The Association of Sleep Disorders, Obesity and Sleep-Related Hypoxia with Cancer

Author(s): Anna Brzecka, Karolina Sarul, Tomasz Dyła, Marco Avila-Rodriguez, Ricardo Cabezas-Perez, Vladimir N. Chubarev, Nina N. Minyaeva, Sergey G. Klochkov, Margarita E. Neganova, Liudmila M. Mikhaleva, Siva G. Somasundaram, Cecil E. Kirkland, Vadim V. Tarasov, Gjumrakch Aliev*

Journal Name: Current Genomics

Volume 21 , Issue 6 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Sleep disorders have emerged as potential cancer risk factors.

Objective: This review discusses the relationships between sleep, obesity, and breathing disorders with concomitant risks of developing cancer.

Results: Sleep disorders result in abnormal expression of clock genes, decreased immunity, and melatonin release disruption. Therefore, these disorders may contribute to cancer development. Moreover, in sleep breathing disorder, which is frequently experienced by obese persons, the sufferer experiences intermittent hypoxia that may stimulate cancer cell proliferation.

Discussion: During short- or long- duration sleep, sleep-wake rhythm disruption may occur. Insomnia and obstructive sleep apnea increase cancer risks. In short sleepers, an increased risk of stomach cancer, esophageal squamous cell cancer, and breast cancer was observed. Among long sleepers (>9 hours), the risk of some hematologic malignancies is elevated.

Conclusion: Several factors including insomnia, circadian disruption, obesity, and intermittent hypoxia in obstructive sleep apnea are contributing risk factors for increased risk of several types of cancers. However, further studies are needed to determine the more significant of these risk factors and their interactions.

Keywords: Cancer, risk factors, obesity, sleep, sleep apnea, intermittent hypoxia.

[1]
Danaei, G.; Vander Hoorn, S.; Lopez, A.D.; Murray, C.J.; Ezzati, M. Comparative Risk Assessment collaborating group (Cancers). Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet 2005, 366(9499), 1784-1793.
[http://dx.doi.org/10.1016/S0140-6736(05)67725-2] [PMID: 16298215]
[2]
Lewandowska, A.M.; Rudzki, M.; Rudzki, S.; Lewandowski, T.; Laskowska, B. Environmental risk factors for cancer - review paper. Ann. Agric. Environ. Med., 2019, 26(1), 1-7.
[http://dx.doi.org/10.26444/aaem/94299] [PMID: 30922021]
[3]
Murphy, N.; Moreno, V.; Hughes, D.J.; Vodicka, L.; Vodicka, P.; Aglago, E.K.; Gunter, M.J.; Jenab, M. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol. Aspects Med., 2019, 69, 2-9.
[http://dx.doi.org/10.1016/j.mam.2019.06.005]
[4]
Kyrgiou, M.; Kalliala, I.; Markozannes, G.; Gunter, M.J.; Paraskevaidis, E.; Gabra, H.; Martin-Hirsch, P.; Tsilidis, K.K. Adiposity and cancer at major anatomical sites: umbrella review of the literature. BMJ, 2017, 356, j477.
[http://dx.doi.org/10.1136/bmj.j477] [PMID: 28246088]
[5]
Steele, C.B.; Thomas, C.C.; Henley, S.J.; Massetti, G.M.; Galuska, D.A.; Agurs-Collins, T.; Puckett, M.; Richardson, L.C. Vital signs: Trends in incidence of cancers associated with overweight and obesity- United States, 2005-2014. MMWR Morb. Mortal. Wkly. Rep., 2017, 66(39), 1052-1058.
[http://dx.doi.org/10.15585/mmwr.mm6639e1] [PMID: 28981482]
[6]
Arnold, M.; Pandeya, N.; Byrnes, G.; Renehan, P.A.G.; Stevens, G.A.; Ezzati, P.M.; Ferlay, J.; Miranda, J.J.; Romieu, I.; Dikshit, R.; Forman, D.; Soerjomataram, I. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol., 2015, 16(1), 36-46.
[http://dx.doi.org/10.1016/S1470-2045(14)71123-4] [PMID: 25467404]
[7]
Manna, P.; Jain, S.K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab. Syndr. Relat. Disord., 2015, 13(10), 423-444.
