Antibacterial Assessment of Zinc Sulfide Nanoparticles against Streptococcus pyogenes and Acinetobacter baumannii

Author(s): Zeinab Morshedtalab, Ghasem Rahimi, Asieh Emami-Nejad, Alireza Farasat, Azita Mohammadbeygi, Nahid Ghaedamini, Masoud Negahdary*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 11 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Due to the appearance of resistant bacterial strains against the antimicrobial drugs and the reduced efficiency of these valuable resources, the health of a community and the economies of countries have been threatened. Objective: In this study, the antibacterial assessment of zinc sulfide nanoparticles (ZnS NPs) against Streptococcus pyogenes and Acinetobacter baumannii has been performed.

Methods: ZnS NPs were synthesized through a co-precipitation method using polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA) and polyethylene glycol (PEG-4000). The size and morphology of the synthesized ZnS NPs were determined by a scanning electron microscope (SEM) and it was found that the average size of the applied NPs was about 70 nm. In order to evaluate the antibacterial effect of the synthesized ZnS NPs, various concentrations (50μg/mL, 100 μg/mL and 150 μg/mL) of ZnS NPs were prepared. Antibacterial assessments were performed through the disc diffusion method in Mueller Hinton Agar (MHA) culture medium and also the optical density (OD) method was performed by a UV-Vis spectrophotometer in Trypticase™ Soy Broth (TSB) medium. Then, in order to compare the antibacterial effects of the applied NPs, several commercial antibiotics including penicillin, amikacin, ceftazidime and primaxin were used.

Results: The achieved results indicated that the antibacterial effects of ZnS NPs had a direct relation along with the concentrations and the concentration of 150 μg/mL showed the highest antibacterial effect in comparison with others. In addition, the ZnS NPs were more effective on Acinetobacter baumannii.

Conclusion: The findings of this research suggest a novel approach against antibiotic resistance.

Keywords: Zinc sulfide nanoparticles, Antibacterial effects, Streptococcus pyogenes, Acinetobacter baumannii, Antimicrobial resistance, Antibiotic resistance.

Walsh, C. Antibiotics: Actions, Origins, Resistance; ASM Sci, 2003.
Lorian, V. Antibiotics in laboratory medicine; Lippincott Williams & Wilkins: Philadelphia, 2005.
Ahovuo‐Saloranta, A.; Rautakorpi, U.M.; Borisenko, O.V.; Liira, H.; Williams, J.W., Jr; Mäkelä, M. Antibiotics for acute maxillary sinusitis in adults. Cochrane Libr., 2016.
Spellberg, B.; Bartlett, J.G.; Gilbert, D.N. The future of antibiotics and resistance. N. Engl. J. Med., 2013, 368(4), 299-302.
[] [PMID: 23343059]
Livermore, D.M. Bacterial resistance: origins, epidemiology, and impact. Clin. Infect. Dis., 2003, 36(Suppl. 1), S11-S23.
[] [PMID: 12516026]
Buke, C.; Hosgor-Limoncu, M.; Ermertcan, S.; Ciceklioglu, M.; Tuncel, M.; Köse, T.; Eren, S. Irrational use of antibiotics among university students. J. Infect., 2005, 51(2), 135-139.
[] [PMID: 16038764]
Schwarz, S.; Loeffler, A.; Kadlec, K. Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine. Vet. Dermatol., 2017, 28(1), 82-e19.
[PMID: 27581211]
Kümmerer, K. Antibiotics in the aquatic environment--a review--part II. Chemosphere, 2009, 75(4), 435-441.
[] [PMID: 19178931]
Ali, J.; Rafiq, Q.A.; Ratcliffe, E. Antimicrobial resistance mechanisms and potential synthetic treatments. Future Sci. OA, 2018, 4(4) FSO290
[] [PMID: 29682325]
Bisno, A.L.; Stevens, D. Streptococcus pyogenes. In: Principles and practice of infectious diseases; Elsevier: Amsterdam; , 1995; 2, pp. 1786-1799.
