of amputated finger tips in children Clin Phys Physiol Meas 1980 ; (1): 87-9..http://stacks.iop. org/0143-0815/1/i=1/a=007?key=crossref.01262b90105b1c2f65afe60dd9026a72
[6]
Borgens RB, Vanable JW Jr, Jaffe LF. Bioelectricity and regeneration. I. Initiation of frog limb regeneration by minute currents. J Exp Zool 1977; 200(3): 403-16.
[http://dx.doi.org/10.1002/jez.1402000310] [PMID: 301554]
[7]
Khalifeh JM, Zohny Z, MacEwan MStephen M, Johnston W, Gamble P, , et al. Electrical Stimulation and Bone Healing: A Review of Current Technology and Clinical Applications. IEEE Rev Biomed Eng 2018; 11: 217-32.https://ieeexplore.ieee.org/ document/8272331/ http://dx.doi.org/10.1109/RBME.2018.2799189
[8]
Balint R, Cassidy NJ, Cartmell SH. Electrical stimulation: a novel tool for tissue engineering. Tissue Eng Part B Rev 2013; 19(1): 48-57.
[http://dx.doi.org/10.1089/ten.teb.2012.0183] [PMID: 22873689]
[9]
Qi Z, Xia P, Pan S, et al. Combined treatment with electrical stimulation and insulin-like growth factor-1 promotes bone regeneration in vitro. PLoS One 2018; 13(5)e0197006
[http://dx.doi.org/10.1371/journal.pone.0197006] [PMID: 29746517]
[10]
Sebastian A, Iqbal SA, Colthurst J, Volk SW, Bayat A. Electrical stimulation enhances epidermal proliferation in human cutaneous wounds by modulating p53-SIVA1 interaction. J Invest Dermatol 2015; 135(4): 1166-74.
[http://dx.doi.org/10.1038/jid.2014.502] [PMID: 25431847]
[11]
Guo BS, Cheung KK, Yeung SS, Zhang BT, Yeung EW. Electrical stimulation influences satellite cell proliferation and apoptosis in unloading-induced muscle atrophy in mice. PLoS One 2012; 7(1)e30348
[http://dx.doi.org/10.1371/journal.pone.0030348] [PMID: 22253929]
[12]
Hernández D, Millard R, Sivakumaran P, et al. Electrical stimulation promotes cardiac differentiation of human induced pluripotent stem cells. Stem Cells Int 2016; 20161718041
[http://dx.doi.org/10.1155/2016/1718041] [PMID: 26788064]
[13]
Mobini S, Leppik L, Thottakkattumana Parameswaran V, Barker JH. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells Peer J 2017.http://www.ncbi.nlm.nih.gov/pubmed/28097053
[14]
Eischen-Loges M, Oliveira KMC, Bhavsar MB, Barker JH, Lep-pik L. Pretreating mesenchymal stem cells with electrical stimula-tion causes sustained long-lasting pro-osteogenic effects Peer J 2018.http://www.ncbi.nlm.nih.gov/pubmed/29910982
[15]
Jahanshahi A, Schonfeld L, Janssen MLF, et al. Electrical stimulation of the motor cortex enhances progenitor cell migration in the adult rat brain. Exp Brain Res 2013; 231(2): 165-77.
[http://dx.doi.org/10.1007/s00221-013-3680-4] [PMID: 24002672]
[16]
Yuan X, Arkonac DE, Chao PHG, Vunjak-Novakovic G. Electrical stimulation enhances cell migration and integrative repair in the meniscus. Sci Rep 2014; 4: 3674.
[http://dx.doi.org/10.1038/srep03674] [PMID: 24419206]
[17]
Tai G, Tai M, Zhao M. Electrically stimulated cell migration and its contribution to wound healing. Burns Trauma 2018; 6(1): 20.