[http://dx.doi.org/10.1089/met.2015.0095] [PMID: 26569333]
[8]
Włodarczyk, M.; Nowicka, G. Obesity, DNA damage, and development of obesity-related diseases. Int. J. Mol. Sci., 2019, 20(5), E1146.
[http://dx.doi.org/10.3390/ijms20051146] [PMID: 30845725]
[9]
Di Zazzo, E.; Polito, R.; Bartollino, S.; Nigro, E.; Porcile, C.; Bianco, A.; Daniele, A.; Moncharmont, B. Adiponectin as link factor between adipose tissue and cancer. Int. J. Mol. Sci., 2019, 20(4), 839.
[http://dx.doi.org/10.3390/ijms20040839] [PMID: 30781341]
[10]
Arita, Y.; Kihara, S.; Ouchi, N.; Takahashi, M.; Maeda, K.; Miyagawa, J.; Hotta, K.; Shimomura, I.; Nakamura, T.; Miyaoka, K.; Kuriyama, H.; Nishida, M.; Yamashita, S.; Okubo, K.; Matsubara, K.; Muraguchi, M.; Ohmoto, Y.; Funahashi, T.; Matsuzawa, Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun., 1999, 257(1), 79-83.
[http://dx.doi.org/10.1006/bbrc.1999.0255] [PMID: 10092513]
[11]
Riondino, S.; Roselli, M.; Palmirotta, R.; Della-Morte, D.; Ferroni, P.; Guadagni, F. Obesity and colorectal cancer: role of adipokines in tumor initiation and progression. World J. Gastroenterol., 2014, 20(18), 5177-5190.
[http://dx.doi.org/10.3748/wjg.v20.i18.5177] [PMID: 24833848]
[12]
Yoon, Y.S.; Kwon, A.R.; Lee, Y.K.; Oh, S.W. Circulating adipokines and risk of obesity related cancers: A systematic review and meta-analysis. Obes. Res. Clin. Pract., 2019, 13(4), 329-339.
[http://dx.doi.org/10.1016/j.orcp.2019.03.006] [PMID: 31003933]
[13]
Considine, R.V.; Sinha, M.K.; Heiman, M.L.; Kriauciunas, A.; Stephens, T.W.; Nyce, M.R.; Ohannesian, J.P.; Marco, C.C.; McKee, L.J.; Bauer, T.L.; Caro, J.F. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med., 1996, 334(5), 292-295.
[http://dx.doi.org/10.1056/NEJM199602013340503] [PMID: 8532024]
[14]
Liu, Q.; Sun, Y.; Fei, Z.; Yang, Z.; Duan, K.; Zi, J.; Cui, Q.; Yu, M.; Xiong, W. Leptin promotes fatty acid oxidation and OXPHOS via the c-Myc/PGC-1 pathway in cancer cells. Acta Biochim. Biophys. Sin. (Shanghai), 2019, 51(7), 707-714.
[http://dx.doi.org/10.1093/abbs/gmz058] [PMID: 31187140]
[15]
Modzelewska, P.; Chludzińska, S.; Lewko, J.; Reszeć, J. The influence of leptin on the process of carcinogenesis. Contemp. Oncol. (Pozn.), 2019, 23(2), 63-68.
[http://dx.doi.org/10.5114/wo.2019.85877] [PMID: 31316286]
[16]
Ray, A.; Cleary, M.P. The potential role of leptin in tumor invasion and metastasis. Cytokine Growth Factor Rev., 2017, 38, 80-97.
[http://dx.doi.org/10.1016/j.cytogfr.2017.11.002] [PMID: 29158066]
[17]
Bifulco, M.; Ciaglia, E. Updates on “adiponcosis”: More new incoming evidence strengthening the obesity-cancer link. Eur. J. Intern. Med., 2017, 41, e19-e20.
[http://dx.doi.org/10.1016/j.ejim.2016.12.016] [PMID: 28038825]
[18]
Ogilvie, R.P.; Patel, S.R. The epidemiology of sleep and obesity. Sleep Health, 2017, 3(5), 383-388.
[http://dx.doi.org/10.1016/j.sleh.2017.07.013] [PMID: 28923198]
[19]
Fatima, Y.; Doi, S.A.R.; Al Mamun, A. Sleep problems in adolescence and overweight/obesity in young adults: is there a causal link? Sleep Health, 2018, 4(2), 154-159.
