Advances in the use of MOFs for Cancer Diagnosis and Treatment: An Overview

Author(s): Marina P. Abuçafy, Bruna L. da Silva, João A. Oshiro-Junior, Eloisa B. Manaia, Bruna G. Chiari-Andréo, Renan A. M. Armando, Regina C. G. Frem, Leila A. Chiavacci*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 33 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Nanoparticles as drug delivery systems and diagnostic agents have gained much attention in recent years, especially for cancer treatment. Nanocarriers improve the therapeutic efficiency and bioavailability of antitumor drugs, besides providing preferential accumulation at the target site. Among different types of nanocarriers for drug delivery assays, metal-organic frameworks (MOFs) have attracted increasing interest in the academic community. MOFs are an emerging class of coordination polymers constructed of metal nodes or clusters and organic linkers that show the capacity to combine a porous structure with high drug loading through distinct kinds of interactions, overcoming the limitations of traditional drug carriers explored up to date. Despite the rational design and synthesis of MOFs, structural aspects and some applications of these materials like gas adsorption have already been comprehensively described in recent years; it is time to demonstrate their potential applications in biomedicine. In this context, MOFs can be used as drug delivery systems and theranostic platforms due to their ability to release drugs and accommodate imaging agents. This review describes the intrinsic characteristics of nanocarriers used in cancer therapy and highlights the latest advances in MOFs as anticancer drug delivery systems and diagnostic agents.

Keywords: Metal-organic frameworks, nanocarriers, drug delivery, cancer diagnosis, cancer therapy, cancer theranostics.

[1]
Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008; 14(5): 1310-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[2]
Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS PharmSciTech 2014; 15(4): 862-71.
[http://dx.doi.org/10.1208/s12249-014-0113-z] [PMID: 24700296]
[3]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[4]
Singh J, Jain K, Mehra NK, Jain NK, Jain NK. Dendrimers in anticancer drug delivery: mechanism of interaction of drug and dendrimers. Artif Cells Nanomed Biotechnol 2016; 44(7): 1626-34.
[http://dx.doi.org/10.3109/21691401.2015.1129625] [PMID: 26747336]
[5]
Horcajada P, Chalati T, Serre C, et al. Porous metal-organic framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 2010; 9(2): 172-8.
[http://dx.doi.org/10.1038/nmat2608] [PMID: 20010827]
[6]
Keskin S, Kızılel S. Biomedical applications of metal organic frameworks. Ind Eng Chem Res 2011; 50: 1799-812.
[http://dx.doi.org/10.1021/ie101312k]
[7]
Li X, Ma W, Li H, Bai Y, Liu H. Metal-organic frameworks as advanced sorbents in sample preparation for small organic analytes. Coord Chem Rev 2019; 397: 1-13.
[http://dx.doi.org/10.1016/j.ccr.2019.06.014]
[8]
Simon-Yarza T, Rojas S, Horcajada P, Serre C. 4.38 The situation of metal-organic frameworks in biomedicine. Compr Biomater II 2017; 4: 719-49.
[http://dx.doi.org/10.1016/B978-0-12-803581-8.09793-9]
[9]
Chen YZ, Zhang R, Jiao L, Jiang HL. Metal-organic framework derived porous materials for catalysis. Coord Chem 2018; 362: 1-23.
[http://dx.doi.org/10.1016/j.ccr.2018.02.008]
[10]
Gascon J, Corma A, Kapteijn F, Llabrés I, Xamena FX. Metal organic framework catalysis: quo vadis? ACS Catal 2014; 4: 361-78.
[http://dx.doi.org/10.1021/cs400959k]
[11]
Wu YN, Li F, Zhu W, et al. Metal-organic frameworks with a three-dimensional ordered macroporous structure: dynamic photonic materials. Angew Chem Int Ed Engl 2011; 50(52): 12518-22.
