Extraction, Properties, and Applications of Bioactive Compounds Obtained from Microalgae

Author(s): Antia G. Pereira, Cecilia Jimenez-Lopez, Maria Fraga, Catarina Lourenço-Lopes, Paula García-Oliveira, Jose M. Lorenzo, Concepcion Perez-Lamela*, Miguel A. Prieto, Jesus Simal-Gandara*

Journal Name: Current Pharmaceutical Design

Volume 26 , Issue 16 , 2020

Become EABM
Become Reviewer


With the increase in the global population, getting new sources of food is essential. One of the solutions can be found in the oceans due to algae. Microalgae are aquatic photosynthetic organisms used mainly due to their variety of bioactive compounds. The consumption of microalgae has been carried out for centuries and is recommended by organizations, such as OMS and FAO, due to its nutritional value and its properties. Based on the existing literature, there is substantial evidence of the nutritional quality of the algae as well as their functional elements. However, much quantification is still necessary, as well as studying possible adverse effects. The present review describes the compounds of alimentary interest present in these algae as well as different extraction techniques assisted by different energetic mechanisms (such as heat, supercritical-fluid, microwave, ultrasound, enzymes, electric field, high hydrostatic pressure, among others). The most challenging and crucial issues are reducing microalgae growth cost and optimizing extraction techniques. This review aimed a better understanding of the uses of microalgae for new researches in nutrition. Since the use of microalgae is still a field in which there is much to discover, it is likely that more benefits will be found in its consumption.

Keywords: Microalgae, bioactive compounds, nutrients, properties, applications, extraction.

Priyadarshani I, Rath B. Commercial and industrial applications of micro algae - A review. J algal biomass utln 2012; 3(4): 89-100.2012.
Lee R. Phycology. Cambridge: Cambridge University 1989.
Richmond A. Handbook of Microalgal Culture. Oxford: Blackwell Science Ltd 2004.
García Cubero R. Producción de biomasa de microalgas rica en carbohidratos acoplada a la eliminación fotosintética de CO2 2011; 293-310.
Gaignard C, Gargouch N, Dubessay P, et al. New horizons in culture and valorization of red microalgae. Biotechnol Adv 2019; 37(1): 193-222.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.014] [PMID: 30500354]
Pignolet O, Jubeau S, Vaca-Garcia C, Michaud P. Highly valuable microalgae: biochemical and topological aspects. J Ind Microbiol Biotechnol 2013; 40(8): 781-96.
[http://dx.doi.org/10.1007/s10295-013-1281-7] [PMID: 23660999]
Yoon HS, Müller KM, Sheath RG, Ott FD, Bhattacharya D. Defining the major lineages of red algae (Rhodophyta). J Phycol 2006; 42(2): 482-92.
Murray SA, Suggett DJ, Doblin MA, et al. Unravelling the functional genetics of dinoflagellates: a review of approaches and opportunities. Perspect Phycol 2016; 3(1): 37-52.
Assunção J, Guedes AC, Malcata FX. Biotechnological and pharmacological applications of biotoxins and other bioactive molecules from dinoflagellates. Mar Drugs 2017; 15(12)E393
[http://dx.doi.org/10.3390/md15120393] [PMID: 29261163]
Gallardo-Rodríguez J, Sánchez-Mirón A, García-Camacho F, López-Rosales L, Chisti Y, Molina-Grima E. Bioactives from microalgal dinoflagellates. Biotechnol Adv 2012; 30(6): 1673-84.
[http://dx.doi.org/10.1016/j.biotechadv.2012.07.005] [PMID: 22884890]
Wang DZ. Neurotoxins from marine dinoflagellates: a brief review. Mar Drugs 2008; 6(2): 349-71.
[http://dx.doi.org/10.3390/md6020349] [PMID: 18728731]
Kristiansen J, Škaloud P. Handbook of the Protists Handbook of the Protists. Springer International Publishing 2017; pp. 331-66.
John DM, Whitton BA, Brook AJ. The freshwater algal flora of the British Isles: An identification guide to freshwater and terrestrial algae. Cambridge Univesity Press 2014.
Sabater S. The diatom cell and its taxonomical entity. Encycl Inl Waters 2009; 1: 149-56.
Karkos PD, Leong SC, Karkos CD, Sivaji N, Assimakopoulos DA. Spirulina in clinical practice: evidence-based human applications. Evid Based Complement Alternat Med 2011; 2011531053
[http://dx.doi.org/10.1093/ecam/nen058] [PMID: 18955364]
Schaap A, Rohrlack T, Bellouard Y. Optical classification of algae species with a glass lab-on-a-chip. Lab Chip 2012; 12(8): 1527-32.
[http://dx.doi.org/10.1039/c2lc21091f] [PMID: 22395427]
Yao Z, Fei M, Li K, Kong H, Zhao B. Recognition of blue-green algae in lakes using distributive genetic algorithm-based neural networks. Neurocomputing 2007.
Barsanti L, Gualtieri P. Anatomy, Biochemistry, and Biotechnology. In: Francis T, Gualtieri P, EdsAlgae: Anatomy, Biochemistry, and Biotechnology. 2nd edition. London: CRC Press 2014; p. 361.
Lavens P, Sorgeloos P. Manual on the production and use of live food for aquaculture Food and Agriculture OrganizationFAO 1996.
Finkel ZV, Follows MJ, Liefer JD, Brown CM, Benner I, Irwin AJ. Phylogenetic diversity in the macromolecular composition of microalgae. PLoS One 2016; 11(5)e0155977
[http://dx.doi.org/10.1371/journal.pone.0155977] [PMID: 27228080]
Matos ÂP. The impact of microalgae in food science and technology. J Am Oil Chem Soc 2017; 94(11): 1333-50.
Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng 2006; 101(2): 87-96.
[http://dx.doi.org/10.1263/jbb.101.87] [PMID: 16569602]
Guedes AC, Malcata FX. Nutritional value and uses of microalgae in aquaculture. In: Aquaculture . 2012; pp. 59-78.
Knuckey RM, Brown MR, Barrett SM, Hallegraeff GM. Isolation of new nanoplanktonic diatom strains and their evaluation as diets for juvenile Pacific oysters (Crassostrea gigas). Aquaculture 2002; 211: 253-74.
Volkman JK, Brown MR. Nutritional value of microalgae and applications. Algal Cult Analog Bloom Appl Sci Publ Inc New Hampsh 2005; 2006: 407-57.