[http://dx.doi.org/10.1016/j.sleh.2018.01.002] [PMID: 29555128]
[20]
Sakamoto, N.; Gozal, D.; Smith, D.L.; Yang, L.; Morimoto, N.; Wada, H.; Maruyama, K.; Ikeda, A.; Suzuki, Y.; Nakayama, M.; Horiguchi, I.; Tanigawa, T. Sleep duration, snoring prevalence, obesity, and behavioral problems in a large cohort of primary school students in Japan. Sleep (Basel), 2017, 40(3), zsw082.
[http://dx.doi.org/10.1093/sleep/zsw082] [PMID: 28364432]
[21]
Ryan, S.; Arnaud, C.; Fitzpatrick, S.F.; Gaucher, J.; Tamisier, R.; Pépin, J-L. Adipose tissue as a key player in obstructive sleep apnoea. Eur. Respir. Rev., 2019, 28(152), 190006.
[http://dx.doi.org/10.1183/16000617.0006-2019] [PMID: 31243096]
[22]
Heinzer, R.; Vat, S.; Marques-Vidal, P.; Marti-Soler, H.; Andries, D.; Tobback, N.; Mooser, V.; Preisig, M.; Malhotra, A.; Waeber, G.; Vollenweider, P.; Tafti, M.; Haba-Rubio, J. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir. Med., 2015, 3(4), 310-318.
[http://dx.doi.org/10.1016/S2213-2600(15)00043-0] [PMID: 25682233]
[23]
Lavie, L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia--revisited--the bad ugly and good: implications to the heart and brain. Sleep Med. Rev., 2015, 20, 27-45.
[http://dx.doi.org/10.1016/j.smrv.2014.07.003] [PMID: 25155182]
[24]
Javaheri, S.; Barbe, F.; Campos-Rodriguez, F.; Dempsey, J.A.; Khayat, R.; Javaheri, S.; Malhotra, A.; Martinez-Garcia, M.A.; Mehra, R.; Pack, A.I.; Polotsky, V.Y.; Redline, S.; Somers, V.K. Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. J. Am. Coll. Cardiol., 2017, 69(7), 841-858.
[http://dx.doi.org/10.1016/j.jacc.2016.11.069] [PMID: 28209226]
[25]
Cowie, M.R. Sleep apnea: state of the art. Trends Cardiovasc. Med., 2017, 27(4), 280-289.
[http://dx.doi.org/10.1016/j.tcm.2016.12.005] [PMID: 28143688]
[26]
Ryan, S. Mechanisms of cardiovascular disease in obstructive sleep apnoea. J. Thorac. Dis., 2018, 10(Suppl. 34), S4201-S4211.
[http://dx.doi.org/10.21037/jtd.2018.08.56] [PMID: 30687536]
[27]
Ding, C.; Lim, L.L.; Xu, L.; Kong, A.P.S. Sleep and obesity. J. Obes. Metab. Syndr., 2018, 27(1), 4-24.
[http://dx.doi.org/10.7570/jomes.2018.27.1.4] [PMID: 31089536]
[28]
Samuelsson, L.B.; Bovbjerg, D.H.; Roecklein, K.A.; Hall, M.H. Sleep and circadian disruption and incident breast cancer risk: An evidence-based and theoretical review. Neurosci. Biobehav. Rev., 2018, 84, 35-48.
[http://dx.doi.org/10.1016/j.neubiorev.2017.10.011] [PMID: 29032088]
[29]
Yang, W.; Shi, Y.; Ke, X.; Sun, H.; Guo, J.; Wang, X. Long-term sleep habits and the risk of breast cancer among Chinese women: a case-control study. Eur. J. Cancer Prev., 2019, 28(4), 323-329.
[http://dx.doi.org/10.1097/CEJ.0000000000000458] [PMID: 30188375]
[30]
Cao, J.; Eshak, E.S.; Liu, K.; Muraki, I.; Cui, R.; Iso, H.; Tamakoshi, A. JACC Study Group Sleep duration and risk of breast cancer: The JACC Study. Breast Cancer Res. Treat., 2019, 174(1), 219-225.
[http://dx.doi.org/10.1007/s10549-018-4995-4] [PMID: 30460465]
[31]
Nelson, B. Dying for a good night of sleep?: Researchers are investigating how poor sleep can increase the risk of cancer or worsen the course of the disease. Cancer Cytopathol., 2019, 127(5), 273-274.