[http://dx.doi.org/10.1002/anie.201104597] [PMID: 22006864]
[12]
Xue DX, Wang Q, Bai J. Amide-functionalized metal-organic frameworks: syntheses, structures and improved gas storage and separation properties. Coord Chem 2019; 378: 2-16.
[http://dx.doi.org/10.1016/j.ccr.2017.10.026]
[13]
Rojas S, Arenas-Vivo A, Horcajada P. Metal-organic frameworks: a novel platform for combined advanced therapies. Coord Chem Rev 2019; 388: 202-26.
[http://dx.doi.org/10.1016/j.ccr.2019.02.032]
[14]
Senapati S. Controlled drug delivery vehicles for cancer treatment and their performance. Signal transduct tar 2018; 3: 1-19.
[http://dx.doi.org/10.1038/s41392-017-0004-3]
[15]
Alemrayat B, Elrayess MA, Alany RG, Elhissi A, Younes HM. Preparation and optimization of monodisperse polymeric microparticles using modified vibrating orifice aerosol generator for controlled delivery of letrozole in breast cancer therapy. Drug Dev Ind Pharm 2018; 44(12): 1953-65.
[http://dx.doi.org/10.1080/03639045.2018.1503298] [PMID: 30035646]
[16]
Poltavets YI, Zhirnik AS, Zavarzina VV, Semochkina YP, Shuvatova VG, Krasheninnikova AA, et al. In vitro anticancer activity of folate-modified docetaxel-loaded PLGA nanoparticles against drug-sensitive and multidrug-resistant cancer cells. Cancer Nanotechnol 2019; 10: 2.
[http://dx.doi.org/10.1186/s12645-019-0048-x]
[17]
Ferrari R, Sponchioni M, Morbidelli M, Moscatelli D. Polymer nanoparticles for the intravenous delivery of anticancer drugs: the checkpoints on the road from the synthesis to clinical translation. Nanoscale 2018; 10(48): 22701-19.
[http://dx.doi.org/10.1039/C8NR05933K] [PMID: 30512025]
[18]
Couvreur P, Kante B, Roland M, Speiser P. Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J Pharm Sci 1979; 68(12): 1521-4.
[http://dx.doi.org/10.1002/jps.2600681215] [PMID: 529043]
[19]
Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal drug delivery systems and anticancer drugs. Molecules 2018; 23(4): 1-17.
[http://dx.doi.org/10.3390/molecules23040907] [PMID: 29662019]
[20]
Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1(3): 297-315.
[PMID: 17717971]
[21]
Sarfraz M, Afzal A, Yang T, et al. Development of dual drug loaded nanosized liposomal formulation by a reengineered ethanolic injection method and its pre-clinical pharmacokinetic studies. Pharmaceutics 2018; 10(3): 151.
[http://dx.doi.org/10.3390/pharmaceutics10030151] [PMID: 30200557]
[22]
Hofheinz R, Gnad-vogt SU, Beyer U, Hochhaus A. Liposomal encapsulated anti-cancer drugs. Anti-cancer drug 2005; 16: 691-707.
[http://dx.doi.org/10.1097/01.cad.0000167902.53039.5a]
[23]
Cortes JE, Goldberg SL, Feldman EJ, et al. Phase II, multicenter, randomized trial of CPX-351 (cytarabine:daunorubicin) liposome injection versus intensive salvage therapy in adults with first relapse AML. Cancer 2015; 121(2): 234-42.
[http://dx.doi.org/10.1002/cncr.28974] [PMID: 25223583]
[24]
Ko AH, Tempero MA, Shan YS, et al. A multinational phase 2 study of nanoliposomal irinotecan sucrosofate (PEP02, MM-398) for patients with gemcitabine-refractory metastatic pancreatic cancer. Br J Cancer 2013; 109(4): 920-5.
[http://dx.doi.org/10.1038/bjc.2013.408] [PMID: 23880820]
[25]
Kim TY, Kim DW, Chung JY, et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 2004; 10(11): 3708-16.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0655] [PMID: 15173077]
[26]
Jin X, Zhang P, Luo L, et al. Efficient intravesical therapy of bladder cancer with cationic doxorubicin nanoassemblies. Int J Nanomedicine 2016; 11: 4535-44.