Tibbetts SM, Milley JE, Lall SP. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J Appl Phycol 2015; 27(3): 1109-19.
Schulze C, Wetzel M, Reinhardt J, Schmidt M, Felten L, Mundt S. Screening of microalgae for primary metabolites including β-glucans and the influence of nitrate starvation and irradiance on β-glucan production. J Appl Phycol 2016.
Isleten Hosoglu M. Aroma characterization of five microalgae species using solid-phase microextraction and gas chromatography-mass spectrometry/olfactometry. Food Chem 2018; 240: 1210-8.
[http://dx.doi.org/10.1016/j.foodchem.2017.08.052] [PMID: 28946244]
Zhou L, Chen J, Xu J, Li Y, Zhou C, Yan X. Change of volatile components in six microalgae with different growth phases. J Sci Food Agric 2017; 97(3): 761-9.
[http://dx.doi.org/10.1002/jsfa.7794] [PMID: 27166980]
Glover KE, Budge S, Rose M, et al. Effect of feeding fresh forage and marine algae on the fatty acid composition and oxidation of milk and butter. J Dairy Sci 2012; 95(6): 2797-809.
[http://dx.doi.org/10.3168/jds.2011-4736] [PMID: 22612917]
Pennarun AL, Prost C, Haure J, Demaimay M. Comparison of two microalgal diets. 2. Influence on odorant composition and organoleptic qualities of raw oysters (Crassostrea gigas). J Agric Food Chem 2003; 51(7): 2011-8.
[http://dx.doi.org/10.1021/jf020549c] [PMID: 12643667]
Kafyra M, Papadaki S, Chronis M, Krokida M. Microalgae based innovative animal fat and proteins replacers for application in functional baked products 2018; 427-36.
Kumoro AC, Johnny D, Alfilovita D. Incorporation of microalgae and seaweed in instant fried wheat noodles manufacturing: Nutrition and culinary properties study. Int Food Res J 2016; 23(2): 715-22.
Lauritano C, Andersen JH, Hansen E, et al. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front Mar Sci 2016; 3: 68.
Martínez Andrade KA, Lauritano C, Romano G, Ianora A. Marine microalgae with anti-cancer properties. Mar Drugs 2018; 16(5): 165.
[http://dx.doi.org/10.3390/md16050165] [PMID: 29762545]
Beygmoradi A, Homaei A, Hemmati R, Santos-Moriano P, Hormigo D, Fernández-Lucas J. Marine chitinolytic enzymes, a biotechnological treasure hidden in the ocean? Appl Microbiol Biotechnol 2018; 102(23): 9937-48.
[http://dx.doi.org/10.1007/s00253-018-9385-7] [PMID: 30276711]
Abd El-Hack ME, Abdelnour S, Alagawany M, et al. Microalgae in modern cancer therapy: Current knowledge. Biomed Pharmacother 2019; 111(December): 42-50.
[http://dx.doi.org/10.1016/j.biopha.2018.12.069] [PMID: 30576933]
Lin H-Y, Lin H-J. Polyamines in microalgae: something borrowed, something new. Mar Drugs 2018; 17(1): 1.
[http://dx.doi.org/10.3390/md17010001] [PMID: 30577419]
Shalaby EA, Dubey NK. Polysaccharides from cyanobacteria: Response to biotic and abiotic stress and their antiviral activity. Indian J Geo-Mar Sci 2018; 47(1): 21-33.
Olasehinde TA, Olaniran AO, Okoh AI, Koulen P. Therapeutic potentials of microalgae in the treatment of Alzheimer’s disease. Molecules 2017; 22(3): 1-18.
[http://dx.doi.org/10.3390/molecules22030480] [PMID: 28335462]
Gateau H, Solymosi K, Marchand J, Schoefs B. Carotenoids of microalgae used in food industry and medicine. Mini Rev Med Chem 2017; 17(13): 1140-72.
Sathasivam R, Ki JS. A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Mar Drugs 2018; 16(1)E26
[http://dx.doi.org/10.3390/md16010026] [PMID: 29329235]
Ejike CECC, Collins SA, Balasuriya N, Swanson AK, Mason B, Udenigwe CC. Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends Food Sci Technol 2017; 59: 30-6.
Khan MI, Shin JH, Kim JD. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 2018; 17(1): 36.
[http://dx.doi.org/10.1186/s12934-018-0879-x] [PMID: 29506528]
Odjadjare EC, Mutanda T, Olaniran AO. Potential biotechnological application of microalgae: a critical review. Crit Rev Biotechnol 2017; 37(1): 37-52.
[http://dx.doi.org/10.3109/07388551.2015.1108956] [PMID: 26594785]
Bilal M, Rasheed T, Ahmed I, Iqbal HMN. High-value compounds from microalgae with industrial exploitability - A review. Front Biosci (Schol Ed) 2017; 9: 319-42.
[http://dx.doi.org/10.2741/s490] [PMID: 28410122]
Renuka N, Guldhe A, Prasanna R, Singh P, Bux F. Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol Adv 2018; 36(4): 1255-73.
[http://dx.doi.org/10.1016/j.biotechadv.2018.04.004] [PMID: 29673972]
Pina-Pérez MC, Rivas A, Martínez A, Rodrigo D. Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chem 2017; 235: 34-44.
[http://dx.doi.org/10.1016/j.foodchem.2017.05.033] [PMID: 28554644]
Dillehay TD, Ramirez C, Pino M, Collins MB, Rossen J, Pino-Navarro JD. Monte Verde: seaweed, food, medicine, and the peopling of South America. Science (80- ) 2008; 320: 784-6.
Beyerinck MW. Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen. Bot Zeitung 1890; 45: 725-90.
Allen EJ, Nelson EW. On the artificial culture of marine plankton organisms. J Mar Biol Assoc U K 1910; 8: 421-74.
Chase FE. Colonial formation of unicellular green Algae under various light conditions (with three plates) 1934; 92(5): 1-14.
García JL, de Vicente M, Galán B. Microalgae, old sustainable food and fashion nutraceuticals. Microb Biotechnol 2017; 10(5): 1017-24.
[http://dx.doi.org/10.1111/1751-7915.12800] [PMID: 28809450]
B KOK.On the efficiency of chlorella growth*. Acta Bot Neerl 1952; 1: 445-67.
Burlew JS. Algal culture from laboratory to pilot plant. Carnegie Inst 1953; 3(5): 11.