[http://dx.doi.org/10.1002/cncy.22142] [PMID: 31087786]
[32]
Shen, J.; Chrisman, M.; Wu, X.; Chow, W.H.; Zhao, H. Sleep duration and risk of cancer in the Mexican American Mano-a-Mano Cohort. Sleep Health, 2019, 5(1), 78-83.
[http://dx.doi.org/10.1016/j.sleh.2018.09.004] [PMID: 30670171]
[33]
Nayak, M.G.; George, A.; Vidyasagar, M.S.; Mathew, S.; Nayak, S.; Nayak, B.S.; Shashidhara, Y.N.; Kamath, A. Symptoms experienced by cancer patients and barriers to symptom management. Indian J. Palliat. Care, 2015, 21(3), 349-354.
[http://dx.doi.org/10.4103/0973-1075.164893] [PMID: 26600705]
[34]
Akman, T.; Yavuzsen, T.; Sevgen, Z.; Ellidokuz, H.; Yilmaz, A.U. Evaluation of sleep disorders in cancer patients based on Pittsburgh Sleep Quality Index. Eur. J. Cancer Care (Engl.), 2015, 24(4), 553-559.
[http://dx.doi.org/10.1111/ecc.12296] [PMID: 25727241]
[35]
Daroszewski, C.; Stasiewicz, M.; Jaźwińska-Tarnawska, E.; Rachwalik, A.; Mura, E.; Luboch-Kowal, J.; Dryś, A.; Bogucki, Z.A.; Brzecka, A. Quality of life in patients with advanced non-small-cell lung cancer receiving palliative chemotherapy. Adv. Exp. Med. Biol., 2019, 1160, 11-18.
[http://dx.doi.org/10.1007/5584_2019_346] [PMID: 30825114]
[36]
Reinsel, R.A.; Starr, T.D.; O’Sullivan, B.; Passik, S.D.; Kavey, N.B. Polysomnographic study of sleep in survivors of breast cancer. J. Clin. Sleep Med., 2015, 11(12), 1361-1370.
[http://dx.doi.org/10.5664/jcsm.5264] [PMID: 26194735]
[37]
Palesh, O.; Aldridge-Gerry, A.; Zeitzer, J.M.; Koopman, C.; Neri, E.; Giese-Davis, J.; Jo, B.; Kraemer, H.; Nouriani, B.; Spiegel, D. Actigraphy-measured sleep disruption as a predictor of survival among women with advanced breast cancer. Sleep (Basel), 2014, 37(5), 837-842.
[http://dx.doi.org/10.5665/sleep.3642] [PMID: 24790261]
[38]
Garfield, V.; Joshi, R.; Garcia-Hernandez, J.; Tillin, T.; Chaturvedi, N. The relationship between sleep quality and all-cause, CVD and cancer mortality: the Southall and Brent REvisited study (SABRE). Sleep Med., 2019, 60, 230-235.
[http://dx.doi.org/10.1016/j.sleep.2019.03.012] [PMID: 31182326]
[39]
Walker, W.H., II; Borniger, J.C. Molecular mechanisms of cancer-induced sleep disruption. Int. J. Mol. Sci., 2019, 20(11)E2780
[http://dx.doi.org/10.3390/ijms20112780] [PMID: 31174326]
[40]
Besedovsky, L.; Lange, T.; Haack, M. The sleep-immune crosstalk in health and disease. Physiol. Rev., 2019, 99(3), 1325-1380.
[http://dx.doi.org/10.1152/physrev.00010.2018] [PMID: 30920354]
[41]
Shearer, W.T.; Reuben, J.M.; Mullington, J.M.; Price, N.J.; Lee, B.N.; Smith, E.O.; Szuba, M.P.; Van Dongen, H.P.; Dinges, D.F. Soluble TNF-α receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight. J. Allergy Clin. Immunol., 2001, 107(1), 165-170.
[http://dx.doi.org/10.1067/mai.2001.112270] [PMID: 11150007]
[42]
Irwin, M.R.; Wang, M.; Campomayor, C.O.; Collado-Hidalgo, A.; Cole, S. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Arch. Intern. Med., 2006, 166(16), 1756-1762.
[http://dx.doi.org/10.1001/archinte.166.16.1756] [PMID: 16983055]
[43]
Irwin, M.R.; Wang, M.; Ribeiro, D.; Cho, H.J.; Olmstead, R.; Breen, E.C.; Martinez-Maza, O.; Cole, S. Sleep loss activates cellular inflammatory signaling. Biol. Psychiatry, 2008, 64(6), 538-540.