Lamagni, T.L.; Darenberg, J.; Luca-Harari, B.; Siljander, T.; Efstratiou, A.; Henriques-Normark, B.; Vuopio-Varkila, J.; Bouvet, A.; Creti, R.; Ekelund, K.; Koliou, M.; Reinert, R.R.; Stathi, A.; Strakova, L.; Ungureanu, V.; Schalén, C.; Jasir, A. Strep-EURO Study Group. Epidemiology of severe Streptococcus pyogenes disease in Europe. J. Clin. Microbiol., 2008, 46(7), 2359-2367.
[] [PMID: 18463210]
Lamagni, T.L.; Neal, S.; Keshishian, C.; Alhaddad, N.; George, R.; Duckworth, G.; Vuopio-Varkila, J.; Efstratiou, A. Severe Streptococcus pyogenes infections, United Kingdom, 2003-2004. Emerg. Infect. Dis., 2008, 14(2), 202-209.
[] [PMID: 18258111]
Lamagni, T.; Efstratiou, A.; Vuopio-Varkila, J.; Jasir, A.; Schalén, C. The epidemiology of severe Streptococcus pyogenes associated disease in Europe. Euro Surveill., 2005, 10(9), 179-184.
Barnett, T.C.; Bowen, A.C.; Carapetis, J.R. The fall and rise of Group A Streptococcus diseases. Epidemiol. Infect., 2018, 147, 1-6. (Online Ahead of Print)
[PMID: 30109840]
Holmes, R.K.; Jobling, M.G.; Connell, T.D. Gram-Negative Bacteria. In: Handbook of natural toxins: bacterial toxins and virulence factors in disease; CRCPress: Boca Raton, 1995; 8, p. 225.
Dik, D.A.; Fisher, J.F.; Mobashery, S. Cell-wall recycling of the Gram-negative bacteria and the nexus to antibiotic resistance. Chem. Rev., 2018, 118(12), 5952-5984.
[] [PMID: 29847102]
Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev., 2008, 21(3), 538-582.
[] [PMID: 18625687]
Logan, L.K.; Gandra, S.; Trett, A.; Weinstein, R.A.; Laxminarayan, R. Acinetobacter baumannii resistance trends in children in the United States, 1999-2012. J. Pediatric Infect. Dis. Soc., 2019, 8(2), 136-142.
[] [PMID: 29579216]
Garnacho-Montero, J.; Timsit, J-F. Managing Acinetobacter baumannii infections. Curr. Opin. Infect. Dis., 2019, 32(1), 69-76.
[] [PMID: 30520737]
Maragakis, L.L.; Perl, T.M.; Perl, T.M. Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin. Infect. Dis., 2008, 46(8), 1254-1263.
[] [PMID: 18444865]
Hsueh, P-R.; Liu, C-Y.; Luh, K-T. Current status of antimicrobial resistance in Taiwan. Emerg. Infect. Dis., 2002, 8(2), 132-137.
[] [PMID: 11897063]
Howard, A.; O’Donoghue, M.; Feeney, A.; Sleator, R.D. Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence, 2012, 3(3), 243-250.
[] [PMID: 22546906]
Control, C.D. Centers for Disease Control and Prevention (CDC). Acinetobacter baumannii infections among patients at military medical facilities treating injured U.S. service members, 2002-2004. MMWR Morb. Mortal. Wkly. Rep., 2004, 53(45), 1063-1066.
[PMID: 15549020]
Navon-Venezia, S.; Ben-Ami, R.; Carmeli, Y. Update on Pseudomonas aeruginosa and Acinetobacter baumannii infections in the healthcare setting. Curr. Opin. Infect. Dis., 2005, 18(4), 306-313.
[] [PMID: 15985826]
Perez, F.; Hujer, A.M.; Hujer, K.M.; Decker, B.K.; Rather, P.N.; Bonomo, R.A. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother., 2007, 51(10), 3471-3484.