Borowitzka MA. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 1999; 70: 313-21.
Harun R, Singh M, Forde GM, Danquah MK. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 2010; 14: 1037-47.
Borowitzka M. Commercial-Scale Production of Microalgae for Bioproducts. In: Blue Biotechnol. 2018.
Borowitzka MA. Algal biotechnology products and processes -matching science and economics. J Appl Phycol 1992; 4: 267-79.
Lee Y-K. Microalgal mass culture systems and methods: Their limitation and potential. J Appl Phycol 2001; 13: 307-15.
Cohen Z, Vonshak A, Richmond A. The effect of environmental conditions on fatty acid composition of the red alga porphyridium cruentum 1987; 641-3.
Fon-Sing S, Borowitzka MA. Isolation and screening of euryhaline Tetraselmis spp. suitable for large-scale outdoor culture in hypersaline media for biofuels. J Appl Phycol 2016; 28: 1-14.
Acién Fernández FG, Hall DO, Cañizares Guerrero E, Krishna Rao K, Molina Grima E. Outdoor production of Phaeodactylum tricornutum biomass in a helical reactor. J Biotechnol 2003; 103(2): 137-52.
[http://dx.doi.org/10.1016/S0168-1656(03)00101-9] [PMID: 12814873]
Moreno J, Vargas MÁ, Rodríguez H, Rivas J, Guerrero MG. Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomol Eng 2003; 20(4-6): 191-7.
[http://dx.doi.org/10.1016/S1389-0344(03)00051-0] [PMID: 12919797]
Bazaes J, Sepulveda C, Acién FG, Morales J, Gonzales L, Rivas M, et al. Outdoor pilot-scale production of Botryococcus braunii in panel reactors. J Appl Phycol 2012; 24: 1353-60.
Ranga Rao A, Ravishankar GA, Sarada R. Cultivation of green alga Botryococcus braunii in raceway, circular ponds under outdoor conditions and its growth, hydrocarbon production. Bioresour Technol 2012; 123: 528-33.
[http://dx.doi.org/10.1016/j.biortech.2012.07.009] [PMID: 22940364]
Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 2011; 45(1): 11-36.
[http://dx.doi.org/10.1016/j.watres.2010.08.037] [PMID: 20970155]
Hu J, Nagarajan D, Zhang Q, Chang JS, Lee DJ. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol Adv 2018; 36(1): 54-67.
[http://dx.doi.org/10.1016/j.biotechadv.2017.09.009] [PMID: 28947090]
Kothari R, Pandey A, Ahmad S, Kumar A, Pathak V V, Tyagi V V. Microalgal cultivation for value-added products: a critical enviroeconomical assessment. 3 Biotech 2017. 7: 243.
Milledge JJ. Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 2011; 10: 31-41.
de Carvalho JC, Sydney EB, Assú Tessari LF, Soccol CR. Culture media for mass production of microalgae Biofuels from Algae. 2nd ed. Elsevier 2019; pp. 33-50.
Jiang L, Luo S, Fan X, Yang Z, Guo R. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy 2011; 88: 3336-41.
Park JBK, Craggs RJ, Shilton AN. Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 2011; 102(1): 35-42.
[http://dx.doi.org/10.1016/j.biortech.2010.06.158] [PMID: 20674341]
Aravantinou AF, Theodorakopoulos MA, Manariotis ID. Selection of microalgae for wastewater treatment and potential lipids production. Bioresour Technol 2013; 147: 130-4.
[http://dx.doi.org/10.1016/j.biortech.2013.08.024] [PMID: 23994695]
Li Y, Chen Y-F, Chen P, et al. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 2011; 102(8): 5138-44.
[http://dx.doi.org/10.1016/j.biortech.2011.01.091] [PMID: 21353532]
Kong QX, Li L, Martinez B, Chen P, Ruan R. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 2010; 160(1): 9-18.
[http://dx.doi.org/10.1007/s12010-009-8670-4] [PMID: 19507059]
Singh J, Saxena RC. An introduction to microalgae: Diversity and significancehandbook of marine microalgae. Boston: Academic Press 2015; pp. 11-24.
Patil PD, Gude VG, Mannarswamy A, et al. Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. Fuel 2012; 97: 822-31.
Rzymski P, Niedzielski P, Kaczmarek N, Jurczak T, Klimaszyk P. The multidisciplinary approach to safety and toxicity assessment of microalgae-based food supplements following clinical cases of poisoning. Harmful Algae 2015; 46: 34-42.
Stewart I, Seawright AA, Shaw GR. Cyanobacterial poisoning in livestock, wild mammals and birds - an overview Cyanobacterial harmful algal blooms: state of the science and research needs. New York, NY: Springer New York 2008; pp. 613-37.
Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 2010; 8(5): 1650-80.
[http://dx.doi.org/10.3390/md8051650] [PMID: 20559491]
Merel S, Walker D, Chicana R, Snyder S, Baurès E, Thomas O. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 2013; 59: 303-27.
[http://dx.doi.org/10.1016/j.envint.2013.06.013] [PMID: 23892224]
Carmichael WW, Beasley V, Bunner DL, et al. Naming of cyclic heptapeptide toxins of cyanobacteria (blue-green algae). Toxicon 1988; 26(11): 971-3.
[http://dx.doi.org/10.1016/0041-0101(88)90195-X] [PMID: 3149803]
Pereira SR, Vasconcelos VM, Antunes A. Computational study of the covalent bonding of microcystins to cysteine residues--a reaction involved in the inhibition of the PPP family of protein phosphatases. FEBS J 2013; 280(2): 674-80.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08454.x] [PMID: 22177231]
Heussner AH, Mazija L, Fastner J, Dietrich DR. Toxin content and cytotoxicity of algal dietary supplements. Toxicol Appl Pharmacol 2012; 265(2): 263-71.
[http://dx.doi.org/10.1016/j.taap.2012.10.005] [PMID: 23064102]
Saker ML, Welker M, Vasconcelos VM. Multiplex PCR for the detection of toxigenic cyanobacteria in dietary supplements produced for human consumption. Appl Microbiol Biotechnol 2007; 73(5): 1136-42.
[http://dx.doi.org/10.1007/s00253-006-0565-5] [PMID: 17001477]
Vichi S, Lavorini P, Funari E, Scardala S, Testai E. Contamination by Microcystis and microcystins of blue-green algae food supplements (BGAS) on the Italian market and possible risk for the exposed population. Food Chem Toxicol 2012; 50(12): 4493-9.