[http://dx.doi.org/10.1186/s41038-018-0123-2] [PMID: 30003115]
[18]
Griffin M, Sebastian A, Colthurst J, Bayat A. Enhancement of differentiation and mineralisation of osteoblast-like cells by degenerate electrical waveform in an in vitro electrical stimulation model compared to capacitive coupling. PLoS One 2013; 8(9)e72978
[http://dx.doi.org/10.1371/journal.pone.0072978] [PMID: 24039834]
[19]
Valič B, Golzio M, Pavlin M, et al. Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. Eur Biophys J 2003; 32(6): 519-28.
[http://dx.doi.org/10.1007/s00249-003-0296-9] [PMID: 12712266]
[20]
Taghian T, Narmoneva DA, Kogan AB. Modulation of cell function by electric field: a high-resolution analysis. J R Soc Interface 2015; 12(107)20150153
[http://dx.doi.org/10.1098/rsif.2015.0153] [PMID: 25994294]
[21]
Kim IS, Song JK, Zhang YL, et al. Biphasic electric current stimulates proliferation and induces VEGF production in osteoblasts. Biochim Biophys Acta 2006; 1763(9): 907-16.
[http://dx.doi.org/10.1016/j.bbamcr.2006.06.007] [PMID: 16930744]
[22]
Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol 2003; 58: 1-26.
[http://dx.doi.org/10.1016/S0070-2153(03)58001-2] [PMID: 14711011]
[23]
Fassina L, Visai L, Benazzo FBenedetti L, Calligaro A, De Angelis MG,, et al. Effects of electromagnetic stimulation on calcified matrix production by SAOS-2 cells over a polyurethane porous scaffold. Tissue Eng 2006; 12(7): 1985-99.
[24]
Zhao M, Bai H, Wang E, Forrester JV, McCaig CD. Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J Cell Sci 2004; 117(Pt 3): 397-405.
[http://dx.doi.org/10.1242/jcs.00868] [PMID: 14679307]
[25]
Ahadian S, Yamada S, Estili M, Liang X, Banan Sadeghian R, Nakajima K, et al. Carbon nanotubes embedded in embryoid bodies direct cardiac differentiation 2019.http://link.springer.com/10.1007/s10544-017-0184-1
[26]
Chan Y-C, Ting S, Lee Y-K, et al. Electrical Stimulation Promotes Maturation of Cardiomyocytes Derived from Human Embryonic Stem Cells J Cardiovasc. Transl Res 2013; 16(6): 989.http://www.ncbi.nlm.nih.gov/pubmed/24081385
[27]
Serena E, Figallo E, Tandon N, et al. Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res 2009; 315(20): 3611-9.http://www.ncbi.nlm.nih.gov/pubmed/19720058
[28]
Yamada M, Tanemura K, Okada S, et al. Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells 2007; 25(3): 562-70.http://www.ncbi.nlm.nih.gov/pubmed/17110622
[29]
Wu W, Zhao H, Xie B, et al. Implanted spike wave electric stimulation promotes survival of the bone marrow mesenchymal stem cells and functional recovery in the spinal cord injured rats. Neurosci Lett 2011; 491(1): 73-8.https://linkinghub.elsevier.com/retrieve/pii/S0304394011000139
[http://dx.doi.org/10.1016/j.neulet.2011.01.009]
[30]
Ravikumar K, Boda SK, Basu B. Synergy of substrate conductiv-ity and intermittent electrical stimulation towards osteogenic dif-ferentiation of human mesenchymal stem cellsBioelectrochecmistry 2017; 116: 52-64 https://www.sciencedirect.com/science/article/pii/S1567539416301530?via%3Dihub
[31]
Sun S, Liu Y, Lipsky S, Cho M. Physical manipulation of calci-um oscillations facilitates osteodifferentiation of human mesen-chymal stem cells FASEB 2007; 21(7): 1472-80 http://www.fasebj.org/doi/10.1096/fj.06-7153com
[32]
Kwon HJ, Lee GS, Chun H. Electrical stimulation drives chondrogenesis of mesenchymal stem cells in the absence of exogenous growth factors. Sci Rep 2016; 6: 39302.http://www.nature.com/articles/srep39302
[33]
Leppik L, Bhavsar MB, Oliveira KMC, Eischen-Loges M, Mobini S, Barker JH. Construction and Use of an Electrical Stimulation Chamber for Enhancing Osteogenic Differentiation in Mesenchymal Stem/Stromal Cells In Vitro. J Vis Exp 2019; (143): 1-6.