[http://dx.doi.org/10.1016/j.biopsych.2008.05.004] [PMID: 18561896]
[44]
Born, J.; Lange, T.; Hansen, K.; Mölle, M.; Fehm, H.L. Effects of sleep and circadian rhythm on human circulating immune cells. J. Immunol., 1997, 158(9), 4454-4464.
[PMID: 9127011]
[45]
De Lorenzo, B.H.P.; Novaes, E. Brito, R.R.; Paslar Leal, T.; Piqueira Garcia, N.; Martins Dos Santos, R.M.; Alvares-Saraiva, A.M.; Perez Hurtado, E.C.; Braga Dos Reis, T.C.; Duarte Palma, B. Chronic sleep restriction impairs the antitumor immune response in mice. Neuroimmunomodulation, 2018, 25(2), 59-67.
[http://dx.doi.org/10.1159/000490352] [PMID: 30007965]
[46]
Gu, F.; Xiao, Q.; Chu, L.W.; Yu, K.; Matthews, C.E.; Hsing, A.W.; Caporaso, N.E. Sleep duration and cancer in the NIH-AARP diet and health study cohort. PLoS One, 2016, 11(9), e0161561.
[http://dx.doi.org/10.1371/journal.pone.0161561] [PMID: 27611440]
[47]
Chen, P.; Wang, C.; Song, Q.; Chen, T.; Jiang, J.; Zhang, X.; Xu, J.; Cui, J.; Cheng, Y. Impacts of sleep duration and snoring on the risk of esophageal squamous cell carcinoma. J. Cancer, 2019, 10(9), 1968-1974.
[http://dx.doi.org/10.7150/jca.30172] [PMID: 31205556]
[48]
Kakizaki, M.; Kuriyama, S.; Sone, T.; Ohmori-Matsuda, K.; Hozawa, A.; Nakaya, N.; Fukudo, S.; Tsuji, I. Sleep duration and the risk of breast cancer: the Ohsaki Cohort Study. Br. J. Cancer, 2008, 99(9), 1502-1505.
[http://dx.doi.org/10.1038/sj.bjc.6604684] [PMID: 18813313]
[49]
Xiao, Q.; Signorello, L.B.; Brinton, L.A.; Cohen, S.S.; Blot, W.J.; Matthews, C.E. Sleep duration and breast cancer risk among black and white women. Sleep Med., 2016, 20, 25-29.
[http://dx.doi.org/10.1016/j.sleep.2015.11.010] [PMID: 27318222]
[50]
Wang, P.; Ren, F.M.; Lin, Y.; Su, F.X.; Jia, W-H.; Su, X.F.; Tang, L.Y.; Ren, Z.F. Night-shift work, sleep duration, daytime napping, and breast cancer risk. Sleep Med., 2015, 16(4), 462-468.
[http://dx.doi.org/10.1016/j.sleep.2014.11.017] [PMID: 25794454]
[51]
Zhao, H.; Yin, J.Y.; Yang, W.S.; Qin, Q.; Li, T.T.; Shi, Y.; Deng, Q.; Wei, S.; Liu, L.; Wang, X.; Nie, S.F. Sleep duration and cancer risk: a systematic review and meta-analysis of prospective studies. Asian Pac. J. Cancer Prev., 2013, 14(12), 7509-7515.
[http://dx.doi.org/10.7314/APJCP.2013.14.12.7509] [PMID: 24460326]
[52]
Shigesato, M.; Kawai, Y.; Guillermo, C.; Youkhana, F.; Shvetsov, Y.B.; Setiawan, V.W.; Haiman, C.A.; Marchand, L.L.; Maskarinec, G. Association between sleep duration and breast cancer incidence: the multiethnic cohort. Int. J. Cancer, 2019, 146(3), 664-670.
[http://dx.doi.org/10.1002/ijc.32292]]
[53]
Xiao, Q.; Arem, H.; Pfeiffer, R.; Matthews, C. Prediagnosis sleep duration, napping, and mortality among colorectal cancer survivors in a large US cohort. Sleep (Basel), 2017, 40(4), zsx010.