[http://dx.doi.org/10.1016/j.fct.2012.09.029] [PMID: 23036452]
Woolbright BL, Williams CD, Ni H, et al. Microcystin-LR induced liver injury in mice and in primary human hepatocytes is caused by oncotic necrosis. Toxicon 2017; 125: 99-109.
[http://dx.doi.org/10.1016/j.toxicon.2016.11.254] [PMID: 27889601]
Carmeli S, Werman M, Teltsch B, Porat R, Sukenik A. Uracil moiety is required for toxicity of the cyanobacterial hepatotoxin cylindrospermopsin. J Toxicol Environ Health Part A 2001; 62: 281-8.
Norris RL, Eaglesham GK, Pierens G, et al. Deoxycylindrospermopsin, an analog of cylindrospermopsin from Cylindrospermopsis raciborskii. Environ Toxicol 1999; 14: 163-5.
Terao K, Ohmori S, Igarashi K, et al. Electron microscopic studies on experimental poisoning in mice induced by cylindrospermopsin isolated from blue-green alga Umezakia natans. Toxicon 1994; 32(7): 833-43.
[http://dx.doi.org/10.1016/0041-0101(94)90008-6] [PMID: 7940590]
Esterhuizen-Londt M, Pflugmacher S. Inability to detect free cylindrospermopsin in spiked aquatic organism extracts plausibly suggests protein binding. Toxicon 2016; 122: 89-93.
[http://dx.doi.org/10.1016/j.toxicon.2016.09.020] [PMID: 27693305]
James KJ, Furey A, Sherlock IR, et al. Sensitive determination of anatoxin-a, homoanatoxin-a and their degradation products by liquid chromatography with fluorimetric detection. J Chromatogr A 1998; 798(1-2): 147-57.
[http://dx.doi.org/10.1016/S0021-9673(97)01207-7] [PMID: 9542136]
Wonnacott S, Gallagher T. The Chemistry and pharmacology of anatoxin-a and related homotropanes with respect to nicotinic acetylcholine receptors. Mar Drugs 2006; 4: 228-54.
Draisci R, Ferretti E, Palleschi L, Marchiafava C. Identification of anatoxins in blue-green algae food supplements using liquid chromatography-tandem mass spectrometry. Food Addit Contam 2001; 18(6): 525-31.
[http://dx.doi.org/10.1080/02652030118558] [PMID: 11407751]
Rellán S, Osswald J, Saker M, Gago-Martinez A, Vasconcelos V. First detection of anatoxin-a in human and animal dietary supplements containing cyanobacteria. Food Chem Toxicol 2009; 47(9): 2189-95.
[http://dx.doi.org/10.1016/j.fct.2009.06.004] [PMID: 19520132]
Roy-Lachapelle A, Solliec M, Bouchard MF, Sauvé S. Detection of cyanotoxins in algae dietary supplements. Toxins (Basel) 2017; 9(3): 76.
[http://dx.doi.org/10.3390/toxins9030076] [PMID: 28245621]
Wiese M, D’Agostino PM, Mihali TK, Moffitt MC, Neilan BA. Neurotoxic alkaloids: saxitoxin and its analogs. Mar Drugs 2010; 8(7): 2185-211.
[http://dx.doi.org/10.3390/md8072185] [PMID: 20714432]
Diener M, Erler K, Hiller S, Christian B, Luckas B. Determination of Paralytic Shellfish Poisoning (PSP) toxins in dietary supplements by application of a new HPLC/FD method. Eur Food Res Technol 2006; 224: 147-51.
Fraga M, Vilariño N, Louzao MC, et al. Multi-detection method for five common microalgal toxins based on the use of microspheres coupled to a flow-cytometry system. Anal Chim Acta 2014; 850: 57-64.
[http://dx.doi.org/10.1016/j.aca.2014.08.030] [PMID: 25441160]
McNamee SE, Elliott CT, Greer B, Lochhead M, Campbell K. Development of a planar waveguide microarray for the monitoring and early detection of five harmful algal toxins in water and cultures. Environ Sci Technol 2014; 48(22): 13340-9.
[http://dx.doi.org/10.1021/es504172j] [PMID: 25361072]
Rodriguez I, Fraga M, Alfonso A, et al. Monitoring of freshwater toxins in European environmental waters by using novel multi-detection methods. Environ Toxicol Chem 2017; 36(3): 645-54.
[http://dx.doi.org/10.1002/etc.3577] [PMID: 27505279]
Villarruel-López A, Ascencio F, Nunõ K. Microalgae, a potential natural functional food source- A Review. Pol J Food Nutr Sci 2017; 67(4): 251-63.
Matos J, Cardoso C, Bandarra NM, Afonso C. Microalgae as healthy ingredients for functional food: a review. Food Funct 2017; 8(8): 2672-85.
[http://dx.doi.org/10.1039/C7FO00409E] [PMID: 28681866]
Hamed I, Özogul F, Özogul Y, Regenstein JM. Marine bioactive compounds and their health benefits: a review. Compr Rev Food Sci Food Saf 2015; 14(4): 446-65.
Wells ML, Potin P, Craigie JS, et al. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 2017; 29(2): 949-82.
[http://dx.doi.org/10.1007/s10811-016-0974-5] [PMID: 28458464]
Raposo MFDJ, de Morais AMMB. Microalgae for the prevention of cardiovascular disease and stroke. Life Sci 2015; 125: 32-41.
[http://dx.doi.org/10.1016/j.lfs.2014.09.018] [PMID: 25277945]
Jaime F, Andersson B. Vitamin content of four marine microalgae. Potential use as source of vitamins in nutrition. J Ind Microbiol 1990; 5: 259-63.
Becker W. Microalgae in human and animal nutrition. Handb Microalgal Cult 2008; pp. 312-51.
Sathasivam R, Radhakrishnan R, Hashem A, Abd Allah EF. Microalgae metabolites: A rich source for food and medicine. Saudi J Biol Sci 2017; 26(4): 799-22.
Durmaz Y. Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture 2007; 272(1-4): 717-22.
Rajesh K, Rohit MV, Venkata Mohan S. Microalgae-based carotenoids production. Algal Green Chem Recent Prog Biotechnol 2017; pp. 139-47.
