Vitamin D and N-Acetyl Cysteine Supplementation in Treatment-Resistant Depressive Disorder Patients: A General Review

Author(s): Flavia di Michele*, Alessandra Talamo, Cinzia Niolu, Alberto Siracusano

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 21 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Major Depressive Disorder (MDD) is often a lifetime disabling mental illness as individuals with MDD might not benefit from standard-therapy, including both pharmacological and psychosocial interventions. Novel therapies are, therefore, required.

It was shown by recent preclinical and clinical studies that the dysfunction of glutamatergic neurotransmission might be involved in the pathophysiology of MDD. Furthermore, neuroimmune alterations could have a significant role in the pathogenesis of MDD.

Vitamin D is a neurosteroid hormone essential for several metabolic processes, immune responses, and for regulating neurotrophic-neuroprotective processes, neurotransmission and synaptic plasticity. Recent studies have also shown Vitamin D deficiency in patients with severe psychiatric disorders, including MDD.

Lately, clinical studies have shown the neuroprotective action of N-acetyl cysteine (NAC) through the modulation of inflammatory pathways and via the modulation of synaptic release of glutamate in cortico-subcortical brain regions; the cysteine-glutamate antiporter.

This paper reviews the therapeutic use of Vitamin D and NAC and among individuals with refractory MDD to the first- line pharmacological interventions, reviewing the clinical studies published in the last decade.

A detailed summary of the current evidence in this area aims to better inform psychiatrists and general practitioners on the potential benefits of Vitamin D and NAC supplementation for this disorder.

Nutraceutical supplementation with Vitamin D and NAC in treatment-resistant MDD patients may be important not only for improving depressive clinical manifestations but also for their safety and tolerability profile. This is of great interest, especially considering the need for treating special populations affected by MDD, such as youngsters and elders. Finally, the nutraceutical approach represents a good choice, considering its better compliance by the patients compared to traditional psychopharmacological treatment.

Keywords: Major depressive disorder, vitamin D, N-acetyl cysteine, glutamate, inflammation, nutraceutical supplementation.

[1]
World Health Organization World Mental Health Survey Consortium:. prevalence, severity and unmet need for treatment of mental disorders in WHO World Mental Health Surveys JAMA 2004; 291: 2581-90.
[2]
Gaynes B. Assessing the risk factors for difficult-to-treat depression and treatment-resistant depression. J Clin Psychiatry 2016; 77(Suppl. 1): 4-8.
[http://dx.doi.org/10.4088/JCP.14077su1c.01] [PMID: 26829431]
[3]
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Association 2013.
[4]
Vieta E, Valentí M. Mixed states in DSM-5: implications for clinical care, education, and research. J Affect Disord 2013; 148(1): 28-36.
[http://dx.doi.org/10.1016/j.jad.2013.03.007] [PMID: 23561484]
[5]
Hu J, Mansur R, McIntyre RS. Mixed specifier for bipolar mania and depression: highlights of DSM-5 changes and implications for diagnosis and treatment in primary care. Prim Care Companion CNS Disord 2014; 16 PCC.13r01599.
[6]
Gore FM, Bloem PJ, Patton GC, et al. Global burden of disease in young people aged 10-24 years: a systematic analysis. Lancet 2011; 377(9783): 2093-102.
[http://dx.doi.org/10.1016/S0140-6736(11)60512-6] [PMID: 21652063]
[7]
Al-Harbi KS. Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer Adherence 2012a; 6(6): 369-88.
[http://dx.doi.org/10.2147/PPA.S29716] [PMID: 22654508]
[8]
Al-Harbi KS, Qureshi NA. Neuromodulation therapies and treatment-resistant depression. Med Devices (Auckl) 2012b; 5: 53-65.
[PMID: 23152710]
[9]
Rush AJ, Warden D, Wisniewski SR, et al. STAR*D: revising conventional wisdom. CNS Drugs 2009; 23(8): 627-47.
[PMID: 19594193]
[10]
Papakostas GI, Ionescu DF. Towards new mechanisms: an update on therapeutics for treatment-resistant major depressive disorder. Mol Psychiatry 2015; 20(10): 1142-50.
[http://dx.doi.org/10.1038/mp.2015.92] [PMID: 26148812]
[11]
Trivedi MH, Rush AJ, Wisniewski SR, et al. STAR*D Study Team. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 2006; 163(1): 28-40.
[http://dx.doi.org/10.1176/appi.ajp.163.1.28] [PMID: 16390886]
[12]
Russell JM, Hawkins K, Ozminkowski RJ, et al. The cost consequences of treatment-resistant depression. J Clin Psychiatry 2004; 65(3): 341-7.
[http://dx.doi.org/10.4088/JCP.v65n0309] [PMID: 15096073]
[13]
Fekadu A, Wooderson SC, Markopoulo K, Donaldson C, Papadopoulos A, Cleare AJ. What happens to patients with treatment-resistant depression? A systematic review of medium to long term outcome studies. J Affect Disord 2009; 116(1-2): 4-11.
[http://dx.doi.org/10.1016/j.jad.2008.10.014] [PMID: 19007996]
[14]
Mrazek DA, Hornberger JC, Altar CA, Degtiar I. A review of the clinical, economic, and societal burden of treatment-resistant depression: 1996-2013. Psychiatr Serv 2014; 65(8): 977-87.
[http://dx.doi.org/10.1176/appi.ps.201300059] [PMID: 24789696]
[15]
Grenard JL, Munjas BA, Adams JL, et al. Depression and medication adherence in the treatment of chronic diseases in the United States: a meta-analysis. J Gen Intern Med 2011; 26(10): 1175-82.
[http://dx.doi.org/10.1007/s11606-011-1704-y] [PMID: 21533823]
[16]
Vieta E, Colom F. Therapeutic options in treatment-resistant depression. Ann Med 2011; 43(7): 512-30.
[http://dx.doi.org/10.3109/07853890.2011.583675] [PMID: 21623700]
[17]
Murrough JW, Perez AM, Pillemer S, et al. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry 2013; 74(4): 250-6.
[http://dx.doi.org/10.1016/j.biopsych.2012.06.022] [PMID: 22840761]
[18]
Ballard ED, Ionescu DF, Vande Voort JL, et al. Improvement in suicidal ideation after ketamine infusion: relationship to reductions in depression and anxiety. J Psychiatr Res 2014; 58: 161-6.
[http://dx.doi.org/10.1016/j.jpsychires.2014.07.027] [PMID: 25169854]
[19]
Bokor G, Anderson PD. Ketamine: an update on its abuse. J Pharm Pract 2014; 27(6): 582-6.
[http://dx.doi.org/10.1177/0897190014525754] [PMID: 24651639]
[20]
Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 2009; 65(9): 732-41.
