Dendrobium officinalis Flower Improves Learning and Reduces Memory Impairment by Mediating Antioxidant Effect and Balancing the Release of Neurotransmitters in Senescent Rats

Author(s): Lin-Zi Li, Shan-Shan Lei, Bo Li, Fu-Chen Zhou, Ye-Hui Chen, Jie Su, Gui-Yuan Lv*, Su-Hong Chen*

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 5 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Aim and Objective: The Dendrobium officinalis flower (DOF) is popular in China due to common belief in its anti-aging properties and positive effects on “nourish yin”. However, there have been relatively few confirmatory pharmacological experiments conducted to date. The aim of this work was to evaluate whether DOF has beneficial effects on learning and memory in senescent rats, and, if so, to determine its potential mechanism of effect.

Materials and Methods: SD rats were administrated orally DOF at a dose of 1.38, or 0.46 g/kg once a day for 8 weeks. Two other groups included a healthy untreated control group and a senescent control group. During the 7th week, a Morris water maze test was performed to assess learning and memory. At the end of the experiment, serum and brain samples were collected to measure concentrations of antioxidant enzymes, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GSH-Px) in serum, and the neurotransmitters, including γ-aminobutyric acid (γ-GABA), Glutamic (Glu), and monoamine oxidase B (MAO-B) in the brain. Histopathology of the hippocampus was assessed using hematoxylin-eosin (H&E) staining.

Results: The results suggested that treatment with DOF improved learning as measured by escape latency, total distance, and target quadrant time, and also increased levels of γ-GABA in the brain. In addition, DOF decreased the levels of MDA, Glu, and MAO-B, and improved SOD and GSHPx. Histopathological analysis showed that DOF also significantly reduced structural lesions and neurodegeneration in the hippocampus relative to untreated senescent rats.

Conclusion: DOF alleviated brain aging and improved the spatial learning abilities in senescent rats, potentially by attenuating oxidative stress and thus reducing hippocampal damage and balancing the release of neurotransmitters.

Keywords: Dendrobium officinalis flower, aging, antioxidant, memory function, neurotransmitters, hippocampus.