[http://dx.doi.org/10.2147/IJN.S103994] [PMID: 27660445]
[27]
Nasongkla N, Bey E, Ren J, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 2006; 6(11): 2427-30.
[http://dx.doi.org/10.1021/nl061412u] [PMID: 17090068]
[28]
Huxford RC, Della Rocca J, Lin W. Metal-organic frameworks as potential drug carriers. Curr Opin Chem Biol 2010; 14(2): 262-8.
[http://dx.doi.org/10.1016/j.cbpa.2009.12.012] [PMID: 20071210]
[29]
Cai W, Chu CC, Liu G, Wáng YX. Metal-organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small 2015; 11(37): 4806-22.
[http://dx.doi.org/10.1002/smll.201500802] [PMID: 26193176]
[30]
Wang L, Wang L, Zheng M. Nanoscale metal - organic frameworks for drug delivery : a conventional platform with new promise 2018; 707-17.
[31]
Rungtaweevoranit B, Zhao Y, Choi KM, Yaghi OM. Cooperative effects at the interface of nanocrystalline metal-organic frameworks. Nano Res 2016; 9: 47-58.
[http://dx.doi.org/10.1007/s12274-015-0970-0]
[32]
Hermes S, Witte T, Hikov T, et al. Trapping metal-organic framework nanocrystals: an in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. J Am Chem Soc 2007; 129(17): 5324-5.
[http://dx.doi.org/10.1021/ja068835i] [PMID: 17407291]
[33]
Liu Q, Jin LN, Sun WY. Facile fabrication and adsorption property of a nano/microporous coordination polymer with controllable size and morphology. Chem Commun (Camb) 2012; 48(70): 8814-6.
[http://dx.doi.org/10.1039/c2cc34192a] [PMID: 22836446]
[34]
Zhao Y, Kornienko N, Liu Z, et al. Mesoscopic constructs of ordered and oriented metal-organic frameworks on plasmonic silver nanocrystals. J Am Chem Soc 2015; 137(6): 2199-202.
[http://dx.doi.org/10.1021/ja512951e] [PMID: 25622094]
[35]
Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 2013; 4(1): 81-9.
[http://dx.doi.org/10.7150/thno.7193] [PMID: 24396516]
[36]
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-92.
[PMID: 2946403]
[37]
Simon-Yarza T, Giménez-Marqués M, Mrimi R, et al. A Smart Metal-Organic Framework Nanomaterial for Lung Targeting. Angew Chem Int Ed Engl 2017; 56(49): 15565-9.
[http://dx.doi.org/10.1002/anie.201707346] [PMID: 28960750]
[38]
Chalati T, Horcajada P, Couvreur P, et al. Porous metal organic framework nanoparticles to address the challenges related to busulfan encapsulation. Nanomedicine (Lond) 2011; 6(10): 1683-95.
[http://dx.doi.org/10.2217/nnm.11.69] [PMID: 22122581]
[39]
Sun CY, Qin C, Wang XL, et al. Zeolitic Imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans 2012; 41(23): 6906-9.
[http://dx.doi.org/10.1039/c2dt30357d] [PMID: 22580798]
[40]
Vasconcelos IB, Da Silva TG, Militão GCG, Soares TA, Rodrigues NM, Rodrigues MO, et al. Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Advances 2012; 2: 9437-42.
[http://dx.doi.org/10.1039/c2ra21087h]
[41]
Zeng J-Y, Wang X-S, Song W-F, Cheng H, Zhang X-Z. Metal-organic framework mediated multifunctional nanoplatforms for cancer therapy. Adv Ther 2018.21800100
[http://dx.doi.org/10.1002/adtp.201800100]
[42]
Zhang H, Jiang W, Liu R, et al. Rational design of metal organic framework nanocarrier-based codelivery System of doxorubicin hydrochloride/verapamil hydrochloride for overcoming multidrug resistance with efficient targeted cancer therapy. ACS Appl Mater Interfaces 2017; 9(23): 19687-97.