[http://dx.doi.org/10.1016/j.biopsych.2008.11.029] [PMID: 19150053]
[21]
Noto C, Rizzo LB, Mansur RB, McIntyre RS, Maes M, Brietzke E. Targeting the inflammatory pathway as a therapeutic tool for major depression. Neuroimmunomodulation 2014; 21(2-3): 131-9.
[http://dx.doi.org/10.1159/000356549] [PMID: 24557046]
[22]
Fourrier C, Sampson E, Mills NT, Baune BT. Anti-inflammatory treatment of depression: study protocol for a randomised controlled trial of vortioxetine augmented with celecoxib or placebo. Trials 2018; 19(1): 447.
[http://dx.doi.org/10.1186/s13063-018-2829-7] [PMID: 30126458]
[23]
Andrade C. Antidepressant augmentation with anti-inflammatory agents. J Clin Psychiatry 2014; 75(9): 975-7.
[http://dx.doi.org/10.4088/JCP.14f09432] [PMID: 25295422]
[24]
Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 1965; 122(5): 509-22.
[http://dx.doi.org/10.1176/ajp.122.5.509] [PMID: 5319766]
[25]
Jacobsen JP, Medvedev IO, Caron MG, Wu Jacobsen JPR, Medvedev IO, Caron MG. The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439His knockin mouse. Philos Trans R Soc Lond B Biol Sci 2012; 367(1601): 2444-59.
[http://dx.doi.org/10.1098/rstb.2012.0109] [PMID: 22826344]
[26]
Kobayashi K, Ikeda Y, Haneda E, Suzuki H. Chronic fluoxetine bidirectionally modulates potentiating effects of serotonin on the hippocampal mossy fiber synaptic transmission. J Neurosci 2008; 28(24): 6272-80.
[http://dx.doi.org/10.1523/JNEUROSCI.1656-08.2008] [PMID: 18550770]
[27]
Thompson SM, Kallarackal AJ, Kvarta MD, Van Dyke AM, LeGates TA, Cai X. An excitatory synapse hypothesis of depression. Trends Neurosci 2015; 38(5): 279-94.
[http://dx.doi.org/10.1016/j.tins.2015.03.003] [PMID: 25887240]
[28]
Berridge MJ. Calcium regulation of neural rhythms, memory and Alzheimer’s disease. J Physiol 2014a; 592(2): 281-93.
[http://dx.doi.org/10.1113/jphysiol.2013.257527] [PMID: 23753528]
[29]
Berridge MJ. Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia. Cell Tissue Res 2014b; 357(2): 477-92.
[http://dx.doi.org/10.1007/s00441-014-1806-z] [PMID: 24577622]
[30]
Fitzgerald PB, Laird AR, Maller J, Daskalakis ZJ. A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp 2008; 29(6): 683-95.
[http://dx.doi.org/10.1002/hbm.20426] [PMID: 17598168]
[31]
Berridge MJ. Vitamin D and depression: cellular and regulatory mechanisms. Pharmacol Rev 2017; 69(2): 80-92.
[http://dx.doi.org/10.1124/pr.116.013227] [PMID: 28202503]
[32]
Sanacora G, Zarate CA, Krystal JH, Manji HK. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 2008; 7(5): 426-37.
[http://dx.doi.org/10.1038/nrd2462] [PMID: 18425072]
[33]
Yüksel C, Öngür D. Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry 2010; 68(9): 785-94.
[http://dx.doi.org/10.1016/j.biopsych.2010.06.016] [PMID: 20728076]
[34]
Choudary PV, Molnar M, Evans SJ, et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA 2005; 102(43): 15653-8.
[http://dx.doi.org/10.1073/pnas.0507901102] [PMID: 16230605]
[35]
Cotter D, Mackay D, Landau S, Kerwin R, Everall I. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 2001; 58(6): 545-53.
[http://dx.doi.org/10.1001/archpsyc.58.6.545] [PMID: 11386983]
[36]
Chana G, Landau S, Beasley C, Everall IP, Cotter D. Two-dimensional assessment of cytoarchitecture in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia: evidence for decreased neuronal somal size and increased neuronal density. Biol Psychiatry 2003; 53(12): 1086-98.
[http://dx.doi.org/10.1016/S0006-3223(03)00114-8] [PMID: 12814860]
[37]
Bechtholt-Gompf AJ, Walther HV, Adams MA, Carlezon WA Jr, Ongür D, Cohen BM. Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology 2010; 35(10): 2049-59.
[http://dx.doi.org/10.1038/npp.2010.74] [PMID: 20531459]
[38]
Walter M, Henning A, Grimm S, et al. The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. Arch Gen Psychiatry 2009; 66(5): 478-86.
[http://dx.doi.org/10.1001/archgenpsychiatry.2009.39] [PMID: 19414707]
[39]
Keedwell PA, Andrew C, Williams SCR, Brammer MJ, Phillips ML. The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry 2005; 58(11): 843-53.
[http://dx.doi.org/10.1016/j.biopsych.2005.05.019] [PMID: 16043128]
[40]
Portella MJ, de Diego-Adeliño J, Gómez-Ansón B, et al. Ventromedial prefrontal spectroscopic abnormalities over the course of depression: a comparison among first episode, remitted recurrent and chronic patients. J Psychiatr Res 2011; 45(4): 427-34.
[http://dx.doi.org/10.1016/j.jpsychires.2010.08.010] [PMID: 20875647]
[41]
Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 2008; 213(1-2): 93-118.
[http://dx.doi.org/10.1007/s00429-008-0189-x] [PMID: 18704495]
[42]
Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacol 2010; 35: 192-216. 22.
[http://dx.doi.org/10.1038/npp.2009.104]
[43]
Holmes SE, Scheinost D, Finnema SJ, et al. Lower synaptic density is associated with depression severity and network alterations. Nat Commun 2019; 10(1): 1529.
[http://dx.doi.org/10.1038/s41467-019-09562-7] [PMID: 30948709]
[44]
Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression: GABA and Glutamate neurotransmitter deficits and reversal by novel treatments. Neuron 2019; 102(1): 75-90.
[http://dx.doi.org/10.1016/j.neuron.2019.03.013] [PMID: 30946828]
[45]
Riazi K, Galic MA, Kentner AC, Reid AY, Sharkey KA, Pittman QJ. Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. J Neurosci 2015; 35(12): 4942-52.
[http://dx.doi.org/10.1523/JNEUROSCI.4485-14.2015] [PMID: 25810524]
[46]
Mayberg HS. Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 1997; 9(3): 471-81.
[http://dx.doi.org/10.1176/jnp.9.3.471] [PMID: 9276848]
[47]
Holtzheimer PE, Mayberg HS. Stuck in a rut: rethinking depression and its treatment. Trends Neurosci 2011; 34(1): 1-9.