Khanra S, Mondal M, Halder G, Tiwari ON, Gayen K, Bhowmick TK. Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review. Food Bioprod Process 2018; 110(May): 60-84.
Kim DY, Vijayan D, Praveenkumar R, et al. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresour Technol 2016; 199: 300-10.
[http://dx.doi.org/10.1016/j.biortech.2015.08.107] [PMID: 26342788]
D’Alessandro EB, Antoniosi Filho NR. Concepts and studies on lipid and pigments of microalgae: A review. Renew Sustain Energy Rev 2016; 58: 832-41.
Gouveia L, Marques AE, Sousa JM, Moura P, Bandarra NM. Microalgae - source of natural bioactive molecules as functional ingredients. Food Sci Technol Bull Funct Foods 2010; 7(2): 21-37.
Wu L-C, Ho J-AA, Shieh M-C, Lu I-W. Antioxidant and antiproliferative activities of extracts from pdf. J Agric Food Chem 2005; 53: 4207-12.
[http://dx.doi.org/10.1021/jf0479517] [PMID: 15884862]
Saranya C, Hemalatha A, Parthiban C, Anantharaman P. Evaluation of Antioxidant Properties, Total phenolic and carotenoid content of Chaetoceros calcitrans, Chlorella salina and Isochrysis galbana. Int J Curr Microbiol Appl Sci 2014; 3(8): 365-77.
Safafar H, van Wagenen J, Møller P, Jacobsen C. Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar Drugs 2015; 13(12): 7339-56.
[http://dx.doi.org/10.3390/md13127069] [PMID: 26690454]
Li H. Bin, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 2007; 102(3): 771-6.
Sayeda MA, Ali GH, El-Baz FK. Potential production of omega fatty acids from microalgae. Int J Pharma Sci 2015; 02(34): 210-5.
Kumar BR, Deviram G, Duc PA. Microalgae as rich source of polyunsaturated fatty acids. Biocatal Agric Biotechnol 2019; 17: 583-8.
Sun XM, Geng LJ, Ren LJ, et al. Influence of oxygen on the biosynthesis of polyunsaturated fatty acids in microalgae. Bioresour Technol 2018; 250(250): 868-76.
[http://dx.doi.org/10.1016/j.biortech.2017.11.005] [PMID: 29174352]
Fu W, Nelson DR, Yi Z, et al. Bioactive compounds from microalgae: current development and prospects. Stud Nat Prod Chem 2017; 54: 199-225.
da Costa E, Silva J, Mendonça SH, Abreu MH, Domingues MR. Lipidomic approaches towards deciphering glycolipids from microalgae as a reservoir of bioactive lipids. Mar Drugs 2016; 14(5)E101
[http://dx.doi.org/10.3390/md14050101] [PMID: 27213410]
Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol 2015; 8(2): 190-209.
[http://dx.doi.org/10.1111/1751-7915.12167] [PMID: 25223877]
Peltomaa E, Johnson MD, Taipale SJ. Marine cryptophytes are great sources of EPA and DHA. Mar Drugs 2017; 16(1): 1-11.
[http://dx.doi.org/10.3390/md16010003] [PMID: 29278384]
Afzal I, Shahid A, Ibrahim M, Liu T, Nawaz M, Mehmood MA. Microalgae: A Promising feedstock for energy and high-value products in: algae based polymers, blends, and composites: chemistry, biotechnology and materials science. Elsevier 2017; pp. 55-75.
Europeas DO de las C. REGLAMENTO (CE) N° 258/97 DEL PARLAMENTO EUROPEO Y DEL CONSEJO de 27 de enero de 1997 sobre nuevos alimentos y nuevos ingredientes alimentarios 1997; 10-5.
European Commission. REGLAMENTO (UE) 2015/ 2283 DEL PARLAMENTO EUROPEO Y DEL CONSEJO - de 25 de noviembre de 2015 - relativo a los nuevos alimentos, por el que se modifica el Reglamento (UE) no 1169/ 2011 del Parlamento Europeo y del Cons 2015. 2015: 152.
European Commission Questions and Answers on Food Additives 2011; 5
Europea C. REGLAMENTO (UE) N o 234/2011 DE LA COMISIÓN de 10 de marzo de 2011 de ejecución del Reglamento (CE) n o 1331/2008 del Parlamento Europeo y del Consejo, por el que se establece un procedimiento de autorización común para los aditivos, las enzimas y los aro 2011; 2011
Union E. Commission implementing regulation (EU) No 562/2012 of June 2012 amending Commission Regulation (EU)No 234/2011 with regard to specific data required for risk assessment of food enzymes 2012. 2008-10.
European Union. REGULATION (EC) No 1333/2008 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 December 2008 on food additives Official Journal of the European Union 2008. 16-33
Comisión Europea. Commission Decision 2009/777/EC of 21 October 2009 concerning the extension of uses of algal oil from the micro-algae Ulkenia sp as a novel food ingredient under regulation (EC) No 258/97 of the European Parliament and of the Council 2009.
European Commission. Commission Implementing Decision 2014/463/EU of 14 July 2014 on authorising the placing on the market of oil from the micro-algae Schizochytrium sp In: as a novel food ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council a. 2014; 58
European Commission. Commission Implementing Decision (EU) 2015/545 of 31 March 2015 authorising the placing on the market of oil from the micro-algae Schizochytrium sp (ATCC PTA-9695) as a novel food ingredient under Regulation (EC) No 258/97 of the European Parliament 2015. 22-5
European Commission. Commission Decision 2003/427/EC of 5 June 2003 authorising the placing on the market of oil rich in DHA (docosahexaenoic acid) from the micro-algae Schizochytrium sp. as a novel food ingredient under Regulation (EC) No 258/97 of the European Parliament an 2003. (June): 13-4.
European Commission. Commission Implementing Regulation (EU) 2018/1023 of 23 July 2018 correcting Implementing Regulation (EU) 2017/2470 establishing the Union list of novel foods 2018. 1-3
European Commission. List of authorisations under the old novel food regulation | Food Safety
Cholewinska A. High pressure law The legislation on High Pressure processing and other factors that have an impact on HPP applications in the EU food industry. Wageningen University 2010.
San Martín MF, Barbosa-Cánovas GV, Swanson BG. Food processing by high hydrostatic pressure. Crit Rev Food Sci Nutr 2002; 42(6): 627-45.