[] [PMID: 17646423]
Oldfield, E.; Feng, X. Resistance-resistant antibiotics. Trends Pharmacol. Sci., 2014, 35(12), 664-674.
[] [PMID: 25458541]
Pelgrift, R.Y.; Friedman, A.J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1803-1815.
[] [PMID: 23892192]
Alsteens, D.; Dague, E.; Verbelen, C.; Andre, G.; Francius, G.; Dufrêne, Y.F. Nanomicrobiology. Nanoscale Res. Lett., 2007, 2(8), 365.
Jain, K.K. The Handbook of Nanomedicine; Springer: New York, 2017, pp. 511-537.
Saadatmand, M.; Yazdanshenas, M.; Rezaei Zarchi, S.; Yosefi Talori, B.; Negahdari, M. The antimicrobial activity of chitosan nanocomposite TiO2, and its application on the gauze hospital. Laboratory J., 2012, 6(1), 57-59.
Negahdari, B.; Shirazi, M.H.; Malekshahi, Z.V.; Sadeghi, S.; Hajikhani, S.; Rahmati, M. Survey on the antibacterial effect of silver nanoparticles deposited on textile fabrics. Int. J. Health Studies, 2016, 2(1.)
Li, G.; Zhai, J.; Li, D.; Fang, X.; Jiang, H.; Dong, Q.; Wang, E. One-pot synthesis of monodispersed ZnS nanospheres with high antibacterial activity. J. Mater. Chem., 2010, 20(41), 9215-9219.
Abdelhamid, H.N.; Wu, H-F. Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(32), 3950-3961.
Abdelhamid, H.N.; Wu, H-F. Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. Trends Analyt. Chem., 2015, 65, 30-46.
Wu, B-S.; Abdelhamid, H.N.; Wu, H-F. Synthesis and antibacterial activities of graphene decorated with stannous dioxide. RSC Advances, 2014, 4(8), 3722-3731.
Abdelhamid, H.N.; Khan, M.S.; Wu, H-F. Graphene oxide as a nanocarrier for gramicidin (GOGD) for high antibacterial performance. RSC Advances, 2014, 4(91), 50035-50046.
Chifiriuc, C.M.; Grumezescu, A.M. Editorial: micro and nanoscale materials for boosting the antimicrobial fight. Curr. Top. Med. Chem., 2015, 15(16), 1551-1551.
[] [PMID: 25877098]
Pop, C.S.; Hussien, M.D.; Popa, M.; Mares, A.; Grumezescu, A.M.; Grigore, R.; Lazar, V.; Chifiriuc, M.C.; Sakizlian, M.; Bezirtzoglou, E.; Bertesteanu, S. Metallic-based micro and nanostructures with antimicrobial activity. Curr. Top. Med. Chem., 2015, 15(16), 1577-1582.
[] [PMID: 25877091]
Oktar, F.N.; Yetmez, M.; Ficai, D.; Ficai, A.; Dumitru, F.; Pica, A. Molecular mechanism and targets of the antimicrobial activity of metal nanoparticles. Curr. Top. Med. Chem., 2015, 15(16), 1583-1588.
[] [PMID: 25877090]
Holban, A.M. Magnetite Nanoshuttles for Fighting Staphylococcus aureus Infections: A Recent Review. Curr. Top. Med. Chem., 2015, 15(16), 1589-1595.
[] [PMID: 25877084]
Suresh, A.K.; Pelletier, D.A.; Doktycz, M.J. Relating nanomaterial properties and microbial toxicity. Nanoscale, 2013, 5(2), 463-474.
[] [PMID: 23203029]
Rao, C.N.R.; Müller, A.; Cheetham, A.K. The chemistry of nanomaterials: synthesis, properties and applications; John Wiley & Sons: Hoboken, 2006.
Arabi, F.; Imandar, M.; Negahdary, M.; Imandar, M.; Noughabi, M.T.; Akbari-dastjerdi, H.; Fazilati, M. Investigation anti-bacterial effect of zinc oxide nanoparticles upon life of Listeria monocytogenes. Ann. Biol. Res., 2012, 3(7), 3679-3685.