[http://dx.doi.org/10.3791/59127] [PMID: 30774122]
[34]
Zhang J, Neoh KG, Kang ET. Electrical stimulation of adipose-derived mesenchymal stem cells and endothelial cells co-cultured in a conductive scaffold for potential orthopaedic applications. J Tissue Eng Regen Med 2017.
[35]
Zhang J, Neoh KG, Kang ET. Electrical stimulation of adipose-derived mesenchymal stem cells and endothelial cells co-cultured in a conductive scaffold for potential orthopaedic applications. J Tissue Eng Regen Med 2018; 12(4): 878-89.http://www.ncbi.nlm.nih.gov/pubmed/28482125
[36]
Tandon N, Cannizzaro C, Chao P-HG, et al. Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 2009; 4(2): 155-73.http://www.ncbi.nlm.nih.gov/pubmed/19180087
[http://dx.doi.org/10.1038/nprot.2008.183]
[37]
Marotta M, Bragós R, Gómez-Foix AM. Design and performance of an electrical stimulator for long-term contraction of cultured muscle cells. Biotechniques 2004; 36(1): 68-73.
[http://dx.doi.org/10.2144/04361ST01]
[38]
Zhang J, Li Y, Huang Y, Jiang J, Ho SM. A feasibility study on timber moisture monitoring using piezoceramic transducer-enabled active sensing. Switzerland. Sensors (Basel) 2018; 18(9)E3100
[http://dx.doi.org/10.3390/s18093100] [PMID: 30223502]
[39]
Brevet A, Pinto E, Peacock J, Frank E. Stockdale. Myosin Syn-thesis Increased by Electrical Stimulation of Skeletal Muscle Cell Cultures 2016; 193(4258): 1152-4.
[40]
Xiong GM, Do AT, Wang JK, Yeoh CL, Yeo KS, Choong C. Development of a miniaturized stimulation device for electrical stimulation of cells. J Biol Eng 2015; 9: 14.
[http://dx.doi.org/10.1186/s13036-015-0012-1] [PMID: 26339287]
[41]
Kim JH, Lee TH, Song YM, et al. An implantable electrical bioreactor for enhancement of cell viability. Conf Proc IEEE Eng Med Biol Soc 2011; 2011: 3601-4.https://pubmed.ncbi.nlm.nih.gov/22255118/
[42]
Wang B, Wang G, To F, et al. Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations. Langmuir 2013; 29(35): 11109-17.http://pubs.acs.org/doi/10.1021/la401702w
[http://dx.doi.org/10.1021/la401702w]
[43]
Dodel M, Hemmati Nejad N, Bahrami SH, et al. Electrical stimulation of somatic human stem cells mediated by composite containing conductive nanofibers for ligament regeneration. Biologicals 2017; 46: 99-107.
[http://dx.doi.org/10.1016/j.biologicals.2017.01.007] [PMID: 28189483]
[44]
Morgan KY, Black LD III. Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Tissue Eng Part A 2014; 20(11-12): 1654-67.
[http://dx.doi.org/10.1089/ten.tea.2013.0355] [PMID: 24410342]
[45]
Mobini S, Leppik L, Barker JH. Direct current electrical stimulation chamber for treating cells in vitro. Biotechniques 2016; 60(2): 95-8.
[http://dx.doi.org/10.2144/000114382] [PMID: 26842356]
[46]
Ceccarelli G, Bloise N, Mantelli M, et al. A comparative analysis of the in vitro effects of pulsed electromagnetic field treatment on osteogenic differen-tiation of two different mesenchymal cell lineages Biores Open Access 2013; 2(4): 283-94 http://www.liebertpub.com/doi/10.1089/biores.2013.0016
[47]
Wiesmann H, Hartig M, Stratmann U, Meyer U, Joos U. Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochim Biophys Acta 2001; 1538(1): 28-37.https://linkinghub.elsevier.com/retrieve/pii/S016748890000135X
[48]
Maidhof R, Tandon N, Lee EJ, et al. Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J Tissue Eng Regen Med 2012; 6(10): e12-23.