[http://dx.doi.org/10.1093/sleep/zsx010] [PMID: 28329353]
[54]
McNeil, J.; Barberio, A.M.; Friedenreich, C.M.; Brenner, D.R. Sleep and cancer incidence in Alberta’s Tomorrow Project cohort. Sleep (Basel), 2019, 42(3), zsx010.
[http://dx.doi.org/10.1093/sleep/zsy252] [PMID: 30566672]
[55]
Li, Y.; Cai, S.; Ling, Y.; Mi, S.; Fan, C.; Zhong, Y.; Shen, Q. Association between total sleep time and all cancer mortality: non-linear dose-response meta-analysis of cohort studies. Sleep Med., 2019, 60, 211-218.
[http://dx.doi.org/10.1016/j.sleep.2019.03.026] [PMID: 31182327]
[56]
Zhang, S.; Xie, L.; Yu, H.; Zhang, W.; Qian, B. Association between nighttime-daytime sleep patterns and chronic diseases in Chinese elderly population: a community-based cross-sectional study. BMC Geriatr., 2019, 19(1), 124.
[http://dx.doi.org/10.1186/s12877-019-1136-9] [PMID: 31035939]
[57]
Gery, S.; Komatsu, N.; Baldjyan, L.; Yu, A.; Koo, D.; Koeffler, H.P. The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol. Cell, 2006, 22(3), 375-382.
[http://dx.doi.org/10.1016/j.molcel.2006.03.038] [PMID: 16678109]
[58]
Li, H.X. The role of circadian clock genes in tumors. OncoTargets Ther., 2019, 12, 3645-3660.
[http://dx.doi.org/10.2147/OTT.S203144] [PMID: 31190867]
[59]
Yu, C.C.; Chen, L.C.; Chiou, C.Y.; Chang, Y.J.; Lin, V.C.; Huang, C.Y.; Lin, I.L.; Chang, T.Y.; Lu, T.L.; Lee, C.H.; Huang, S.P.; Bao, B.Y. Genetic variants in the circadian rhythm pathway as in-The Association of Sleep Disorders, Obesity and Sleep-Related Hypoxia with Cancer Current Genomics, 2020, Vol. 21, No. 6 451dicators of prostate cancer progression. Cancer Cell Int. 2019, 19, 87.
[http://dx.doi.org/10.1186/s12935-019-0811-4] [PMID: 30996687]
[60]
Qiu, M.; Chen, Y.B.; Jin, S.; Fang, X.F.; He, X.X.; Xiong, Z.F.; Yang, S.L. Research on circadian clock genes in non-small-cell lung carcinoma. Chronobiol. Int., 2019, 36(6), 739-750.
[http://dx.doi.org/10.1080/07420528.2018.1509080] [PMID: 31014124]
[61]
Qiu, M.J.; Liu, L.P.; Jin, S.; Fang, X.F.; He, X.X.; Xiong, Z-F.; Yang, S.L. Research on circadian clock genes in common abdominal malignant tumors. Chronobiol. Int., 2019, 36(7), 906-918.
[http://dx.doi.org/10.1080/07420528.2018.1477792] [PMID: 31014126]
[62]
Amaral, F.G.D.; Cipolla-Neto, J. A brief review about melatonin, a pineal hormone. Arch. Endocrinol. Metab., 2018, 62(4), 472-479.
[http://dx.doi.org/10.20945/2359-3997000000066] [PMID: 30304113]
[63]
Hardeland, R. Aging, melatonin, and the pro- and anti-inflammatory networks. Int. J. Mol. Sci., 2019, 20(5), 1223-E1223.
[64]
Giudice, A.; Crispo, A.; Grimaldi, M.; Polo, A.; Bimonte, S.; Capunzo, M.; Amore, A.; D’Arena, G.; Cerino, P.; Budillon, A.; Botti, G.; Costantini, S.; Montella, M. The effect of light exposure at night (LAN) on carcinogenesis via decreased nocturnal melatonin synthesis. Molecules, 2018, 23(6), E1308.
[http://dx.doi.org/10.3390/molecules23061308] [PMID: 29844288]
[65]
Pourhanifeh, M.H.; Sharifi, M.; Reiter, R.J.; Davoodabadi, A.; Asemi, Z. Melatonin and non-small cell lung cancer: new insights into signaling pathways. Cancer Cell Int., 2019, 19, 131.
[http://dx.doi.org/10.1186/s12935-019-0853-7] [PMID: 31123430]
[66]
Tan, D.X.; Hardeland, R.; Back, K.; Manchester, L.C.; Alatorre-Jimenez, M.A.; Reiter, R.J. On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J. Pineal Res., 2016, 61(1), 27-40.