[http://dx.doi.org/10.1021/acsami.7b05142] [PMID: 28530401]
[43]
Wang L, Guan H, Wang Z, Xing Y, Zhang J, Cai K. Hybrid mesoporous-microporous nanocarriers for overcoming multidrug resistance by sequential drug delivery. Mol Pharm 2018; 15(7): 2503-12.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01096] [PMID: 29768014]
[44]
Illes B, Wuttke S, Engelke H. Liposome-coated iron fumarate metal-organic framework nanoparticles for combination therapy. Nanomaterials (Basel) 2017; 7(11): 351.
[http://dx.doi.org/10.3390/nano7110351] [PMID: 29072630]
[45]
Kundu T, Mitra S, Patra P, Goswami A, Díaz Díaz D, Banerjee R. Mechanical downsizing of a gadolinium(III)-based metal-organic framework for anticancer drug delivery. Chemistry 2014; 20(33): 10514-8.
[http://dx.doi.org/10.1002/chem.201402244] [PMID: 25044210]
[46]
Lin W, Hu Q, Jiang K, Yang Y, Yang Y, Cui Y, et al. A porphyrin-based metal-organic framework as a pH-responsive drug carrier. J Solid State Chem 2016; 237: 307-12.
[http://dx.doi.org/10.1016/j.jssc.2016.02.040]
[47]
Sun CY, Qin C, Wang CG, et al. Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery. Adv Mater 2011; 23(47): 5629-32.
[http://dx.doi.org/10.1002/adma.201102538] [PMID: 22095878]
[48]
Bag PP, Wang D, Chen Z, Cao R. Outstanding drug loading capacity by water stable microporous MOF: a potential drug carrier. Chem Commun (Camb) 2016; 52(18): 3669-72.
[http://dx.doi.org/10.1039/C5CC09925K] [PMID: 26853858]
[49]
Chen D, Yang D, Dougherty CA, et al. In vivo targeting and positron emission tomography imaging of tumor with intrinsically radioactive metal-organic frameworks nanomaterials. ACS Nano 2017; 11(4): 4315-27.
[http://dx.doi.org/10.1021/acsnano.7b01530] [PMID: 28345871]
[50]
Wu Z, Hao N, Zhang H, et al. Mesoporous iron-carboxylate metal-organic frameworks synthesized by the double-template method as a nanocarrier platform for intratumoral drug delivery. Biomater Sci 2017; 5(5): 1032-40.
[http://dx.doi.org/10.1039/C7BM00028F] [PMID: 28358402]
[51]
Simon-Yarza T, Mielcarek A, Couvreur P, Serre C. Nanoparticles of metal-organic frameworks: on the road to in vivo efficacy in biomedicine. Adv Mater 2018; 30(37)e1707365
[http://dx.doi.org/10.1002/adma.201707365] [PMID: 29876985]
[52]
Liu J, Yang Y, Zhu W, et al. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials 2016; 97: 1-9.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.034] [PMID: 27155362]
[53]
Zimpel A, Preiß T, Röder R, Engelke H, Ingrisch M, Peller M, et al. Imparting functionality to MOF nanoparticles by external surface selective covalent attachment of polymers. Chem Mater 2016; 28: 3318-26.
[http://dx.doi.org/10.1021/acs.chemmater.6b00180]
[54]
Agostoni V, Horcajada P, Noiray M, et al. A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Sci Rep 2015; 5: 7925.
[http://dx.doi.org/10.1038/srep07925] [PMID: 25603994]
[55]
Wuttke S, Braig S, Preiß T, et al. MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells. Chem Commun (Camb) 2015; 51(87): 15752-5.