[http://dx.doi.org/10.1080/20024091054274] [PMID: 12487422]
Zhang HQ, Barbosa-Cánovas GV, Balasubramaniam VM, Dunne CP, Farkas DF, Yuan JTC. Nonthermal Processing Technologies for Food 2011.
Cacace JE, Mazza G. Mass transfer process during extraction of phenolic compounds from milled berries. J Food Eng 2003; 59(4): 379-89.
Kulkarni S, Nikolov Z. Process for selective extraction of pigments and functional proteins from Chlorella vulgaris. Algal Res 2018; 35(March): 185-93.
Aliev AM, Abdulagatov IM. The study of microalgae Nannochloropsis salina fatty acid composition of the extracts using different techniques. SCF vs conventional extraction. J Mol Liq 2017; 239: 96-100.
Michalak I, Dmytryk A, Wieczorek PP, et al. Supercritical algal extracts: a source of biologically active compounds from nature. J Chem 2015; 2015597140
Sosa-Hernández JE, Escobedo-Avellaneda Z, Iqbal HMN, Welti-Chanes J. State-of-the-art extraction methodologies for bioactive compounds from algal biome to meet bio-economy challenges and opportunities. Molecules 2018; 23(11)E2953
[http://dx.doi.org/10.3390/molecules23112953] [PMID: 30424551]
Ventura SPM, Nobre BP, Ertekin F, et al. Extraction of value-added compounds from microalgae Microalgae-based biofuels bioprod from feed cultiv to end-products 2017. 461-83
Casas L, Serrano CM, Rodríguez MR, Martinez de la Ossa EJ, Lubian LM. Extraction of carotenoids and fatty acids from microalgae using supercritical technology. Am J Anal Chem 2012; 3: 877-83.
Mendiola JA, García-Martínez D, Rupérez FJ, et al. Enrichment of vitamin E from Spirulina platensis microalga by SFE. J Supercrit Fluids 2008; 43(3): 484-9.
Herrero M, Cifuentes A, Ibañez E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae - A review. Food Chem 2006; 98(1): 136-48.
Herrero M, Sánchez-Camargo A del P, Cifuentes A, Ibáñez E. Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. Trends Analyt Chem 2015; 71: 26-38.
Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta 2003; 356: 328-34.
Halim R, Hosikian A, Lim S, Danquah MK. Chlorophyll extraction from microalgae: A review on the process engineering aspects. Int J Chem Eng 2010; 2010391632
Kalil SJ, Moraes CC, Sala L, Burkert CAV. Bioproduct extraction from microbial cells by conventional and nonconventional techniquesfood bioconversion. Elsevier Inc. 2017; pp. 179-206.
Kim S, Chojnacka K. Marine Algae Extracts. Weinheim: Wiley-VCH 2015.
Kapoore RV, Butler TO, Pandhal J, Vaidyanathan S. Microwaveassisted extraction for microalgae: from biofuels to biorefinery. biology (Basel) 2018; 7(1): 18.
[http://dx.doi.org/10.3390/biology7010018] [PMID: 29462888]
Pasquet V, Chérouvrier JR, Farhat F, et al. Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochem 2011; 46(1): 59-67.
Iqbal J, Theegala C. Microwave assisted lipid extraction from microalgae using biodiesel as co-solvent. Algal Res 2013; 2(1): 34-42.
Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM. Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 2010; 101(1)(Suppl. 1): S75-7.
[http://dx.doi.org/10.1016/j.biortech.2009.03.058] [PMID: 19386486]
Gerde JA, Montalbo-Lomboy M, Yao L, Grewell D, Wang T. Evaluation of microalgae cell disruption by ultrasonic treatment. Bioresour Technol 2012; 125: 175-81.
[http://dx.doi.org/10.1016/j.biortech.2012.08.110] [PMID: 23026331]
Araujo GS, Matos LJBL, Fernandes JO, et al. Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method. Ultrason Sonochem 2013; 20(1): 95-8.
[http://dx.doi.org/10.1016/j.ultsonch.2012.07.027] [PMID: 22938999]
Keris-Sen UD, Sen U, Soydemir G, Gurol MD. An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency. Bioresour Technol 2014; 152: 407-13.
[http://dx.doi.org/10.1016/j.biortech.2013.11.018] [PMID: 24321606]
Neto AMP, Sotana de Souza RA, Leon-Nino AD. Improvement in microalgae lipid extraction using a sonication-assisted method. Renew Energy 2013; 55: 525-31.
Adam F, Abert-Vian M, Peltier G, Chemat F. “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresour Technol 2012; 114: 457-65.
[http://dx.doi.org/10.1016/j.biortech.2012.02.096] [PMID: 22459961]
Dixon C, Wilken LR. Green microalgae biomolecule separations and recovery. Bioresour Bioprocess 2018; 5(1): 14.
Alam A, Sarker ZI, Ghafoor K, Happy RA. Bioactive compounds and extraction techniques.recovering bioactive compounds from agricultural wastes. First edit. John Wiley & Sons Ltd 2017; 33-5.
Sari YW, Bruins ME, Sanders JPM. Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals. Ind Crops Prod 2013; 43: 78-83.
Huo S, Wang Z, Cui F, Zou B, Zhao P, Yuan Z. Enzyme-assisted extraction of oil from wet microalgae scenedesmus sp G4. Energies 2015; 1: 8165-74.
Chaminda Lakmal HH, Samarakoon KW, Jeon YJ. Enzyme-assisted extraction to prepare bioactive peptides from microalgae. Mar Algae Extr Process Prod Appl 2015; 1-2: 305-18.
Rastogi NK, Raghavarao KSMS, Balasubramaniam VM, Niranjan K, Knorr D. Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci Nutr 2007; 47(1): 69-112.
[http://dx.doi.org/10.1080/10408390600626420] [PMID: 17364696]
Daher D, Le Gourrierec S, Pérez-Lamela C. Effect of high pressure processing on the microbial inactivation in fruit preparations and other vegetable based beverages. Agriculture 2017; 7(9): 72.
Clavijo Rivera E, Montalescot V, Viau M, et al. Mechanical cell disruption of Parachlorella kessleri microalgae: Impact on lipid fraction composition. Bioresour Technol 2018; 256: 77-85.
[http://dx.doi.org/10.1016/j.biortech.2018.01.148] [PMID: 29433049]
Safi C, Ursu AV, Laroche C, et al. Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Res 2014; 3(1): 61-5.