[http://dx.doi.org/10.1111/jpi.12336] [PMID: 27112772]
[67]
Park, S.Y.; Jang, W.J.; Yi, E.Y.; Jang, J.Y.; Jung, Y.; Jeong, J.W.; Kim, Y.J. Melatonin suppresses tumor angiogenesis by inhibiting HIF-1α stabilization under hypoxia. J. Pineal Res., 2010, 48(2), 178-184.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00742.x] [PMID: 20449875]
[68]
Tamtaji, O.R.; Mirhosseini, N.; Reiter, R.J.; Behnamfar, M.; Asemi, Z. Melatonin and pancreatic cancer: Current knowledge and future perspectives. J. Cell. Physiol., 2019, 234(5), 5372-5378.
[http://dx.doi.org/10.1002/jcp.27372] [PMID: 30229898]
[69]
Veiga, E.C.D.A.; Simões, R.; Valenti, V.E.; Cipolla-Neto, J.; Abreu, L.C.; Barros, E.P.M.; Sorpreso, I.C.E.; Baracat, M.C.P.; Baracat, E.C.; Junior, J. M.S. Repercussions of melatonin on the risk ofbreast cancer: a systematic review and meta-analysis. Rev. Assoc. Med. Bras.(1992), 2019, 65(5), 699-705.
[70]
Pourhanifeh, M.H.; Mahdavinia, M.; Reiter, R.J.; Asemi, Z. Potential use of melatonin in skin cancer treatment: A review of current biological evidence. J. Cell. Physiol., 2019, 234(8), 12142-12148.
[http://dx.doi.org/10.1002/jcp.28129] [PMID: 30618091]
[71]
Zare, H.; Shafabakhsh, R.; Reiter, R.J.; Asemi, Z. Melatonin is a potential inhibitor of ovarian cancer: molecular aspects. J. Ovarian Res., 2019, 12(1), 26.
[http://dx.doi.org/10.1186/s13048-019-0502-8] [PMID: 30914056]
[72]
Chok, K.C.; Ng, C.H.; Koh, R.Y.; Ng, K.Y.; Chye, S.M. The po-tential therapeutic actions of melatonin in colorectal cancer. Horm. Mol. Biol. Clin. Investig., 2019.
[http://dx.doi.org/10.1515/hmbci-2019-0001]
[73]
Reiter, R.J.; Rosales-Corral, S.A.; Tan, D.X.; Acuna-Castroviejo, D.; Qin, L.; Yang, S.F.; Xu, K. Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. Int. J. Mol. Sci., 2017, 18(4), E843.
[http://dx.doi.org/10.3390/ijms18040843] [PMID: 28420185]
[74]
Straif, K.; Baan, R.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Altieri, A.; Benbrahim-Tallaa, L.; Cogliano, V. WHO International Agency For Research on Cancer Monograph Working Group. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 2007, 8(12), 1065-1066.
[http://dx.doi.org/10.1016/S1470-2045(07)70373-X] [PMID: 19271347]
[75]
Stevens, R.G.; Hansen, J.; Costa, G.; Haus, E.; Kauppinen, T.; Aronson, K.J.; Castaño-Vinyals, G.; Davis, S.; Frings-Dresen, M.H.W.; Fritschi, L.; Kogevinas, M.; Kogi, K.; Lie, J.A.; Lowden, A.; Peplonska, B.; Pesch, B.; Pukkala, E.; Schernhammer, E.; Travis, R.C.; Vermeulen, R.; Zheng, T.; Cogliano, V.; Straif, K. Considerations of circadian impact for defining ‘shift work’ in cancer studies. IARC Working Group Report. Occup. Environ. Med., 2011, 68(2), 154-162.
[http://dx.doi.org/10.1136/oem.2009.053512] [PMID: 20962033]
[76]
Erren, T.C.; Lewis, P. Hypothesis: ubiquitous circadian disruption can cause cancer. Eur. J. Epidemiol., 2019, 34(1), 1-4.
[http://dx.doi.org/10.1007/s10654-018-0469-6] [PMID: 30547255]
[77]
Rosa, D.; Terzoni, S.; Dellafiore, F.; Destrebecq, A. Systematic review of shift work and nurses’ health. Occup. Med. (Lond.), 2019, 69(4), 237-243.