Mohammadyari, A.; Razavipour, S.T.; Mohammadbeigi, M.; Negahdary, M.; Ajdary, M. Explore in-vivo toxicity assessment of copper oxide nanoparticle in Wistar rats. J. Biol. Todays World, 2014, 3, 124-128.
Negahdary, M.; Ajdary, M. The toxicity of gold, silver, and zinc oxide nanoparticles on LDH enzyme in male mice. Annu. Res. Rev. Biol., 2014, 1346-1352.
Negahdary, M.; Bezhgi, M.; Ajdary, M. Effects of silymarin on oxidative stress markers in rats treated with magnesium oxide nanoparticles. Annu. Res. Rev. Biol., 2015, 254-261.
Negahdary, M.; Chelongar, R.; Zadeh, S.K.; Ajdary, M. The antioxidant effects of silver, gold, and zinc oxide nanoparticles on male mice in in vivo condition. Adv. Biomed. Res., 2015, 4, 69.
[] [PMID: 25878994]
Negahdary, M.; Jafarzadeh, M.; Rahimzadeh, R.; Rahimi, G.; Dehghani, H. A DNA biosensor for molecular diagnosis of Aeromonas hydrophila using zinc sulfide nanospheres. JSSS, 2017, 6(2), 259-267.
Negahdary, M.; Omidi, S.; Eghbali-Zarch, A.; Mousavi, S.A.; Mohseni, G.; Moradpour, Y.; Rahimi, G. Plant synthesis of silver nanoparticles using Matricaria chamomilla plant and evaluation of its antibacterial and antifungal effects. Biomed. Res., 2015, 26, 794-799.
Rahimi, G.; Negahdari, M.; Ajdary, M.; Roostaei, A. Evaluation of the effect of copper oxide and aluminum oxide nanoparticles on the brucella melitensis 16 M in vitro. Iran. J. Public Health, 2014, 43(2), 289.
Rezaei-Zarchi, S.; Taghavi-Foumani, H.; Negahdary, M. Effect of Silver Nanoparticles on the LH, FSH and Testosterone Hormones in Male Rat. Majallah-i Danishgah-i Ulum-i Pizishki-i Babul, 2013, 15(1), 25-29.
Moritz, M.; Geszke-Moritz, M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem. Eng. J., 2013, 228, 596-613.
Aydin Sevinç, B.; Hanley, L. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J. Biomed. Mater. Res. B Appl. Biomater., 2010, 94(1), 22-31.
[] [PMID: 20225252]
Malarkodi, C.; Annadurai, G. A novel biological approach on extracellular synthesis and characterization of semiconductor zinc sulfide nanoparticles. Appl. Nanosci., 2013, 3(5), 389-395.
Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 2011, 27(7), 4020-4028.
[] [PMID: 21401066]
Gupta, A.; Mumtaz, S.; Li, C-H.; Hussain, I.; Rotello, V.M. Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev., 2019, 48(2), 415-427.
[] [PMID: 30462112]
Lakshmi, P.; Raj, K.S.; Ramachandran, K. Synthesis and characterization of nano ZnS doped with Mn. Cryst. Res. Technol., 2009, 44(2), 153-158.
Sun, X.L.; Hong, G.Y. Preparing nano-ZnS by solid state reaction at room temperature. Chin. Chem. Lett., 2001, 12(2), 187-188.
Marin, S.; Vlasceanu, G.M.; Tiplea, R.E.; Bucur, I.R.; Lemnaru, M.; Marin, M.M.; Grumezescu, A.M. Applications and toxicity of silver nanoparticles: a recent review. Curr. Top. Med. Chem., 2015, 15(16), 1596-1604.
[] [PMID: 25877089]
Tang, H.; Xu, M.; Zhou, X.; Zhang, Y.; Zhao, L.; Ye, G.; Shi, F.; Lv, C.; Li, Y. Acute toxicity and biodistribution of different sized copper nano-particles in rats after oral administration. Mater. Sci. Eng. C, 2018, 93, 649-663.