[http://dx.doi.org/10.1002/term.525] [PMID: 22170772]
[49]
Chiu LLY, Janic K, Radisic M. Engineering of oriented myocardium on three-dimensional micropatterned collagen-chitosan hydrogel. Int J Artif Organs 2012; 35(4): 237-50.
[http://dx.doi.org/10.5301/ijao.5000084] [PMID: 22505198]
[50]
Langer R, Vacanti JP. Tissue engineering. Science 1993; 260(5110): 920-6.http://www.ncbi.nlm.nih.gov/pubmed/8493529
[51]
Zhang P-X, Han N, Kou Y-H, et al. Tissue engineering for the repair of peripheral nerve injury. Neural Regen Res 2019; 14(1): 51-8.http://www.nrronline.org/text.asp?2019/14/1/51/243701
[52]
Bacakova L, Pajorova J, Bacakova M, et al. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. Nanomaterials 2019; 9(2): 164.http://www.mdpi.com/2079-4991/9/2/164
[53]
Tiwari S, Patil R, Bahadur P. Polysaccharide Based Scaffolds for Soft Tissue Engineering Applications. Polymers (Basel) 2019 Jan;; 11(1): 1.http://www.mdpi.com/2073-4360/11/1/1
[http://dx.doi.org/10.3390/polym11010001]
[54]
Rodrigues ICP, Kaasi A, Maciel Filho R, Jardini AL, Gabriel LP. Cardiac tissue engineering: current state-of-the-art materials, cells and tissue formation. Einstein (Sao Paulo) 2018; 16(3)eRB4538http://www.ncbi.nlm.nih.gov/pubmed/30281764
[http://dx.doi.org/10.1590/s1679-45082018rb4538]
[55]
Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 2017; 3(3): 278-314.http://www.ncbi.nlm.nih.gov/pubmed/29744467
[56]
Yao Q, Liu H, Lin X, et al. 3D Interpenetrated Graphene Foam/58S Bioactive Glass Scaffolds for Electrical-Stimulation-Assisted Differentiation of Rabbit Mesenchymal Stem Cells to Enhance Bone Regeneration. J Biomed Nanotechnol 2019; 15(3): 602-11.http://www.ncbi.nlm.nih.gov/pubmed/31165704
[57]
Leppik L, Zhihua H, Mobini S, et al. Combining electrical stimu-lation and tissue engineering to treat large bone defects in a rat model Sci Rep 2018; 8(1): 6307 2018 http://www.nature.com/articles/s41598-018-24892-0
[58]
Han Z, Bhavsar M, Leppik L, Oliveira KMC, Barker JH. Histological Scoring Method to Assess Bone Healing in Critical Size Bone Defect Models. Tissue Eng Part C Methods 2018; 24(5): 272-9.http://www.ncbi.nlm.nih.gov/pubmed/29466929
[59]
Li S, Lu D, Tang J, Min J, Hu M, Li Y, et al. 2019.https://www.hindawi.com/journals/bmri/2019/7387803/
[60]
Singelyn J, DeQuach J, Biomaterials SS-N. 2009 .Biomaterials SS-N.https://www.sciencedirect.com/science/article/pii/S0142961209006279
[61]
Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ. Injectable Fibrin Scaffold Improves Cell Transplant Survival, Reduces Infarct Expansion, And Induces Neovasculature Formation In Ischemic Myocardium. J Am Coll Cardiol 2004; 44(3): 654-60.