[http://dx.doi.org/10.1039/C5CC06767G] [PMID: 26359316]
[56]
Vieira DB, Gamarra LF. Advances in the use of nanocarriers for cancer diagnosis and treatment. Einstein (Sao Paulo) 2016; 14(1): 99-103.
[http://dx.doi.org/10.1590/S1679-45082016RB3475] [PMID: 27074238]
[57]
Cai W, Gao H, Chu C, et al. Engineering phototheranostic nanoscale metal-organic frameworks for multimodal imaging-guided cancer therapy. ACS Appl Mater Interfaces 2017; 9(3): 2040-51.
[http://dx.doi.org/10.1021/acsami.6b11579] [PMID: 28032505]
[58]
Cheng H, Zhu JY, Li SY, Zeng JY, Lei Q, Chen KW, et al. An O2 Self-sufficient biomimetic nanoplatform for highly specific and efficient photodynamic therapy. Adv Funct Mater 2016; 26: 7847-60.
[http://dx.doi.org/10.1002/adfm.201603212]
[59]
Rieter WJ, Pott KM, Taylor KML, Lin W. Nanoscale coordination polymers for platinum-based anticancer drug delivery. J Am Chem Soc 2008; 130(35): 11584-5.
[http://dx.doi.org/10.1021/ja803383k] [PMID: 18686947]
[60]
Hidalgo T, Giménez-Marqués M, Bellido E, et al. Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers. Sci Rep 2017; 7: 43099.
[http://dx.doi.org/10.1038/srep43099] [PMID: 28256600]
[61]
Laha D, Pal K, Chowdhuri AR, Parida PK, Sahu SK, Jana K, et al. Fabrication of curcumin-loaded folic acid-tagged metal organic framework for triple negative breast cancer therapy in in vitro and in vivo systems. New J Chem 2019; 43: 217-29.
[http://dx.doi.org/10.1039/C8NJ03350A]
[62]
Xue Z, Zhu M, Dong Y, et al. An integrated targeting drug delivery system based on the hybridization of graphdiyne and MOFs for visualized cancer therapy. Nanoscale 2019; 11(24): 11709-18.
[http://dx.doi.org/10.1039/C9NR02017A] [PMID: 31180099]
[63]
Taylor KML, Rieter WJ, Lin W. Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. J Am Chem Soc 2008; 130(44): 14358-9.
[http://dx.doi.org/10.1021/ja803777x] [PMID: 18844356]
[64]
Mendes RG, Bachmatiuk A, Büchner B, Cuniberti G, Rümmeli MH. Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem 2013; 1: 401-28.
[http://dx.doi.org/10.1039/C2TB00085G]
[65]
Bourne SA, Lu J, Mondal A, Moulton B, Zaworotko MJ. Self-assembly of nanometer-scale secondary building units into an undulating two-dimensional network with two types of hydrophobic cavity. Angew Chem Int Ed 2001; 40: 2111-3.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2111:AID-ANIE2111>3.0.CO;2-F]
[66]
Chae HK, Eddaoudi M, Kim J, et al. Tertiary building units: synthesis, structure, and porosity of a metal-organic dendrimer framework (MODF-1). J Am Chem Soc 2001; 123(46): 11482-3.
[http://dx.doi.org/10.1021/ja011692+] [PMID: 11707128]
[67]
Wessels JT, Yamauchi K, Hoffman RM, Wouters FS. Advances in cellular, subcellular, and nanoscale imaging in vitro and in vivo. Cytometry A 2010; 77(7): 667-76.
[http://dx.doi.org/10.1002/cyto.a.20931] [PMID: 20564541]
[68]
Alivisatos P. The use of nanocrystals in biological detection. Nat Biotechnol 2004; 22(1): 47-52.
[http://dx.doi.org/10.1038/nbt927] [PMID: 14704706]
[69]
Gao X, Cui Y, Levenson RM, Chung LWK, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004; 22(8): 969-76.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[70]
Loo C, Lowery A, Halas N, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005; 5(4): 709-11.