[http://dx.doi.org/10.1016/j.tins.2010.10.004] [PMID: 21067824]
[48]
Stone JM, Dietrich C, Edden R, et al. Ketamine effects on brain GABA and glutamate levels with 1H-MRS: relationship to ketamine-induced psychopathology. Mol Psychiatry 2012; 17(7): 664-5.
[http://dx.doi.org/10.1038/mp.2011.171] [PMID: 22212598]
[49]
Scheidegger M, Walter M, Lehmann M, et al. Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action. PLoS One 2012; 7 e44799
[50]
Sanacora G, Gueorguieva R, Epperson CN, et al. Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry 2004; 61(7): 705-13.
[http://dx.doi.org/10.1001/archpsyc.61.7.705] [PMID: 15237082]
[51]
Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets WC. Reduced prefrontal glutamate/glutamine and gamma-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2007; 64(2): 193-200.
[http://dx.doi.org/10.1001/archpsyc.64.2.193] [PMID: 17283286]
[52]
Rajkowska G, O’Dwyer G, Teleki Z, Stockmeier CA, Miguel-Hidalgo JJ. GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression. Neuropsychopharmacology 2007; 32(2): 471-82.
[http://dx.doi.org/10.1038/sj.npp.1301234] [PMID: 17063153]
[53]
Maciag D, Hughes J, O’Dwyer G, et al. Reduced density of calbindin immunoreactive GABAergic neurons in the occipital cortex in major depression: relevance to neuroimaging studies. Biol Psychiatry 2010; 67(5): 465-70.
[http://dx.doi.org/10.1016/j.biopsych.2009.10.027] [PMID: 20004363]
[54]
Stahl’s Essential Psychopharmacology. Stahl’s Essential Psychopharmacology: Neuroscientific basis and practical applicationsStahl SM. Cambridge University Press 2008; Volume. 1: p. 1117.
[55]
Raju TN. The Nobel chronicles. 1927: Julius Wagner-Jauregg (1857-1940). Lancet 1998; 352(9141): 1714.
[http://dx.doi.org/10.1016/S0140-6736(05)61500-0] [PMID: 9853480]
[56]
López-Muñoz F, Alamo C. Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr Pharm Des 2009; 15(14): 1563-86.
[http://dx.doi.org/10.2174/138161209788168001] [PMID: 19442174]
[57]
Rosenblat JD, Cha DS, Mansur RB, McIntyre RS. Inflamed moods: a review of the interactions between inflammation and mood disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; 53: 23-34.
[http://dx.doi.org/10.1016/j.pnpbp.2014.01.013] [PMID: 24468642]
[58]
Khandaker GM, Pearson RM, Zammit S, Lewis G, Jones PB. Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA Psychiatry 2014; 71(10): 1121-8.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.1332] [PMID: 25133871]
[59]
Krishnadas R, Cavanagh J. Depression: an inflammatory illness? J Neurol Neurosurg Psychiatry 2012; 83(5): 495-502.
[http://dx.doi.org/10.1136/jnnp-2011-301779] [PMID: 22423117]
[60]
Köhler CA, Freitas TH, Maes M, et al. Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand 2017; 135(5): 373-87.
[http://dx.doi.org/10.1111/acps.12698] [PMID: 28122130]
[61]
Holmes SE, Hinz R, Conen S, et al. Elevated translocator protein in anterior cingulate in major depression and a role for inflammation in suicidal thinking: a positron emission tomography study. Biol Psychiatry 2018; 83(1): 61-9.
[http://dx.doi.org/10.1016/j.biopsych.2017.08.005] [PMID: 28939116]
[62]
Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimäki M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav Immun 2015; 49: 206-15.
[http://dx.doi.org/10.1016/j.bbi.2015.06.001] [PMID: 26065825]
[63]
Kiraly DD, Horn SR, Van Dam NT, et al. Altered peripheral immune profiles in treatment-resistant depression: response to ketamine and prediction of treatment outcome. Transl Psychiatry 2017; 7(3) e1065
[http://dx.doi.org/10.1038/tp.2017.31] [PMID: 28323284]
[64]
Serafini G, Pompili M, Elena Seretti M, et al. The role of inflammatory cytokines in suicidal behavior: a systematic review. Eur Neuropsychopharmacol 2013; 23(12): 1672-86.
[http://dx.doi.org/10.1016/j.euroneuro.2013.06.002] [PMID: 23896009]
[65]
Walsh JG, Muruve DA, Power C. Inflammasomes in the CNS. Nat Rev Neurosci 2014; 15(2): 84-97.
[http://dx.doi.org/10.1038/nrn3638] [PMID: 24399084]
[66]
Haapakoski R, Ebmeier KP, Alenius H, Kivimäki M. Innate and adaptive immunity in the development of depression: An update on current knowledge and technological advances. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66: 63-72.
[http://dx.doi.org/10.1016/j.pnpbp.2015.11.012] [PMID: 26631274]
[67]
Pan Z, Rosenblat JD, Swardfager W, McIntyre RS. Role of proinflammatory cytokines in dopaminergic system disturbances, implications for anhedonic features of MDD. Curr Pharm Des 2017; 23(14): 2065-72.
[http://dx.doi.org/10.2174/1381612823666170111144340] [PMID: 28078987]
[68]
Regan T, Gill AC, Clohisey SM, et al. MRC Immunopsychiatry Consortium. Effects of anti-inflammatory drugs on the expression of tryptophan-metabolism genes by human macrophages. J Leukoc Biol 2018; 103(4): 681-92.
[http://dx.doi.org/10.1002/JLB.3A0617-261R] [PMID: 29377288]
[69]
Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013; 18(6): 666-73.
[http://dx.doi.org/10.1038/mp.2012.77] [PMID: 22688187]
[70]
Cuomo A, Maina G, Rosso G, et al. The Microbiome: A New Target for Research and Treatment of Schizophrenia and its Resistant Presentations? A Systematic Literature Search and Review. Front Pharmacol 2018; 9: 1040.
[http://dx.doi.org/10.3389/fphar.2018.01040] [PMID: 30374300]
[71]
Więdłocha M, Marcinowicz P, Krupa R, et al. Effect of antidepressant treatment on peripheral inflammation markers - A meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80(Pt C): 217-26.
[http://dx.doi.org/10.1016/j.pnpbp.2017.04.026] [PMID: 28445690]
[72]
Rapaport MH, Manji HK. The effects of lithium on ex vivo cytokine production. Biol Psychiatry 2001; 50(3): 217-24.