[1]
Porter, M.M.; Vandervoort, A.A.; Lexell, J. Aging of human muscle: structure, function and adaptability. Scand. J. Med. Sci. Sports, 1995, 5(3), 129-142.
[http://dx.doi.org/10.1111/j.1600-0838.1995.tb00026.x] [PMID: 7552755]
[2]
Zhang, D.D.; Tian, S.; Fan, M.M.; Han, G.Z.; Li, N.; Lin, L.; Zhang, C.Z. Effects of allicin on learning and memory ability and antioxidant capability of aging mice. China Trop. Med., 2020, 20(1), 8-12.
[3]
Blagosklonny, M.V. Answering the ultimate question “what is the proximal cause of aging?”. Aging (Albany NY), 2012, 4(12), 861-877.
[http://dx.doi.org/10.18632/aging.100525] [PMID: 23425777]
[4]
Farr, S.A.; Poon, H.F.; Dogrukol-Ak, D.; Drake, J.; Banks, W.A.; Eyerman, E.; Butterfield, D.A.; Morley, J.E. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J. Neurochem., 2003, 84(5), 1173-1183.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01580.x] [PMID: 12603840]
[5]
Fukui, K.; Onodera, K.; Shinkai, T.; Suzuki, S.; Urano, S. Impairment of learning and memory in rats caused by oxidative stress and aging, and changes in antioxidative defense systems. Ann. N. Y. Acad. Sci., 2001, 928(1), 168-175.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb05646.x] [PMID: 11795507]
[6]
Shen, C.Y.; Jiang, J.G.; Yang, L.; Wang, D.W.; Zhu, W. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br. J. Pharmacol., 2017, 174(11), 1395-1425.
[http://dx.doi.org/10.1111/bph.13631] [PMID: 27659301]
[7]
Fukui, K.; Omoi, N.O.; Hayasaka, T.; Shinnkai, T.; Suzuki, S.; Abe, K.; Urano, S. Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann. N. Y. Acad. Sci., 2002, 959(1), 275-284.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb02099.x] [PMID: 11976202]
[8]
Lin, W.Y.; Yan, M.Q.; Lv, G.Y.; Hu, J.W.; Chen, S.H. Antioxidant activity comparison between non-polysaccharides and crude polysaccharides from Dendrobiu officinale stems in vitro and in vivo. Pharmacol. Clin. Chin. Mater. Medica, 2016, 32(2), 138-141.
[http://dx.doi.org/10.1111/bph.13631]
[9]
Liu, X.F.; Zhu, J.; Ge, S.Y.; Xia, L.J.; Yang, H.Y.; Qian, Y.T.; Ren, F.Z. Orally administered Dendrobium officinale and its polysaccharides enhance immune functions in BALB/c mice. Nat. Prod. Commun., 2011, 6(6), 867-870.
[http://dx.doi.org/10.1177/1934578X1100600627] [PMID: 21815428]
[10]
Liang, Y.; Qi, J.Y.; Yan, F.; Xu, H.; Ye, C. Effects of continuous consumption of fresh Dendrobium officinale on quality of life and progression-free survival for advanced non-small cell lung cancer patients with chemotherapy. Chin. Archives. Tradit. Chin. Med. Pharm., 2014, 32(4), 901-903.
[11]
Wu, Y.Y.; Liang, C.Y.; Liu, T.T.; Liang, Y.M.; Li, S.J.; Lu, Y.Y.; Liang, J.; Yuan, X.; Li, C.J.; Hou, S.Z.; Lai, X.P. Protective roles and mechanisms of polysaccharides from Dendrobium officinal on natural aging-induced premature ovarian failure. Biomed. Pharmacother., 2018, 101, 953-960.
[http://dx.doi.org/10.1016/j.biopha.2018.03.030] [PMID: 29635905]
[12]
Feng, C.Z.; Cao, L.; Luo, D.; Ju, L.S.; Yang, J.J.; Xu, X.Y.; Yu, Y.P. Dendrobium polysaccharides attenuate cognitive impairment in senescence-accelerated mouse prone 8 mice via modulation of microglial activation. Brain Res., 2019, 1704, 1-10.
[http://dx.doi.org/10.1016/j.brainres.2018.09.030] [PMID: 30253123]
[13]
Gong, Q.F.; He, J.X.; Huang, N.Z.; Fu, C.M.; Shi, Y.P.; Luantang, F. Chemical composition and antioxidant activities effects of Dendrobium officinale flower. Food. Sci. Tech-Brazil., 2014, 39(2), 106-110.
[14]
Tang, J.Y.; Yan, M.Q.; Qi, F.F.; Dai, M.Z.; Wang, N.N.; Lv, G.Y.; Cheng, S.H. Study on optimum extraction of total flavones in dendrobium officinale flower and its antioxidant activity in vitro. J. Zhejiang. Chin. Med. Univ.2017, 41(3), 235-242.