Barba FJ, Grimi N, Vorobiev E. New approaches for the use of non-conventional cell disruption technologies to extract potential food additives and nutraceuticals from microalgae. Food Eng Rev 2014; 7(1): 45-62.
Alhattab M, Kermanshahi-Pour A, Brooks MSL. Microalgae disruption techniques for product recovery: influence of cell wall composition. J Appl Phycol 2019; 31(1): 61-88.
Nassef AM, Sayed ET, Rezk H, Abdelkareem MA, Rodriguez C, Olabi AG. Fuzzy-modeling with Particle Swarm Optimization for enhancing the production of biodiesel from Microalga. Energy Sources A Recovery Util Environ Effects 2019; 41(17): 2094-103.
Zhang R, Grimi N, Marchal L, Lebovka N, Vorobiev E. Effect of ultrasonication, high pressure homogenization and their combination on efficiency of extraction of bio-molecules from microalgae Parachlorella kessleri. Algal Res 2019; 40101524
Zhang R, Grimi N, Marchal L, Vorobiev E. Application of high-voltage electrical discharges and high-pressure homogenization for recovery of intracellular compounds from microalgae Parachlorella kessleri. Bioprocess Biosyst Eng 2019; 42(1): 29-36.
[http://dx.doi.org/10.1007/s00449-018-2010-4] [PMID: 30229328]
Tadapaneni RK, Daryaei H, Krishnamurthy K, Edirisinghe I, Burton-Freeman BM. High-pressure processing of berry and other fruit products: implications for bioactive compounds and food safety. J Agric Food Chem 2014; 62(18): 3877-85.
[http://dx.doi.org/10.1021/jf404400q] [PMID: 24601537]
Huang HW, Hsu CP, Yang BB, Wang CY. Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci Technol 2013; 33(1): 54-62.
Torres JA, Velazquez G. Commercial opportunities and research challenges in the high pressure processing of foods. J Food Eng 2005.
Poojary MM, Barba FJ, Aliakbarian B, et al. Innovative alternative technologies to extract carotenoids from microalgae and seaweeds. Mar Drugs 2016; 14(11)E214
[http://dx.doi.org/10.3390/md14110214] [PMID: 27879659]
Corrales M, Toepfl S, Butz P, Knorr D, Tauscher B. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innov Food Sci Emerg Technol 2008; 9(1): 85-91.
Sánchez-Moreno C, Plaza L, De Ancos B, Cano MP. Effect of combined treatments of high-pressure and natural additives on carotenoid extractability and antioxidant activity of tomato puree (Lycopersicum esculentum Mill.). Eur Food Res Technol 2004; 219(2): 151-60.
Jubeau S, Marchal L, Pruvost J, Jaouen P, Legrand J, Fleurence J. High pressure disruption: A two-step treatment for selective extraction of intracellular components from the microalga Porphyridium cruentum. J Appl Phycol 2013; 25(4): 983-9.
Shouqin Z, Ruizhan C, Changzheng W. Experiment study on ultrahigh pressure extraction of Ginsenosides. J Food Eng 2007; 79(1): 1-5.
Joannes C, Sipaut CS, Dayou J. Md.Yasir S, Mansa RF. The Potential of Using Pulsed Electric Field (PEF) technology as the cell disruption method to extract lipid from microalgae for biodiesel production. Int J Renew Energy Res 2015; 5(2): 598-621.
Grimi N, Dubois A, Marchal L, Jubeau S, Lebovka NI, Vorobiev E. Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresour Technol 2014; 153: 254-9.
[http://dx.doi.org/10.1016/j.biortech.2013.12.011] [PMID: 24368274]
Flisar K, Meglic SH, Morelj J, Golob J, Miklavcic D. Testing a prototype pulse generator for a continuous flow system and its use for E. coli inactivation and microalgae lipid extraction. Bioelectrochemistry 2014; 100: 44-51.
[http://dx.doi.org/10.1016/j.bioelechem.2014.03.008] [PMID: 24713586]
’t Lam GP, Postma PR, Fernandes DA, et al. Pulsed Electric Field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans. Algal Res 2017; 24: 181-7.
Goettel M, Eing C, Gusbeth C, Straessner R, Frey W. Pulsed electric field assisted extraction of intracellular valuables from microalgae. Algal Res 2013; 2(4): 401-8.
Eing C, Goettel M, Straessner R, Gusbeth C, Frey W. Pulsed electric field treatment of microalgae - Benefits for microalgae biomass processing. IEEE Trans Plasma Sci 2013; 41(10): 2901-7.
Wang L, Weller CL. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 2006; 17(6): 300-12.
Chojnacka K, Kim S. Introduction of marine algae extractsmarine algae extracts processes, products, and applications. Weinheim: Wiley-VCH 2015; pp. 1-13.
Guiry MD, Guiry G. Algaebase : Listing the World’s Algae AlgaeBase World-wide electronic publication. Galway: National University of Ireland 2019.
Lang I, Hodac L, Friedl T, Feussner I. Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol 2011; 11(1): 124.
[http://dx.doi.org/10.1186/1471-2229-11-124] [PMID: 21896160]
Becker EW. Micro-algae as a source of protein. Biotechnol Adv 2007; 25(2): 207-10.
[http://dx.doi.org/10.1016/j.biotechadv.2006.11.002] [PMID: 17196357]
Mendes RL, Reis AD, Palavra AF. Supercritical CO2 extraction of γ-linolenic acid and other lipids from Arthrospira (Spirulina)maxima: Comparison with organic solvent extraction. Food Chem 2006; 99(1): 57-63.
Cheng CH, Du TB, Pi HC, Jang SM, Lin YH, Lee HT. Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2. Bioresour Technol 2011; 102(21): 10151-3.
[http://dx.doi.org/10.1016/j.biortech.2011.08.064] [PMID: 21917450]
Cheung PCK. Temperature and pressure effects on supercritical carbon dioxide extraction of n-3 fatty acids from red seaweed. Food Chem 1999; 65(3): 399-403.
Mendes RL, Fernandes HL, Coelho JP, et al. Supercritical CO2, extraction of carotenoids and other lipids from Chlorella vulgaris. Elwier Sci 1995; 53: 99-103.
Qiuhui H. Supercritical carbon dioxide extraction of spirulina platensis component and removing the stench. J Agric Food Chem 1999; 47(7): 2705-6.
[http://dx.doi.org/10.1021/jf9812432] [PMID: 10552548]
Kitada K, Machmudah S, Sasaki M, et al. Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. J Chem Technol Biotechnol 2009; 84(5): 657-61.