[http://dx.doi.org/10.1016/S0006-3223(01)01144-1] [PMID: 11513821]
[73]
Bosetti F, Rintala J, Seemann R, et al. Chronic lithium downregulates cyclooxygenase-2 activity and prostaglandin E(2) concentration in rat brain. Mol Psychiatry 2002; 7(8): 845-50.
[http://dx.doi.org/10.1038/sj.mp.4001111] [PMID: 12232777]
[74]
Colpo GD, Leboyer M, Dantzer R, Trivedi MH, Teixeira AL. Immune-based strategies for mood disorders: facts and challenges. Expert Rev Neurother 2018; 18(2): 139-52.
[http://dx.doi.org/10.1080/14737175.2018.1407242] [PMID: 29179585]
[75]
Lips P, van Schoor NM. The effect of vitamin D on bone and osteoporosis. Best Pract Res Clin Endocrinol Metab 2011; 25(4): 585-91.
[http://dx.doi.org/10.1016/j.beem.2011.05.002] [PMID: 21872800]
[76]
de Viragh PA, Haglid KG, Celio MR. Parvalbumin increases in the caudate putamen of rats with vitamin D hypervitaminosis. Proc Natl Acad Sci USA 1989; 86(10): 3887-90.
[http://dx.doi.org/10.1073/pnas.86.10.3887] [PMID: 2542952]
[77]
Berridge MJ. Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun 2015; 460(1): 53-71.
[http://dx.doi.org/10.1016/j.bbrc.2015.01.008] [PMID: 25998734]
[78]
Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 2005; 29(1): 21-30.
[http://dx.doi.org/10.1016/j.jchemneu.2004.08.006] [PMID: 15589699]
[79]
Brewer LD, Thibault V, Chen KC, Langub MC, Landfield PW, Porter NM. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J Neurosci 2001; 21(1): 98-108.
[http://dx.doi.org/10.1523/JNEUROSCI.21-01-00098.2001] [PMID: 11150325]
[80]
Garcion E, Sindji L, Leblondel G, Brachet P, Darcy F. 1,25-dihydroxyvitamin D3 regulates the synthesis of gamma-glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J Neurochem 1999; 73(2): 859-66.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0730859.x] [PMID: 10428085]
[81]
Parsanathan R, Jain SK. Glutathione deficiency alters the vitamin D-metabolizing enzymes CYP27B1 and CYP24A1 in human renal proximal tubule epithelial cells and kidney of HFD-fed mice. Free Radic Biol Med 2019; 131: 376-81.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.12.017] [PMID: 30578920]
[82]
AlJohri R, AlOkail M, Haq SH. Neuroprotective role of vitamin D in primary neuronal cortical culture. eNeurologicalSci 2018; 14: 43-8.
[http://dx.doi.org/10.1016/j.ensci.2018.12.004] [PMID: 30619951]
[83]
Jiang P, Zhang WY, Li HD, Cai HL, Liu YP, Chen LY. Stress and vitamin D: altered vitamin D metabolism in both the hippocampus and myocardium of chronic unpredictable mild stress exposed rats. Psychoneuroendocrinology 2013; 38(10): 2091-8.
[http://dx.doi.org/10.1016/j.psyneuen.2013.03.017] [PMID: 23608137]
[84]
Sanchez B, Relova JL, Gallego R, Ben-Batalla I, Perez-Fernandez R. 1,25-Dihydroxyvitamin D3 administration to 6-hydroxydopamine-lesioned rats increases glial cell line-derived neurotrophic factor and partially restores tyrosine hydroxylase expression in substantia nigra and striatum. J Neurosci Res 2009; 87(3): 723-32.
[http://dx.doi.org/10.1002/jnr.21878] [PMID: 18816795]
[85]
Kaneko I, Sabir MS, Dussik CM, et al. 1,25-Dihydroxyvitamin D regulates expression of the tryptophan hydroxylase 2 and leptin genes: implication for behavioral influences of vitamin D. FASEB J 2015; 29(9): 4023-35.
[http://dx.doi.org/10.1096/fj.14-269811] [PMID: 26071405]
[86]
Patrick RP, Ames BN. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J 2014; 28(6): 2398-413.
[http://dx.doi.org/10.1096/fj.13-246546] [PMID: 24558199]
[87]
Murthi P, Davies-Tuck M, Lappas M, et al. Maternal 25-hydroxyvitamin D is inversely correlated with foetal serotonin. Clin Endocrinol (Oxf) 2017; 86(3): 401-9.
[http://dx.doi.org/10.1111/cen.13281] [PMID: 27862146]
[88]
Berk M, Sanders KM, Pasco JA, et al. Vitamin D deficiency may play a role in depression. Med Hypotheses 2007; 69(6): 1316-9.
[http://dx.doi.org/10.1016/j.mehy.2007.04.001] [PMID: 17499448]
[89]
Logan VF, Gray AR, Peddie MC, Harper MJ, Houghton LA. Long-term vitamin D3 supplementation is more effective than vitamin D2 in maintaining serum 25-hydroxyvitamin D status over the winter months. Br J Nutr 2013; 109(6): 1082-8.
[http://dx.doi.org/10.1017/S0007114512002851] [PMID: 23168298]
[90]
Stamp TCB, Round JM. Seasonal changes in human plasma levels of 25-hydroxyvitamin D. Nature 1974; 247(5442): 563-5.
[http://dx.doi.org/10.1038/247563a0] [PMID: 4818557]
[91]
Luykx JJ, Bakker SC, van Geloven N, et al. Seasonal variation of serotonin turnover in human cerebrospinal fluid, depressive symptoms and the role of the 5-HTTLPR. Transl Psychiatry 2013. 3e311
[http://dx.doi.org/10.1038/tp.2013.84] [PMID: 24105442]
[92]
Partonen T. Vitamin D and serotonin in winter. Med Hypotheses 1998; 51(3): 267-8.
[http://dx.doi.org/10.1016/S0306-9877(98)90085-8] [PMID: 9792205]
[93]
Wei R, Christakos S. Mechanisms Underlying the regulation of innate and adaptive immunity by vitamin D. Nutrients 2015; 7(10): 8251-60.
[http://dx.doi.org/10.3390/nu7105392] [PMID: 26404359]
[94]
Wang TT, Nestel FP, Bourdeau V, et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 2004; 173(5): 2909-12.
[http://dx.doi.org/10.4049/jimmunol.173.5.2909] [PMID: 15322146]
[95]
Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 2005; 19(9): 1067-77.
[http://dx.doi.org/10.1096/fj.04-3284com] [PMID: 15985530]
[96]
White JH. Vitamin D as an inducer of cathelicidin antimicrobial peptide expression: past, present and future. J Steroid Biochem Mol Biol 2010; 121(1-2): 234-8.