[15]
Zhang, S.J.; Qian, Z.; Liu, J.J.; Zhang, X.F.; Si, J.P. [Analysis on stability and antioxidant capacity of color-related components from Dendrobium officinale flower]. Zhongguo Zhongyao Zazhi, 2018, 43(10), 2025-2031.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.20180307.009] [PMID: 29933666]
[16]
Miao, Y.X.; Liao, M.X.; Sun, A.H.; Li, R. Study on optimum extraction of polysaccharides from flowers of Dendrobium officinale and its antioxidantion activity in vitro. Food. Res. Dev., 2019, 40(2), 52-56.
[17]
Li, M.; Zhang, P.; Wei, H.J.; Li, M.H.; Zou, W.; Li, X.; Gu, H.F.; Tang, X.Q. Hydrogen sulfide ameliorates homocysteine-induced cognitive dysfunction by inhibition of reactive aldehydes involving upregulation of ALDH2. Int. J. Neuropsychopharmacol., 2017, 20(4), 305-315.
[http://dx.doi.org/10.1093/ijnp/pyw103] [PMID: 27988490]
[18]
Qiao, D.; Ke, C.; Hu, B.; Luo, J.; Ye, H.; Sun, Y.; Yan, X.; Zeng, X. Antioxidant activities of polysaccharides from Hyriopsis cumingii. Carbohydr. Polym., 2009, 78(2), 199-204.
[http://dx.doi.org/10.1016/j.carbpol.2009.03.018]
[19]
Inal, M.E.; Kanbak, G.; Sunal, E. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clin. Chim. Acta, 2001, 305(1-2), 75-80.
[http://dx.doi.org/10.1016/S0009-8981(00)00422-8] [PMID: 11249925]
[20]
Bannerman, D.M.; Rawlins, J.N.; McHugh, S.B.; Deacon, R.M.; Yee, B.K.; Bast, T.; Zhang, W.N.; Pothuizen, H.H.; Feldon, J. Regional dissociations within the hippocampus--memory and anxiety. Neurosci. Biobehav. Rev., 2004, 28(3), 273-283.
[http://dx.doi.org/10.1016/j.neubiorev.2004.03.004] [PMID: 15225971]
[21]
Konishi, K.; Mckenzie, S.; Etchamendy, N.; Roy, S.; Bohbot, V.D. Hippocampus-dependent spatial learning is associated with higher global cognition among healthy older adults. Neuropsychologia, 2017, 106, 310-321.
[http://dx.doi.org/10.1016/j.neuropsychologia.2017.09.025] [PMID: 28963056]
[22]
Maksimova, K.Y.; Logvinov, S.V.; Stefanova, N.A. Morphological characteristics of the hippocampus in OXYS and wistar rats during the aging process. Neurosci. Behav. Physiol., 2016, 46(3), 274-278.
[http://dx.doi.org/10.1007/s11055-016-0229-6]
[23]
Dąbrowska, N.; Wiczkowski, A. Analytics of oxidative stress markers in the early diagnosis of oxygen DNA damage. Adv. Clin. Exp. Med., 2017, 26(1), 155-166.
[http://dx.doi.org/10.17219/acem/43272] [PMID: 28397448]
[24]
Lagouge, M.; Larsson, N.G. The role of mitochondrial DNA mutations and free radicals in disease and ageing. J. Intern. Med., 2013, 273(6), 529-543.
[http://dx.doi.org/10.1111/joim.12055] [PMID: 23432181]
[25]
De Jager, P.L.; Ma, Y.; McCabe, C.; Xu, J.; Vardarajan, B.N.; Felsky, D.; Klein, H.U.; White, C.C.; Peters, M.A.; Lodgson, B.; Nejad, P.; Tang, A.; Mangravite, L.M.; Yu, L.; Gaiteri, C.; Mostafavi, S.; Schneider, J.A.; Bennett, D.A. A multi-omic atlas of the human frontal cortex for aging and Alzheimer’s disease research. Sci. Data, 2018, 5, 180142
[http://dx.doi.org/10.1038/sdata.2018.142] [PMID: 30084846]
[26]
Afanas’ev, I. Signaling and Damaging Functions of Free Radicals in Aging-Free Radical Theory, Hormesis, and TOR. Aging Dis., 2010, 1(2), 75-88.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295029/
[PMID: 22396858]
[27]
Barja, G. The mitochondrial free radical theory of aging. Prog. Mol. Biol. Transl. Sci., 2014, 127, 1-27.
[http://dx.doi.org/10.1016/B978-0-12-394625-6.00001-5] [PMID: 25149212]
[28]
Wang, Q.; Li, W.X.; Dai, S.X.; Guo, Y.C.; Han, F.F.; Zheng, J.J.; Li, G.H.; Huang, J.F. Meta-Analysis of Parkinson’s Disease and Alzheimer’s Disease Revealed Commonly Impaired Pathways and Dysregulation of NRF2-Dependent Genes. J. Alzheimers Dis., 2017, 56(4), 1525-1539.