[] [PMID: 30274098]
Fan, W.; Cui, M.; Liu, H.; Wang, C.; Shi, Z.; Tan, C.; Yang, X. Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna. Environ. Pollut., 2011, 159(3), 729-734.
[] [PMID: 21177008]
Hou, J.; Wang, L.; Wang, C.; Zhang, S.; Liu, H.; Li, S.; Wang, X. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J. Environ. Sci. (China), 2019, 75, 40-53.
[] [PMID: 30473306]
Habibi, M.H.; Fakhrpor, M. Improved photo-catalytic activity of novel nano-dimension Ce/Zn composite oxides deposited on flat-glass surface for removal of Acid Black 4BN dye pollution. J. Mater. Sci. Mater. Electron., 2017, 28(3), 2697-2704.
Ivask, A.; Titma, T.; Visnapuu, M.; Vija, H.; Kakinen, A.; Sihtmae, M.; Pokhrel, S.; Madler, L.; Heinlaan, M.; Kisand, V.; Shimmo, R.; Kahru, A. Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Curr. Top. Med. Chem., 2015, 15(18), 1914-1929.
[] [PMID: 25961521]
Rahman Khan, M.M.; Pal, S.; Hoque, M.M.; Alam, M.R.; Younus, M.; Kobayashi, H. Simple fabrication of PVA-ZnS composite films with superior photocatalytic performance: enhanced luminescence property, morphology, and thermal stability. ACS Omega, 2019, 4(4), 6144-6153.
[] [PMID: 31459759]
Aisida, S.O.; Akpa, P.A.; Ahmad, I.; Maaza, M.; Ezema, F.I. Influence of PVA, PVP and PEG doping on the optical, structural, morphological and magnetic properties of zinc ferrite nanoparticles produced by thermal method. Physica B, 2019, 571, 130-136.
Ayodhya, D.; Venkatesham, M.; Kumari, A.S.; Mangatayaru, K.G.; Veerabhadram, G. Synthesis, characterization of ZnS nanoparticles by coprecipitation method using various capping agents—photocatalytic activity and kinetic study. J. App. Chem., 2013, 6(1), 101-109.
Dehghani, H.; Khoramnejadian, S.; Mahboubi, M.; Sasani, M.; Ghobadzadeh, S.; Haghighi, S.M.; Negahdary, M. Bilirubin biosensing by using of catalase and ZnS nanoparticles as modifier. Int. J. Electrochem. Sci., 2016, 11, 2029-2045.
Liu, Y.; Zhang, Z. Handbook of Nanophase and Nanostructured Materials; Kluwer Academic/Plenum: New York, 2003.
Perveen, F.K. Recent Advances in Biopolymers; IntechOpen: London, 2016.
Schwalbe, R.; Steele-Moore, L.; Goodwin, A.C. Antimicrobial Susceptibility Testing Protocols, CRC Press:Hokoben. 2007.
Chart, H. Methods in Practical Laboratory Bacteriology; Taylor & Francis: Didcot, 1994.
Atlas, R.M. Handbook of Microbiological Media; CRC Press:Hokoben, 2010.
Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med., 2004, 10(12)(Suppl.), S122-S129.
[] [PMID: 15577930]
Tenover, F.C.; Hughes, J.M. The challenges of emerging infectious diseases. Development and spread of multiply-resistant bacterial pathogens. JAMA, 1996, 275(4), 300-304.
[] [PMID: 8544270]
Anderson, R.M.; May, R.M.; Anderson, B. Infectious diseases of humans: dynamics and control, Wiley Online Library:Hokoben. 1992.
Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature, 2008, 451(7181), 990-993.
[] [PMID: 18288193]
Gilbert, D.N.; Moellering, R.C.; Sande, M.A. The Sanford guide to antimicrobial therapy, Antimicrobial Therapy Incorporated: Sperryville. 2003.