[http://dx.doi.org/10.1016/j.jsbmb.2010.03.034] [PMID: 20302931]
[97]
Kim EW, Teles RMB, Haile S, Liu PT, Modlin RL. Vitamin D status contributes to the antimicrobial activity of macrophages against Mycobacterium leprae. PLoS Negl Trop Dis 2018; 12(7) e0006608
[http://dx.doi.org/10.1371/journal.pntd.0006608] [PMID: 29965969]
[98]
Shaik-Dasthagirisaheb YB, Varvara G, Murmura G, et al. Role of vitamins D, E and C in immunity and inflammation. J Biol Regul Homeost Agents 2013; 27(2): 291-5.
[PMID: 23830380]
[99]
Szodoray P, Nakken B, Gaal J, et al. The complex role of vitamin D in autoimmune diseases. Scand J Immunol 2008; 68(3): 261-9.
[http://dx.doi.org/10.1111/j.1365-3083.2008.02127.x] [PMID: 18510590]
[100]
Smolders J, Moen SM, Damoiseaux J, Huitinga I, Holmøy T. Vitamin D in the healthy and inflamed central nervous system: access and function. J Neurol Sci 2011; 311(1-2): 37-43.
[http://dx.doi.org/10.1016/j.jns.2011.07.033] [PMID: 21862439]
[101]
Yamamoto E, Jørgensen TN. Immunological effects of vitamin D and their relations to autoimmunity. J Autoimmun 2019 Mar; 7S0896-8411(19): 30033-2.
[http://dx.doi.org/10.1016/ j.jaut.2019.03.002]
[102]
Peelen E, Knippenberg S, Muris AH, et al. Effects of vitamin D on the peripheral adaptive immune system: a review. Autoimmun Rev 2011; 10(12): 733-43.
[http://dx.doi.org/10.1016/j.autrev.2011.05.002] [PMID: 21621002]
[103]
Peelen E, Damoiseaux J, Muris AH, et al. Increased inflammasome related gene expression profile in PBMC may facilitate T helper 17 cell induction in multiple sclerosis. Mol Immunol 2015; 63(2): 521-9.
[http://dx.doi.org/10.1016/j.molimm.2014.10.008] [PMID: 25458313]
[104]
Jirapongsananuruk O, Melamed I, Leung DY. Additive immunosuppressive effects of 1,25-dihydroxyvitamin D3 and corticosteroids on TH1, but not TH2, responses. J Allergy Clin Immunol 2000; 106(5): 981-5.
[http://dx.doi.org/10.1067/mai.2000.110101] [PMID: 11080724]
[105]
Xing N, L Maldonado ML, Bachman LA, McKean DJ, Kumar R, Griffin MD. Distinctive dendritic cell modulation by vitamin D(3) and glucocorticoid pathways. Biochem Biophys Res Commun 2002; 297(3): 645-52.
[http://dx.doi.org/10.1016/S0006-291X(02)02262-3] [PMID: 12270143]
[106]
Chang JH, Cha HR, Lee DS, Seo KY, Kweon MN. 1,25-Dihydroxyvitamin D3 inhibits the differentiation and migration of T(H)17 cells to protect against experimental autoimmune encephalomyelitis. PLoS One 2010; 5(9) e12925
[http://dx.doi.org/10.1371/journal.pone.0012925] [PMID: 20886077]
[107]
Caricilli AM, Picardi PK, de Abreu LL, et al. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS Biol 2011; 9(12) e1001212
[http://dx.doi.org/10.1371/journal.pbio.1001212] [PMID: 22162948]
[108]
Su D, Nie Y, Zhu A, et al. Vitamin D signalling through induction of paneth cell defensins maintains gut microbiota and improves metabolic disorders and hepatic steatosis in animal models. Front Physiol 2016; 7: 498.
[http://dx.doi.org/10.3389/fphys.2016.00498] [PMID: 27895587]
[109]
Sassi F, Tamone C, D’Amelio P, Vitamin D. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018; 10(11): 1656-70.
[http://dx.doi.org/10.3390/nu10111656] [PMID: 30400332]
[110]
Bertone-Johnson ER, Powers SI, Spangler L, et al. Vitamin D intake from foods and supplements and depressive symptoms in a diverse population of older women. Am J Clin Nutr 2011; 94(4): 1104-12.
[http://dx.doi.org/10.3945/ajcn.111.017384] [PMID: 21865327]
[111]
Kjærgaard M, Joakimsen R, Jorde R. Low serum 25-hydroxyvitamin D levels are associated with depression in an adult Norwegian population. Psychiatry Res 2011; 190(2-3): 221-5.
[http://dx.doi.org/10.1016/j.psychres.2011.06.024] [PMID: 21784535]
[112]
Ganji V, Milone C, Cody MM, McCarty F, Wang YT. Serum vitamin D concentrations are related to depression in young adult US population: the Third National Health and Nutrition Examination Survey. Int Arch Med 2010; 3: 29-33.
[http://dx.doi.org/10.1186/1755-7682-3-29] [PMID: 21067618]
[113]
Kerr DC, Zava DT, Piper WT, Saturn SR, Frei B, Gombart AF. Associations between vitamin D levels and depressive symptoms in healthy young adult women. Psychiatry Res 2015; 227(1): 46-51.
[http://dx.doi.org/10.1016/j.psychres.2015.02.016] [PMID: 25791903]
[114]
Milaneschi Y, Shardell M, Corsi AM, et al. Serum 25-hydroxyvitamin D and depressive symptoms in older women and men. J Clin Endocrinol Metab 2010; 95(7): 3225-33.
[http://dx.doi.org/10.1210/jc.2010-0347] [PMID: 20444911]
[115]
Polak MA, Houghton LA, Reeder AI, Harper MJ, Conner TS. Serum 25-hydroxyvitamin D concentrations and depressive symptoms among young adult men and women. Nutrients 2014; 6(11): 4720-30.
[http://dx.doi.org/10.3390/nu6114720] [PMID: 25353666]
[116]
Józefowicz O, Rabe-Jabłońska J, Woźniacka A, Strzelecki D. Analysis of vitamin D status in major depression. J Psychiatr Pract 2014; 20(5): 329-37.
[http://dx.doi.org/10.1097/01.pra.0000454777.21810.15] [PMID: 25226193]
[117]
Jääskeläinen T, Knekt P, Suvisaari J, et al. Higher serum 25-hydroxyvitamin D concentrations are related to a reduced risk of depression. Br J Nutr 2015; 113(9): 1418-26.
[http://dx.doi.org/10.1017/S0007114515000689] [PMID: 25989997]
[118]
Hoogendijk WJ, Lips P, Dik MG, Deeg DJ, Beekman AT, Penninx BW. Depression is associated with decreased 25-hydroxyvitamin D and increased parathyroid hormone levels in older adults. Arch Gen Psychiatry 2008; 65(5): 508-12.