[62]
Gaballa M, Sunkomat J, Thai H. EM-TJ of heart and 2006.https://www.sciencedirect.com/science/article/pii/S1053249806003317
[63]
Prabhakaran MP, Kai D, Ghasemi-Mobarakeh L, Ramakrishna S. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering. Biomed Mater 2011; 6(5)055001
[http://dx.doi.org/10.1088/1748-6041/6/5/055001] [PMID: 21813957]
[64]
Alperin C, Zandstra P, Biomaterials KW. Polyurethane films seeded with embryonic stem cell-derived cardiomyocytes for use in cardiac tissue engineering applications Biomaterials KW 2005;26(35): 7377- 86 https://www.sciencedirect.com/science/article/pii/S0142961205004618
[65]
Park H, Radisic M, Lim JO, Chang BH, Vunjak-Novakovic G. A novel composite scaffold for cardiac tissue engineering Vitr Cell Dev Biol - Anim 2005; 41(7): 188-96
[66]
Giraud MN, Armbruster C, Carrel T, Tevaearai HT. Current state of the art in myocardial tissue engineering. Tissue Eng 2007; 13(8): 1825-36.
[http://dx.doi.org/10.1089/ten.2006.0110] [PMID: 17518754]
[67]
Zhao Z, Qin L, Reid B, Pu J, Hara T. Directing migration of endothelial progenitor cells with applied DC electric fields. Stem Cell Res 2012; 8(1): 38-48.https://www.sciencedirect.com/science/article/pii/S1873506111001073
[68]
Bai H, Forrester J, Cytokine MZ. DC electric stimulation upregulates angiogenic factors in endothelial cells through activation of VEGF receptors. Cytokine 2011; 55(1): 110-5.https://www.sciencedirect.com/science/article/pii/S1043466611000676
[69]
Radisic M, Park H, Gerecht S, Cannizzaro C, Langer R, Vunjak-Novakovic G. Philosophical Transactions of the Royal Society B. Biomimetic approach to cardiac tissue engineering. Philos Trans R Soc Lond B Biol Sci 2007; 362(1484): 1357-68.
[http://dx.doi.org/10.1098/rstb.2007.2121] [PMID: 17594967]
[70]
Kostin S, Dammer S, Hein S, Klovekorn WP, Bauer EP, Schaper J. Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res 2004; 62(2): 426-36.
[http://dx.doi.org/10.1016/j.cardiores.2003.12.010] [PMID: 15094362]
[71]
Akar FG, Spragg DD, Tunin RS, Kass DA, Tomaselli GF. Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ Res 2004; 95(7): 717-25.
[http://dx.doi.org/10.1161/01.RES.0000144125.61927.1c] [PMID: 15345654]
[72]
Radisic M, Park H, Shing H, et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci USA 2004; 101(52): 18129-34.http://www.ncbi.nlm.nih.gov/pubmed/15604141
[http://dx.doi.org/10.1073/pnas.0407817101]
[73]
Ganji Y, Li Q, Quabius ES, Böttner M, Selhuber-Unkel C, Kasra M. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation. Materrials Science and Engineering: C 2016; 59(1): 10-8.https://linkinghub.elsevier.com/retrieve/pii/S0928493115304008
[74]
Zhang Z, Rouabhia M, Wang Z, et al. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration. Artif Organs 2007; 31(1): 13-22.http://doi.wiley.com/10.1111/j.1525-1594.2007.00335.x
[http://dx.doi.org/10.1111/j.1525-1594.2007.00335.x]
[75]
Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Electrical Stimulation of Nerve Cells Using Conductive Nanofibrous Scaffolds for Nerve Tissue Engineering Tissue eng Part A 2009.https://www.liebertpub.com/doi/10.1089/ten.tea.2008.0689
[http://dx.doi.org/10.1089/ten.tea.2008.0689]
[76]
Park SJ, Park JS, Yang HN, Yi SW, Kim C-H, Park K-H. Neuro-genesis Is Induced by Electrical Stimulation of Human Mesen-chymal Stem Cells Co-Cultured with Mature Neuronal Cells Macromol Biosci 2015.http://www.ncbi.nlm.nih.gov/pubmed/26183918
[77]
Park JS, Yang HN, Woo DG, et al. Exogenous Nurr1 gene expression in electrically-stimulated hu-man MSCs and the induction of neurogenesis Biomaterial 2012.https://linkinghub.elsevier.com/retrieve/pii/S0142961212007193
[78]
Esrafilzadeh D, Razal JM, Moulton SE. et al. Multifunctional conducting fibres with electrically controlled release of ciprofloxacin. J Control Release 2013; 169(3): 313-20.