Alanis, A.J. Resistance to antibiotics: are we in the post-antibiotic era? Arch. Med. Res., 2005, 36(6), 697-705.
[] [PMID: 16216651]
Högberg, L.D.; Heddini, A.; Cars, O. The global need for effective antibiotics: challenges and recent advances. Trends Pharmacol. Sci., 2010, 31(11), 509-515.
[] [PMID: 20843562]
Luqman, S.; Dwivedi, G.R.; Darokar, M.P.; Kalra, A.; Khanuja, S.P. Potential of rosemary oil to be used in drug-resistant infections. Altern. Ther. Health Med., 2007, 13(5), 54-59.
[PMID: 17900043]
Walsh, C.T. Combinatorial biosynthesis of antibiotics: challenges and opportunities. ChemBioChem, 2002, 3(2-3), 125-134.
[<124:AID-CBIC124>3.0.CO;2-J] [PMID: 11921390]
Walsh, C. Where will new antibiotics come from? Nat. Rev. Microbiol., 2003, 1(1), 65-70.
[] [PMID: 15040181]
Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.S.; Habib, S.S.; Memic, A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int. J. Nanomedicine, 2012, 7, 6003-6009.
[] [PMID: 23233805]
Kang, S.; Pinault, M.; Pfefferle, L.D.; Elimelech, M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 2007, 23(17), 8670-8673.
[] [PMID: 17658863]
Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 2009, 27(1), 76-83.
[] [PMID: 18854209]
Seil, J.T.; Webster, T.J. Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomedicine, 2012, 7, 2767-2781.
[PMID: 22745541]
Ganguly, S.; Das, S.; Dastidar, S.G. Distinct antimicrobial effects of synthesized ZnS nanoparticles against twelve pathogenic bacterial strains. Open Science Repository Chemistry, 2013. e70081948.
Argueta-Figueroa, L.; Martínez-Alvarez, O.; Santos-Cruz, J.; Garcia-Contreras, R.; Acosta-Torres, L.S.; de la Fuente-Hernández, J.; Arenas-Arrocena, M.C. Nanomaterials made of non-toxic metallic sulfides: A systematic review of their potential biomedical applications. Mater. Sci. Eng. C, 2017, 76, 1305-1315.
[] [PMID: 28482499]
Lv, M.; Su, S.; He, Y.; Huang, Q.; Hu, W.; Li, D.; Fan, C.; Lee, S.T. Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv. Mater., 2010, 22(48), 5463-5467.
[] [PMID: 21089062]
Cioffi, N.; Rai, M. Nano-antimicrobials: progress and prospects; Springer Science & Business Media: New York, 2012.
Huh, A.J.; Kwon, Y.J. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 2011, 156(2), 128-145.
[] [PMID: 21763369]
Baruah, J.M.; Kalita, S.; Narayan, J. Green chemistry synthesis of biocompatible ZnS quantum dots (QDs): their application as potential thin films and antibacterial agent. Int. Nano Lett., 2019, 9(2), 149-159.
Ali, Z.I.; Mosallam, F.M.; Sokary, R.; Afify, T.A.; Bekhit, M. Radiation synthesis of ZnS/chitosan nanocomposites and its anti-bacterial activity. Int. J. Environ. Anal. Chem., 2019, 1-12.
Pugh, G. Analysis of the Fungicidal Nature of ZnS on Sordaria fimicola. J. McPherson College Sci., 2016, 24, 30.
Gupta, D.; Singh, D.; Kothiyal, N.C.; Saini, A.K.; Singh, V.P.; Pathania, D. Synthesis of chitosan-g-poly(acrylamide)/ZnS nanocomposite for controlled drug delivery and antimicrobial activity. Int. J. Biol. Macromol., 2015, 74, 547-557.
[] [PMID: 25592841]
Hrebenyk, L.; Ivakhniuk, T.; Sukhodub, L. 2017 IEEE 7th International conference nanomaterials: application & properties (NAP), 2017, 04NB07-01-04NB07-07.