[http://dx.doi.org/10.1001/archpsyc.65.5.508] [PMID: 18458202]
[119]
Mizoue T, Kochi T, Akter S, et al. Low serum 25-hydroxyvitamin D concentrations are associated with increased likelihood of having depressive symptoms among Japanese workers. J Nutr 2015; 145(3): 541-6.
[http://dx.doi.org/10.3945/jn.114.204115] [PMID: 25733470]
[120]
Vieth R, Kimball S, Hu A, Walfish PG. Randomized comparison of the effects of the vitamin D3 adequate intake versus 100 mcg (4000 IU) per day on biochemical responses and the wellbeing of patients. Nutr J 2004; 3: 8.
[http://dx.doi.org/10.1186/1475-2891-3-8] [PMID: 15260882]
[121]
Lansdowne ATG, Provost SC. Vitamin D3 enhances mood in healthy subjects during winter. Psychopharmacology (Berl) 1998; 135(4): 319-23.
[http://dx.doi.org/10.1007/s002130050517] [PMID: 9539254]
[122]
Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose vitamin D3 and mental well-being: randomised controlled trial. Br J Psychiatry 2011; 198(5): 357-64.
[http://dx.doi.org/10.1192/bjp.bp.110.087544] [PMID: 21525520]
[123]
Bertone-Johnson ER, Powers SI, Spangler L, et al. Vitamin D supplementation and depression in the women’s health initiative calcium and vitamin D trial. Am J Epidemiol 2012; 176(1): 1-13.
[http://dx.doi.org/10.1093/aje/kwr482] [PMID: 22573431]
[124]
Yalamanchili V, Gallagher JC. Treatment with hormone therapy and calcitriol did not affect depression in older postmenopausal women: no interaction with estrogen and vitamin D receptor genotype polymorphisms. Menopause 2012; 19(6): 697-703.
[http://dx.doi.org/10.1097/gme.0b013e31823bcec5] [PMID: 22205149]
[125]
Choukri MA, Conner TS, Haszard JJ, Harper MJ, Houghton LA. Effect of vitamin D supplementation on depressive symptoms and psychological wellbeing in healthy adult women: a double-blind randomised controlled clinical trial. J Nutr Sci 2018. 7e23
[http://dx.doi.org/10.1017/jns.2018.14] [PMID: 30197783]
[126]
Dana-Alamdari L, Kheirouri S, Noorazar SG. Serum 25-Hydroxyvitamin D in Patients with Major Depressive Disorder. Iran J Public Health 2015; 44(5): 690-7.
[PMID: 26284211]
[127]
Yao Y, Fu S, Shi Q, et al. Prevalence of functional dependence in Chinese centenarians and its relationship with serum vitamin D status. Clin Interv Aging 2018; 13: 2045-53.
[http://dx.doi.org/10.2147/CIA.S182318] [PMID: 30410320]
[128]
Milaneschi Y, Hoogendijk W, Lips P, et al. The association between low vitamin D and depressive disorders. Mol Psychiatry 2014; 19(4): 444-51.
[http://dx.doi.org/10.1038/mp.2013.36] [PMID: 23568194]
[129]
Von Kanel R, Fardad N, Steuer N, et al. vitamin D deficiency and depressive symptomatology on psychiatric hospedalized patients with current depressive episode: a factor analytic study. PLoS One 2015; 10 e0138550
[http://dx.doi.org/10.1371/journal.pone.0138550] [PMID: 26397113]
[130]
Khoraminya N, Tehrani-Doost M, Jazayeri S, Hosseini A, Djazayery A. Therapeutic effects of vitamin D as adjunctive therapy to fluoxetine in patients with major depressive disorder. Aust N Z J Psychiatry 2013; 47(3): 271-5.
[http://dx.doi.org/10.1177/0004867412465022] [PMID: 23093054]
[131]
Tariq MM, Streeten EA, Smith HA, et al. Vitamin D: a potential role in reducing suicide risk? Int J Adolesc Med Health 2011; 23(3): 157-65.
[http://dx.doi.org/10.1515/ijamh.2011.038] [PMID: 22191178]
[132]
Högberg G, Gustafsson SA, Hällström T, Gustafsson T, Klawitter B, Petersson M. Depressed adolescents in a case-series were low in vitamin D and depression was ameliorated by vitamin D supplementation. Acta Paediatr 2012; 101(7): 779-83.
[http://dx.doi.org/10.1111/j.1651-2227.2012.02655.x] [PMID: 22372707]
[133]
Sarris J, Murphy J, Mischoulon D, et al. adjunctive nutraceuticals for depression: a systematic review and meta-Analyses. Am J Psychiatry 2016; 173(6): 575-87.
[http://dx.doi.org/10.1176/appi.ajp.2016.15091228] [PMID: 27113121]
[134]
Frandsen TB, Pareek M, Hansen JP, Nielsen CT. Vitamin D supplementation for treatment of seasonal affective symptoms in healthcare professionals: a double-blind randomised placebo-controlled trial. BMC Res Notes 2014; 7: 528.
[http://dx.doi.org/10.1186/1756-0500-7-528] [PMID: 25125215]
[135]
Howland RH. Vitamin D and depression. J Psychosoc Nurs Ment Health Serv 2011; 49(2): 15-8.
[http://dx.doi.org/10.3928/02793695-20110111-02] [PMID: 21261225]
[136]
Aucoin M, Cooley K, Anand L, et al. Adjunctive Vitamin D in the treatment of non-remitted depression: Lessons from a failed clinical trial. Complement Ther Med 2018; 36: 38-45.
[http://dx.doi.org/10.1016/j.ctim.2017.09.011] [PMID: 29458928]
[137]
Ikonen H, Palaniswamy S, Nordström T, et al. Vitamin D status and correlates of low vitamin D in schizophrenia, other psychoses and non-psychotic depression - The Northern Finland Birth Cohort 1966 study. Psychiatry Res 2019 Mar; 12S0165-1781(18): 32026-2.
[http://dx.doi.org/10.1016/j.psychres.2019.02.060]
[138]
Zhu DM, Zhao W, Zhang B, et al. The Relationship Between Serum Concentration of Vitamin D, Total Intracranial Volume, and Severity of Depressive Symptoms in Patients With Major Depressive Disorder. Front Psychiatry 2019; 10: 322.
[http://dx.doi.org/10.3389/fpsyt.2019.00322] [PMID: 31143135]
[139]
Scalley RD, Conner CS. Acetaminophen poisoning: a case report of the use of acetylcysteine. Am J Hosp Pharm 1978; 35(8): 964-7.