[http://dx.doi.org/10.1021/nl050127s] [PMID: 15826113]
[71]
Imaz I, Hernando J, Ruiz-Molina D, Maspoch D. Metal-organic spheres as functional systems for guest encapsulation. Angew Chem Int Ed Engl 2009; 48(13): 2325-9.
[http://dx.doi.org/10.1002/anie.200804255] [PMID: 19107887]
[72]
Nishiyabu R, Aimé C, Gondo R, Kaneko K, Kimizuka N. Selective inclusion of anionic quantum dots in coordination network shells of nucleotides and lanthanide ions. Chem Commun (Camb) 2010; 46(24): 4333-5.
[http://dx.doi.org/10.1039/c001012j] [PMID: 20461271]
[73]
Taylor-Pashow KML, Della Rocca J, Huxford RC, Lin W. Hybrid nanomaterials for biomedical applications. Chem Commun (Camb) 2010; 46(32): 5832-49.
[http://dx.doi.org/10.1039/c002073g] [PMID: 20623072]
[74]
Yan X, Zhu P, Fei J, Li J. Self-assembly of peptide-inorganic hybrid spheres for adaptive encapsulation of guests. Adv Mater 2010; 22(11): 1283-7.
[http://dx.doi.org/10.1002/adma.200901889] [PMID: 20437520]
[75]
Taylor KML, Jin A, Lin W. Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. Angew Chem Int Ed Engl 2008; 47(40): 7722-5.
[http://dx.doi.org/10.1002/anie.200802911] [PMID: 18767098]
[76]
Aimé C, Nishiyabu R, Gondo R, Kimizuka N. Switching on luminescence in nucleotide/lanthanide coordination nanoparticles via synergistic interactions with a cofactor ligand. Chemistry 2010; 16(12): 3604-7.
[http://dx.doi.org/10.1002/chem.201000007] [PMID: 20191631]
[77]
Kerbellec N, Catala L, Daiguebonne C, Gloter A, Stephan O, Bünzli J-C, et al. Luminescent coordination nanoparticles. New J Chem 2008; 32: 584-7.
[http://dx.doi.org/10.1039/b719146d]
[78]
Della Rocca J, Liu D, Lin W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 2011; 44(10): 957-68.
[http://dx.doi.org/10.1021/ar200028a] [PMID: 21648429]
[79]
Liu D, Huxford RC, Lin W. Phosphorescent nanoscale coordination polymers as contrast agents for optical imaging. Angew Chem Int Ed Engl 2011; 50(16): 3696-700.
[http://dx.doi.org/10.1002/anie.201008277] [PMID: 21416573]
[80]
Sanada T, Tominaka S, Kojima K, Cheetham AK. Violet luminescence from zinc-based metal-organic frameworks prepared by solvothermal synthesis. Bull Chem Soc Jpn 2019; 427-34.
[http://dx.doi.org/10.1246/bcsj.20180256]
[81]
Zhao D, Wan X, Song H, Hao L, Su Y, Lv Y. Metal-organic frameworks (MOFs) combined with ZnO quantum dots as a fluorescent sensing platform for phosphate. Sens Actuators B Chem 2014; 197: 50-7.
[http://dx.doi.org/10.1016/j.snb.2014.02.070]
[82]
Merbach AE, Tóth É. The chemistry of contrast agents in medical magnetic resonance imaging. John Wiley & Sons 2001; Vol. 46.
[83]
Na H. Bin, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater 2009; 21: 2133-48.
[http://dx.doi.org/10.1002/adma.200802366]
[84]
Guari Y, Larionova J, Corti M, Lascialfari A, Marinone M, Poletti G, et al. Cyano-bridged coordination polymer nanoparticles with high nuclear relaxivity: toward new contrast agents for MRI. Dalt Trans 2008; 3658-60.