Kumar, G.A.; Naik, H.B.; Viswanath, R.; Gowda, I.S.; Santhosh, K. Tunable emission property of biotin capped Gd: ZnS nanoparticles and their antibacterial activity. Mater. Sci. Semicond. Process., 2017, 58, 22-29.
Kumar, S.; Jain, A.; Panwar, S.; Sharma, I.; Jeon, H.C.; Kang, T.W.; Choubey, R.K. Effect of silica on the ZnS nanoparticles for stable and sustainable antibacterial application. Int. J. Appl. Ceram. Technol., 2019, 16(2), 531-540.
Kumar, R.; Sakthivel, P.; Mani, P. Structural, optical, electrochemical, and antibacterial features of ZnS nanoparticles: incorporation of Sn. Appl. Phys., A Mater. Sci. Process., 2019, 125(8), 543.
Mir, I.A.; Alam, H.; Priyadarshini, E.; Meena, R.; Rawat, K.; Rajamani, P.; Rizvi, M.S.; Bohidar, H. Antimicrobial and biocompatibility of highly fluorescent ZnSe core and ZnSe@ ZnS core-shell quantum dots. J. Nanopart. Res., 2018, 20(7), 174.
Ramalingam, G.; Saravanan, K.V.; Vizhi, T.K.; Rajkumar, M.; Baskar, K. Synthesis of water-soluble and bio-taggable CdSe@ ZnS quantum dots. RSC Advances, 2018, 8(16), 8516-8527.
Xie, W-Q.; Yu, K-X.; Gong, Y-X. Preparation of fluorescent and antibacterial nanocomposite films based on cellulose nanocrystals/ZnS quantum dots/polyvinyl alcohol. Cellulose, 2019, 26(4), 2363-2373.
Yan, B.; Ma, Q.; Wang, Y.; Chen, J. Synthesis, characterisation and antibacterial activity of ZnS–ZnO nanocomposites. Mater. Technol., 2017, 32(5), 299-304.
Yang, X.; Zhang, W.; Zhao, Z.; Li, N.; Mou, Z.; Sun, D.; Cai, Y.; Wang, W.; Lin, Y. Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J. Inorg. Biochem., 2017, 167, 36-48.
[] [PMID: 27898345]
Mieshkov, A.; Hrebenyk, L.; Sukhodub, L. E-Health and Bioengineering Conference (EHB); IEEE, 2015, pp. 1-4.
Suyana, P.; Kumar, S.N.; Kumar, B.D.; Nair, B.N.; Pillai, S.C.; Mohamed, A.P.; Warrier, K.; Hareesh, U. Antifungal properties of nanosized ZnS particles synthesised by sonochemical precipitation. RSC Advances, 2014, 4(17), 8439-8445.
Chaliha, C.; Nath, B.; Verma, P.; Kalita, E. Synthesis of functionalized Cu: ZnS nanosystems and its antibacterial potential. Arab. J. Chem., 2019, 12(4), 515-524.
Menaga, P.C.; Dharsini, G.P.; Rama, V. Synthesis and Characterization of PANI Coated ZnS Nanocomposite and Its Antimicrobial Studies. Int. J. Sci. Tech., 2014, 2(10), 72.
Singh, P.K.; Sharma, P.K.; Kumar, M.; Dutta, R.; Sundaram, S.; Pandey, A.C. Red luminescent manganese-doped zinc sulphide nanocrystals and their antibacterial study. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(5), 522-528.
Pathania, D.; Kumari, M.; Gupta, V.K. Fabrication of ZnS–cellulose nanocomposite for drug delivery, antibacterial and photocatalytic activity. Mater. Des., 2015, 87, 1056-1064.
McLean, R.J.; Kirkland, B.L. Nanomicrobiology; Springer: New York, 2014, pp. 1-10.
Jain, K.K. In The Handbook of Nanomedicine; Springer: New York, 2012, pp. 409-427.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [1042 - 1055]
Pages: 14
DOI: 10.2174/1381612826666200406095246
Price: $65

Article Metrics

PDF: 19