[http://dx.doi.org/10.1093/ajhp/35.8.964] [PMID: 677146]
[140]
Dringen R, Hirrlinger J. Glutathione pathways in the brain. Biol Chem 2003; 384(4): 505-16.
[http://dx.doi.org/10.1515/BC.2003.059] [PMID: 12751781]
[141]
Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. N-Acetylcysteine--a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol 2007; 7(4): 355-9.
[http://dx.doi.org/10.1016/j.coph.2007.04.005] [PMID: 17602868]
[142]
Smith QR. Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr 2000; 130(Suppl.4): 1016-22.
[143]
Dean O, van den Buuse M, Copolov D, et al. N-acetylcysteine inhibits depletion of brain glutathione levels in rats: implications for schizophrenia. Int J Neuropsychopharmacol 2004; 7(Suppl. 1): 262.
[144]
Farr SA, Poon HF, Dogrukol-Ak D, et al. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem 2003; 84(5): 1173-83.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01580.x] [PMID: 12603840]
[145]
Witschi A, Reddy S, Stofer B, Lauterburg BH. The systemic availability of oral glutathione. Eur J Clin Pharmacol 1992; 43(6): 667-9.
[http://dx.doi.org/10.1007/BF02284971] [PMID: 1362956]
[146]
Kau KS, Madayag A, Mantsch JR, Grier MD, Abdulhameed O, Baker DA. Blunted cystine-glutamate antiporter function in the nucleus accumbens promotes cocaine-induced drug seeking. Neuroscience 2008; 155(2): 530-7.
[http://dx.doi.org/10.1016/j.neuroscience.2008.06.010] [PMID: 18601982]
[147]
Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 2009; 10(8): 561-72.
[http://dx.doi.org/10.1038/nrn2515] [PMID: 19571793]
[148]
Baker DA, Shen H, Kalivas PW. Cystine/glutamate exchange serves as the source for extracellular glutamate: modifications by repeated cocaine administration. Amino Acids 2002; 23(1-3): 161-2.
[http://dx.doi.org/10.1007/s00726-001-0122-6] [PMID: 12373531]
[149]
Moran MM, McFarland K, Melendez RI, Kalivas PW, Seamans JK. Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. J Neurosci 2005; 25(27): 6389-93.
[http://dx.doi.org/10.1523/JNEUROSCI.1007-05.2005] [PMID: 16000629]
[150]
Baker DA, McFarland K, Lake RW, Shen H, Toda S, Kalivas PW. N-acetyl cysteine-induced blockade of cocaine-induced reinstatement. Ann N Y Acad Sci 2003; 1003: 349-51.
[http://dx.doi.org/10.1196/annals.1300.023] [PMID: 14684458]
[151]
Kupchik YM, Moussawi K, Tang XC, et al. The effect of N-acetylcysteine in the nucleus accumbens on neurotransmission and relapse to cocaine. Biol Psychiatry 2012; 71(11): 978-86.
[http://dx.doi.org/10.1016/j.biopsych.2011.10.024] [PMID: 22137594]
[152]
Schmaal L, Veltman DJ, Nederveen A, van den Brink W, Goudriaan AE. N-acetylcysteine normalizes glutamate levels in cocaine-dependent patients: a randomized crossover magnetic resonance spectroscopy study. Neuropsychopharmacology 2012; 37(9): 2143-52.
[http://dx.doi.org/10.1038/npp.2012.66] [PMID: 22549117]
[153]
Bauer J, Pedersen A, Scherbaum N, et al. Craving in alcohol-dependent patients after detoxification is related to glutamatergic dysfunction in the nucleus accumbens and the anterior cingulate cortex. Neuropsychopharmacology 2013; 38(8): 1401-8.
[http://dx.doi.org/10.1038/npp.2013.45] [PMID: 23403696]
[154]
Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 1989; 6(6): 593-7.
[http://dx.doi.org/10.1016/0891-5849(89)90066-X] [PMID: 2546864]
[155]
Khan M, Sekhon B, Jatana M, et al. Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. J Neurosci Res 2004; 76(4): 519-27.
[http://dx.doi.org/10.1002/jnr.20087] [PMID: 15114624]
[156]
Chen G, Shi J, Hu Z, Hang C. Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: a potential neuroprotective mechanism of N-acetylcysteine. Mediators Inflamm 2008; 2008 716458
[http://dx.doi.org/10.1155/2008/716458] [PMID: 18483565]
[157]
Nascimento MM, Suliman ME, Silva M, et al. Effect of oral N-acetylcysteine treatment on plasma inflammatory and oxidative stress markers in peritoneal dialysis patients: a placebo-controlled study. Perit Dial Int 2010; 30(3): 336-42.
[http://dx.doi.org/10.3747/pdi.2009.00073] [PMID: 20190028]
[158]
Dean O, Giorlando F, Berk M. N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanism of action. J Clin Neurosci 2011; 36: 8-86.
[159]
Fernandes BS, Dean OM, Dodd S, Malhi GS, Berk M. N-Acetylcysteine in depressive symptoms and functionality: a systematic review and meta-analysis. J Clin Psychiatry 2016; 77(4): e457-66.
[http://dx.doi.org/10.4088/JCP.15r09984] [PMID: 27137430]
[160]
Bonanomi L, Gazzaniga A. Toxicological, pharmacokinetic and metabolic studies on acetylcysteine. Eur J Respir Dis Suppl 1980; 111: 45-51.
[PMID: 6938410]
[161]
Berk M, Malhi GS, Gray LJ, Dean OM. The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol Sci 2013; 34(3): 167-77.
[http://dx.doi.org/10.1016/j.tips.2013.01.001] [PMID: 23369637]
[162]
Scheidegger M, Walter M, Lehmann M, et al. Ketamine decreases resting state functional network connectivity in healthy subjects: implications for antidepressant drug action. PLoS One 2012; 7(9) e44799
[163]
Das P, Tanious M, Fritz K, et al. Metabolite profiles in the anterior cingulate cortex of depressed patients differentiate those taking N-acetyl-cysteine versus placebo. Aust N Z J Psychiatry 2013; 47(4): 347-54.
[http://dx.doi.org/10.1177/0004867412474074] [PMID: 23341476]
[164]
Berk M, Dean OM, Cotton SM, et al. The efficacy of adjunctive N-acetylcysteine in major depressive disorder: a double-blind, randomized, placebo-controlled trial. J Clin Psychiatry 2014; 75(6): 628-36.
[http://dx.doi.org/10.4088/JCP.13m08454] [PMID: 25004186]
[165]
Ellegaard PK, Licht RW, Poulsen HE, et al. Add-on treatment with N-acetylcysteine for bipolar depression: a 24-week randomized double-blind parallel group placebo-controlled multicentre trial (NACOS-study protocol). Int J Bipolar Disord 2018; 6(1): 11-5.