[http://dx.doi.org/10.3233/JAD-161032] [PMID: 28222515]
[29]
Zhang, Y.; Chen, X.; Yang, L.; Zu, Y.; Lu, Q. Effects of rosmarinic acid on liver and kidney antioxidant enzymes, lipid peroxidation and tissue ultrastructure in aging mice. Food Funct., 2015, 6(3), 927-931.
[http://dx.doi.org/10.1039/C4FO01051E] [PMID: 25635678]
[30]
Zhang, J.; Yang, L.M.; Pan, X.D.; Lin, N.; Chen, X.C. Increased vesicular γ-GABA transporter and decreased phosphorylation of synapsin I in the rostral preoptic area is associated with decreased gonadotrophin-releasing hormone and c-Fos coexpression in middle-aged female mice. J. Neuroendocrinol., 2013, 25(8), 753-761.
[http://dx.doi.org/10.1111/jne.12050] [PMID: 23679216]
[31]
Saura, J.; Richards, J.G.; Mahy, N. Differential age-related changes of MAO-A and MAO-B in mouse brain and peripheral organs. Neurobiol. Aging, 1994, 15(4), 399-408.
[http://dx.doi.org/10.1016/0197-4580(94)90071-X] [PMID: 7969716]
[32]
Myhrer, T. Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Res. Brain Res. Rev., 2003, 41(2-3), 268-287.
[http://dx.doi.org/10.1016/S0165-0173(02)00268-0] [PMID: 12663083]
[33]
He, X.Y.; Yang, B.X.; Lou, Z.J.; Yang, F.L.; Chen, Y.; Jinglong, H. Study the effect of Dendrobii officinalis flos on SHR. Zhejiang. J. Tradit. Chin. Med., 2016, 51(2), 152-154.
[34]
Liang, K.L.; Fang, P.; Shi, Q.Q.; Su, J.; Li, B.; Chen, S.H.; Lv, G.Y. [Antihypertensive effect and mechanism of Dendrobium officinale flos on high-blood pressure rats induced by high glucose and high fat compound alcohol]. Zhongguo Zhongyao Zazhi, 2018, 43(1), 147-153.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.20171027.020] [PMID: 29552825]
[35]
Kawano, T. Prion-derived copper-binding peptide fragments catalyze the generation of superoxide anion in the presence of aromatic monoamines. Int. J. Biol. Sci., 2006, 3(1), 57-63.
[http://dx.doi.org/10.7150/ijbs.3.57] [PMID: 17200692]
[36]
Rowe, G.T.; Manson, N.H.; Caplan, M.; Hess, M.L. Hydrogen peroxide and hydroxyl radical mediation of activated leukocyte depression of cardiac sarcoplasmic reticulum. Participation of the cyclooxygenase pathway. Circ. Res., 1983, 53(5), 584-591.
[http://dx.doi.org/10.1161/01.RES.53.5.584] [PMID: 6138170]
[37]
Kuloglu, M.; Ustundag, B.; Atmaca, M.; Canatan, H.; Tezcan, A.E.; Cinkilinc, N. Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem. Funct., 2002, 20(2), 171-175.
[http://dx.doi.org/10.1002/cbf.940] [PMID: 11979513]
[38]
Wu, W.; Wang, X.; Xiang, Q.; Meng, X.; Peng, Y.; Du, N.; Liu, Z.; Sun, Q.; Wang, C.; Liu, X. Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food Funct., 2014, 5(1), 158-166.
[http://dx.doi.org/10.1039/C3FO60400D] [PMID: 24326685]
[39]
Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Logan, J.; Pappas, N.; Shea, C.; MacGregor, R. Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol. Aging, 1997, 18(4), 431-435.
[http://dx.doi.org/10.1016/S0197-4580(97)00037-7] [PMID: 9330975]
[40]
Duzzioni, M.; Calixto, A.V.; Duarte, F.S.; Lima, T.C.M.D. Modulation of anxiety in rats evaluated in the elevated T-maze: Evidence of the relationship between substance P and diazepam. Behav. Brain. Res., 2008, 187(1), 0-145.
[41]
Cortese, B.M.; Phan, K.L. The role of glutamate in anxiety and related disorders. CNS Spectr., 2005, 10(10), 820-830.
[http://dx.doi.org/10.1017/S1092852900010427] [PMID: 16400245]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 5
Year: 2020
Page: [402 - 410]
Pages: 9
DOI: 10.2174/1386207323666200407080352
Price: $65

Article Metrics

PDF: 32
HTML: 3