Macías-Sánchez MD, Mantell C, Rodríguez M, Martínez de la Ossa E, Lubián LM, Montero O. Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta 2009; 77(3): 948-52.
[http://dx.doi.org/10.1016/j.talanta.2008.07.032] [PMID: 19064074]
Axelsson M, Gentili F. A single-step method for rapid extraction of total lipids from green microalgae. PLoS One 2014; 9(2)e89643
[http://dx.doi.org/10.1371/journal.pone.0089643] [PMID: 24586930]
Bermúdez Menéndez JM, Arenillas A, et al. Optimization of microalgae oil extraction under ultrasound and microwave irradiation. J Chem Technol Biotechnol 2014; 89(11): 1779-84.
Martinez-Guerra E, Gude VG, Mondala A, Holmes W, Hernandez R. Extractive-transesterification of algal lipids under microwave irradiation with hexane as solvent. Bioresour Technol 2014; 156: 240-7.
[http://dx.doi.org/10.1016/j.biortech.2014.01.026] [PMID: 24508902]
Wahidin S, Idris A, Shaleh SRM. Rapid biodiesel production using wet microalgae via microwave irradiation. Energy Convers Manage 2014; 84: 227-33.
Salgueiro JL, Cancela Á, Sánchez Á, Maceiras R, Pérez L. Analysis of extraction and transesterification conditions for Phaeodactylum Tricornutum Microalgae. Eur J Sustain Dev 2015; 4(2): 89-96.
King PM. The use of ultrasound on the extraction of microalgal lipids 2014; 276.
Kim YH, Park S, Kim MH, et al. Ultrasound-assisted extraction of lipids from Chlorella vulgaris using. Biomass Bioenergy 2013; 56: 99-103.
Wiyarmo B, Yunus RM, Mel M. Extraction of Algae Oil from Nannocloropsis sp.: A study of soxhlet and ultrasonic-assisted extractions. J Appl Sci 2011; 11(21): 3607-12.
Sierra LS, Dixon CK, Wilken LR. Enzymatic cell disruption of the microalgae Chlamydomonas reinhardtii for lipid and protein extraction. Algal Res 2016; 2017(25): 149-59.
Al-Zuhair S, Ashraf S, Hisaindee S, et al. Enzymatic pre-treatment of microalgae cells for enhanced extraction of proteins. Eng Life Sci 2016; 17(2): 175-85.
Liang K, Zhang Q, Cong W. Enzyme-assisted aqueous extraction of lipid from microalgae. J Agric Food Chem 2012; 60(47): 11771-6.
[http://dx.doi.org/10.1021/jf302836v] [PMID: 23072503]
Balduyck L, Bruneel C, Goiris K, Dejonghe C, Foubert I. Influence of high pressure homogenization on free fatty acid formation in Nannochloropsis sp. Eur J Lipid Sci Technol 2018; 1209401700436
Shene C, Monsalve MT, Vergara D, Lienqueo ME, Rubilar M. High pressure homogenization of Nannochloropsis oculata for the extraction of intracellular components: Effect of process conditions and culture age. Eur J Lipid Sci Technol 2016; 118: 631-39.
Mulchandani K, Kar JR, Singhal RS. Extraction of lipids from chlorella saccharophila using high-pressure homogenization followed by three phase partitioning. Appl Biochem Biotechnol 2015; 176(6): 1613-26.
[http://dx.doi.org/10.1007/s12010-015-1665-4] [PMID: 25969157]
Cho SC, Choi WY, Oh SH, et al. Enhancement of lipid extraction from marine microalga, Scenedesmus associated with high-pressure homogenization process. J Biomed Biotechnol 2012; 2012359432
[http://dx.doi.org/10.1155/2012/359432] [PMID: 22969270]
Grossmann L, Ebert S, Hinrichs J, Weiss J. Formation and stability of emulsions prepared with a water-soluble extract from the microalga Chlorella protothecoides. J Agric Food Chem 2019; 67(23): 6551-8.
[http://dx.doi.org/10.1021/acs.jafc.8b05337] [PMID: 31099556]
Mendez L, Mahdy A, Demuez M, Ballesteros M, González-Fernández C. Effect of high pressure thermal pretreatment on Chlorella vulgaris biomass: Organic matter solubilisation and biochemical methane potential Fuel 2014. 117(Part A): 674-9
Carullo D, Abera BD, Casazza AA, et al. Effect of pulsed electric fields and high pressure homogenization on the aqueous extraction of intracellular compounds from the microalgae Chlorella vulgaris. Algal Res 2018; 31: 60-9.
Wang X, Zhang X. Separation, antitumor activities, and encapsulation of polypeptide from Chlorella pyrenoidosa. Biotechnol Prog 2013; 29(3): 681-7.
[http://dx.doi.org/10.1002/btpr.1725] [PMID: 23606619]
Luengo E, Condón-Abanto S, Álvarez I, Raso J. Effect of pulsed electric field treatments on permeabilization and extraction of pigments from Chlorella vulgaris. J Membr Biol 2014; 247(12): 1269-77.
[http://dx.doi.org/10.1007/s00232-014-9688-2] [PMID: 24880235]
Xie Y, Ho SH, Chen CNN, et al. Disruption of thermo-tolerant Desmodesmus sp. F51 in high pressure homogenization as a prelude to carotenoids extraction. Biochem Eng J 2016; 109: 243-51.
Coustets M, Al-Karablieh N, Thomsen C, Teissié J. Flow process for electroextraction of total proteins from microalgae. J Membr Biol 2013; 246(10): 751-60.
[http://dx.doi.org/10.1007/s00232-013-9542-y] [PMID: 23575984]
Postma PR, Pataro G, Capitoli M, et al. Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field-temperature treatment. Bioresour Technol 2016; 203: 80-8.
[http://dx.doi.org/10.1016/j.biortech.2015.12.012] [PMID: 26722806]
Parniakov O, Barba FJ, Grimi N, Marchal L, Jubeau S, Lebovka N, et al. Pulsed electric field assisted extraction of nutritionally valuable compounds from microalgae Nannochloropsis spp. using the binary mixture of organic solvents and water. Innov Food Sci Emerg Technol 2015; 27: 79-85.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [1929 - 1950]
Pages: 22
DOI: 10.2174/1381612826666200403172206
Price: $65

Article Metrics

PDF: 24