[http://dx.doi.org/10.1039/b808221a]
[85]
Rowe MD, Chang C-C, Thamm DH, et al. Tuning the magnetic resonance imaging properties of positive contrast agent nanoparticles by surface modification with RAFT polymers. Langmuir 2009; 25(16): 9487-99.
[http://dx.doi.org/10.1021/la900730b] [PMID: 19422256]
[86]
Rowsell JLC, Yaghi OM. Metal-organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 2004; 73: 3-14.
[http://dx.doi.org/10.1016/j.micromeso.2004.03.034]
[87]
Li J-R, Kuppler RJ, Zhou H-C. Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 2009; 38(5): 1477-504.
[http://dx.doi.org/10.1039/b802426j] [PMID: 19384449]
[88]
Xie Z, Ma L, deKrafft KE, Jin A, Lin W. Porous phosphorescent coordination polymers for oxygen sensing. J Am Chem Soc 2010; 132(3): 922-3.
[http://dx.doi.org/10.1021/ja909629f] [PMID: 20041656]
[89]
Kent CA, Mehl BP, Ma L, Papanikolas JM, Meyer TJ, Lin W. Energy transfer dynamics in metal-organic frameworks. J Am Chem Soc 2010; 132(37): 12767-9.
[http://dx.doi.org/10.1021/ja102804s] [PMID: 20735124]
[90]
Horcajada P, Serre C, Maurin G, et al. Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc 2008; 130(21): 6774-80.
[http://dx.doi.org/10.1021/ja710973k] [PMID: 18454528]
[91]
Kim SB, Cai C, Sun S, Sweigart DA. Incorporation of Fe3O4 nanoparticles into organometallic coordination polymers by nanoparticle surface modification. Angew Chem Int Ed Engl 2009; 48(16): 2907-10.
[http://dx.doi.org/10.1002/anie.200805773] [PMID: 19288506]
[92]
Sene S, Marcos-Almaraz MT, Menguy N, Scola J, Volatron J, Rouland R, et al. Maghemite-nanoMIL-100(Fe) Bimodal nanovector as a platform for image-guided therapy. Chem 2018; 3: 303-22.
[http://dx.doi.org/10.1016/j.chempr.2017.06.007]
[93]
Wang D, Zhou J, Chen R, et al. Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy. Biomaterials 2016; 100: 27-40.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.027] [PMID: 27240160]
[94]
Bian R, Wang T, Zhang L, Li L, Wang C. A combination of trimodal cancer imaging and in vivo drug delivery by metal-organic framework based composite nanoparticles. Biomater Sci 2015; 3(9): 1270-8.
[http://dx.doi.org/10.1039/C5BM00186B] [PMID: 26236784]
[95]
Ray Chowdhuri A, Bhattacharya D, Sahu SK. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans 2016; 45(7): 2963-73.
[http://dx.doi.org/10.1039/C5DT03736K] [PMID: 26754449]
[96]
Zhao H-X, Zou Q, Sun S-K, et al. Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug delivery. Chem Sci (Camb) 2016; 7(8): 5294-301.
[http://dx.doi.org/10.1039/C6SC01359G] [PMID: 30155180]
[97]
Fang J, Yang Y, Xiao W, et al. Extremely low frequency alternating magnetic field-triggered and MRI-traced drug delivery by optimized magnetic zeolitic imidazolate framework-90 nanoparticles. Nanoscale 2016; 8(6): 3259-63.
[http://dx.doi.org/10.1039/C5NR08086J] [PMID: 26809987]
[98]
Taylor-Pashow KML, Della Rocca J, Xie Z, Tran S, Lin W. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J Am Chem Soc 2009; 131(40): 14261-3.
[http://dx.doi.org/10.1021/ja906198y] [PMID: 19807179]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 33
Year: 2020
Published on: 23 September, 2020
Page: [4174 - 4184]
Pages: 11
DOI: 10.2174/1381612826666200406153949
Price: $65

Article Metrics

PDF: 25
HTML: 2
EPUB: 1
PRC: 1