[http://dx.doi.org/10.1016/j.jconrel.2013.01.022] [PMID: 23379995]
[79]
Jin L, Wang T, Feng Z, Leach M. A facile approach for the fabrication of core–shell PEDOT nanofiber mats with superior mechanical properties and biocompatibility J Mat Chem B 2013.pubs.rsc.org/en/content/articlehtml/2013/tb/c3tb00448a
[80]
Pires F, Ferreira Q, Rodrigues CAV, Morgado J, Ferreira FC. Neural stem cell differentiation by electrical stimulation using a crosslinked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering Biochimica et Biophysica Acta (BBA) - General Subjects 2015.https://linkinghub.elsevier.com/retrieve/pii/S0304416515000409
[81]
Srivastava N, Venugopalan V, Divya MS, Rasheed VA, James J, Narayan KS. Neuronal differentiation of embryonic stem cell derived neuronal progenitors can be regulated by stretchable conducting polymers. Tissue Eng Part A 2013; 19(17-18): 1984-93.
[http://dx.doi.org/10.1089/ten.tea.2012.0626] [PMID: 23544950]
[82]
Li X, Kolega J. 2002.www.karger.com/journals/jvr
[83]
Cho MR, Thatte HS, Lee RC, Golan DE. Reorganization of mi-crofilament structure induced by ac electric fieldsFASEB J 1996.http://www.fasebj.org/doi/10.1096/fasebj.10.13.8940302
[84]
Titushkin I. Regulation of Cell Cytoskeleton and Membrane Mechanics by Electric Field: Role of Linker Proteins Biophys J 2009.https://www.sciencedirect.com/science/article/pii/S000634950800043X
[85]
Patel N, Po M-M. Orientation of neurite growth by extracellular electric fields. J Neurosci 1982;2.
[http://dx.doi.org/10.1523/JNEUROSCI.02-04-00483.1982]
[86]
Freeman JA, Manis PB, Snipes GJ, et al. Steady growth cone currents revealed by a novel circularly vibrating probe: a possible mechanism underlying neurite growth. J Neurosci Res 1985; 13(1-2): 257-83.
[http://dx.doi.org/10.1002/jnr.490130118] [PMID: 2579240]
[87]
Sisken B, Kanje M, Lundborg G, Herbst E. Stimulation of rat sciatic nerve regeneration with pulsed electromagnetic fields Brain Res 1989.https://www.sciencedirect.com/science/article/pii/0006899389905751
[88]
Kimura K, Yanagida Y, Haruyama T. Gene expression in the electrically stimulated differentiation of PC12 cells J Biotech 1998.https://www.sciencedirect.com/science/article/pii/S0168165698000753
[89]
Hu Y, Cai K, Luo Z, et al. Surface mediated in situ differentiation of mesenchymal stem cells on gene-functionalized titanium films fabricated by layer-by-layer technique Biomaterials 2009.http://www.paper.edu.cn
[http://dx.doi.org/10.1016/j.biomaterials.2009.03.037]
[90]
Das M, Patil S, Bhargava N, Kang J, Biomaterials LR. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons Biomaterials 2007.https://www.sciencedirect.com/science/article/pii/S0142961206009872
[91]
Bhavsar MB, Cato G, Hauschild A, et al. Membrane potential (Vmem) measurements during mesenchymal stem cell (MSC) proliferation and osteogenic differentiation. PeerJ 2019; 7e6341https://peerj.com/articles/6341
[http://dx.doi.org/10.7717/peerj.6341] [PMID: PMC6369823]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 5
Year: 2020
Published on: 21 July, 2020
Page: [449 - 461]
Pages: 13
DOI: 10.2174/1574888X15666200408114632
Price: $65

Article Metrics

PDF: 27
HTML: 1
EPUB: 1
PRC: 2