[http://dx.doi.org/10.1186/s40345-018-0117-9] [PMID: 29619634]
[166]
Porcu M, Urbano MR, Verri WA Jr, et al. Effects of adjunctive N-acetylcysteine on depressive symptoms: Modulation by baseline high-sensitivity C-reactive protein. Psychiatry Res 2018; 263: 268-74.
[http://dx.doi.org/10.1016/j.psychres.2018.02.056] [PMID: 29605103]
[167]
Zheng W, Zhang QE, Cai DB, et al. N-acetylcysteine for major mental disorders: a systematic review and meta-analysis of randomized controlled trials. Acta Psychiatr Scand 2018; 137(5): 391-400.
[http://dx.doi.org/10.1111/acps.12862] [PMID: 29457216]
[168]
Cullen KR, Klimes-Dougan B, Westlund Schreiner M, et al. N-Acetylcysteine for Nonsuicidal Self-Injurious Behavior in Adolescents: An Open-Label Pilot Study. J Child Adolesc Psychopharmacol 2018; 28(2): 136-44.
[http://dx.doi.org/10.1089/cap.2017.0032] [PMID: 29053023]
[169]
Berk M, Copolov DL, Dean O, et al. N-acetyl cysteine for depressive symptoms in bipolar disorder--a double-blind randomized placebo-controlled trial. Biol Psychiatry 2008; 64(6): 468-75.
[http://dx.doi.org/10.1016/j.biopsych.2008.04.022] [PMID: 18534556]
[170]
Waterdrinker A, Berk M, Venugopal K, Rapado-Castro M, Turner A, Dean OM. Effects of N-Acetyl cysteine on suicidal ideation in bipolar depression. J Clin Psychiatry 2015; 76(5): 665-9.
[http://dx.doi.org/10.4088/JCP.14l09378] [PMID: 26035204]
[171]
Back SE, McCauley JL, Korte KJ, et al. A Double-Blind, Randomized, Controlled Pilot Trial of N-Acetylcysteine in Veterans With Posttraumatic Stress Disorder and Substance Use Disorders. J Clin Psychiatry 2016; 77(11): e1439-46.
[http://dx.doi.org/10.4088/JCP.15m10239] [PMID: 27736051]
[172]
Tomko RL, Gilmore AK, Gray KM. The role of depressive symptoms in treatment of adolescent cannabis use disorder with N-Acetylcysteine. Addict Behav 2018; 85: 26-30.
[http://dx.doi.org/10.1016/j.addbeh.2018.05.014] [PMID: 29803870]
[173]
Yawalkar R, Changotra H, Gupta GL. Protective influences of N-acetylcysteine against alcohol abstinence-induced depression by regulating biochemical and GRIN2A, GRIN2B gene expression of NMDA receptor signaling pathway in rats. Neurochem Int 2018; 118: 73-81.
[http://dx.doi.org/10.1016/j.neuint.2018.04.011] [PMID: 29704590]
[174]
Jastrzębska J, Frankowska M, Filip M, Atlas D. N-acetylcysteine amide (AD4) reduces cocaine-induced reinstatement. Psychopharmacology (Berl) 2016; 233(18): 3437-48.
[http://dx.doi.org/10.1007/s00213-016-4388-5] [PMID: 27469021]
[175]
Minarini A, Ferrari S, Galletti M, et al. N-acetylcysteine in the treatment of psychiatric disorders: current status and future prospects. Expert Opin Drug Metab Toxicol 2017; 13(3): 279-92.
[http://dx.doi.org/10.1080/17425255.2017.1251580] [PMID: 27766914]
[176]
di Michele F, Siracusano A, Talamo A, Niolu C. N-Acetyl Cysteine and Vitamin D Supplementation in Treatment Resistant Obsessive-compulsive Disorder Patients: A General Review. Curr Pharm Des 2018; 24(17): 1832-8.
[http://dx.doi.org/10.2174/1381612824666180417124919] [PMID: 29663874]
[177]
Ghanizadeh A, Mohammadi MR, Bahraini S, Keshavarzi Z, Firoozabadi A, Alavi Shoshtari A. Efficacy of N-Acetylcysteine Augmentation on Obsessive Compulsive Disorder: A Multicenter Randomized Double Blind Placebo Controlled Clinical Trial. Iran J Psychiatry 2017; 12(2): 134-41.
[PMID: 28659986]
[178]
Afshar H, Roohafza H, Mohammad-Beigi H, et al. N-acetylcysteine add-on treatment in refractory obsessive-compulsive disorder: a randomized, double-blind, placebo-controlled trial. J Clin Psychopharmacol 2012; 32(6): 797-803.
[http://dx.doi.org/10.1097/JCP.0b013e318272677d] [PMID: 23131885]
[179]
Zhang Y, Chen Y, Ma L. Depression and cardiovascular disease in elderly: Current understanding. J Clin Neurosci 2018; 47: 1-5.
[http://dx.doi.org/10.1016/j.jocn.2017.09.022] [PMID: 29066229]
[180]
Cuomo A, Maina G, Bolognesi S, et al. Prevalence and Correlates of Vitamin D Deficiency in a Sample of 290 Inpatients With Mental Illness. Front Psychiatry 2019; 10: 167.
[http://dx.doi.org/10.3389/fpsyt.2019.00167] [PMID: 31001150]
[181]
Chaki S. Beyond Ketamine: New Approaches to the Development of Safer Antidepressants. Curr Neuropharmacol 2017; 15(7): 963-76.
[http://dx.doi.org/10.2174/1570159X15666170221101054] [PMID: 28228087]
[182]
Costa-Campos L, Herrmann AP, Pilz LK, Michels M, Noetzold G, Elisabetsky E. Interactive effects of N-acetylcysteine and antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44: 125-30.
[http://dx.doi.org/10.1016/j.pnpbp.2013.02.008] [PMID: 23419244]
[183]
Haroon E, Woolwine BJ, Chen X, et al. IFN-alpha-induced cortical and subcortical glutamate changes assessed by magnetic resonance spectroscopy. Neuropsychopharmacology 2014; 39(7): 1777-85.
[http://dx.doi.org/10.1038/npp.2014.25] [PMID: 24481242]
[184]
Kompoliti K, Fan W, Leurgans S. Complementary and alternative medicine use in Gilles de la Tourette syndrome. Mov Disord 2009; 24(13): 2015-9.
[http://dx.doi.org/10.1002/mds.22724] [PMID: 19705358]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 21
Year: 2020
Published on: 05 April, 2020
Page: [2442 - 2459]
Pages: 18
DOI: 10.2174/1381612826666200406090051
Price: $65

Article Metrics

PDF: 34
HTML: 7
EPUB: 1