[http://dx.doi.org/10.1093/occmed/kqz063] [PMID: 31132107]
[78]
Jones, M.E.; Schoemaker, M.J.; McFadden, E.C.; Wright, L.B.; Johns, L.E.; Swerdlow, A.J. Night shift work and risk of breast cancer in women: the Generations Study cohort. Br. J. Cancer, 2019, 121(2), 172-179.
[http://dx.doi.org/10.1038/s41416-019-0485-7] [PMID: 31138896]
[79]
Leung, L.; Grundy, A.; Siemiatycki, J.; Arseneau, J.; Gilbert, L.; Gotlieb, W.H.; Provencher, D.M.; Aronson, K.J.; Koushik, A. Shift work patterns, chronotype, and epithelial ovarian cancer risk. Cancer Epidemiol. Biomarkers Prev., 2019, 28(5), 987-995.
[http://dx.doi.org/10.1158/1055-9965.EPI-18-1112] [PMID: 30842128]
[80]
Fang, H.F.; Miao, N.F.; Chen, C.D.; Sithole, T.; Chung, M.H. Risk of cancer in patients with insomnia, parasomnia, and obstructive sleep apnea: a nationwide nested case-control study. J. Cancer, 2015, 6(11), 1140-1147.
[http://dx.doi.org/10.7150/jca.12490] [PMID: 26516362]
[81]
Fleming, L.; Randell, K.; Stewart, E.; Espie, C.A.; Morrison, D.S.; Lawless, C.; Paul, J. Insomnia in breast cancer: a prospective observational study. Sleep (Basel), 2019, 42(3)zsy245
[http://dx.doi.org/10.1093/sleep/zsy245] [PMID: 30521041]
[82]
Sen, A.; Opdahl, S.; Strand, L.B.; Vatten, L.J.; Laugsand, L.E.; Janszky, I. Insomnia and the risk of breast cancer. Psychosom. Med., 2017, 79(4), 461-468.
[http://dx.doi.org/10.1097/PSY.0000000000000417] [PMID: 27763987]
[83]
Chiu, H.Y.; Huang, C.J.; Fan, Y.C.; Tsai, P.S. Insomnia but not hypnotics use associates with the risk of breast cancer: a population-based matched cohort study. J. Womens Health (Larchmt.), 2018, 27(10), 1250-1256.
[http://dx.doi.org/10.1089/jwh.2017.6626] [PMID: 29634447]
[84]
Jung, S.J.; Lee, J.; Choi, J.W.; Kim, S.; Shin, A.; Lee, Y.J. Association between sedative-hypnotic medication use and incidence of cancer in Korean Nation Health Insurance Service data. Sleep Med., 2019, 60, 159-164.
[http://dx.doi.org/10.1016/j.sleep.2019.03.018] [PMID: 31186214]
[85]
Lin, C.L.; Liu, T.C.; Wang, Y.N.; Chung, C.H.; Chien, W.C. The association between sleep disorders and the risk of colorectal cancer in patients: a population-based nested case-control study. In Vivo, 2019, 33(2), 573-579.
[http://dx.doi.org/10.21873/invivo.11513] [PMID: 30804144]
[86]
Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; Redline, S.; Strohl, K.P.; Davidson Ward, S.L.; Tangredi, M.M. American Academy of Sleep Medicine; Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. J. Clin. Sleep Med., 2012, 8(5), 597-619.
[http://dx.doi.org/10.5664/jcsm.2172] [PMID: 23066376]
[87]
Ye, L.; Pien, G.W.; Ratcliffe, S.J.; Björnsdottir, E.; Arnardottir, E.S.; Pack, A.I.; Benediktsdottir, B.; Gislason, T. The different clinical faces of obstructive sleep apnoea: a cluster analysis. Eur. Respir. J., 2014, 44(6), 1600-1607.
[http://dx.doi.org/10.1183/09031936.00032314] [PMID: 25186268]
[88]
Lévy, P.; Godin-Ribuot, D.; Pèpin, J-L. Sleep apnoea and cancer: the new challenge. Eur. Respir. J., 2014, 43(6), 1567-1570.
[http://dx.doi.org/10.1183/09031936.00065714] [PMID: 24881059]
[89]
Gozal, D.; Farré, R.; Nieto, F.J. Putative links between sleep apnea and cancer. Chest, 2015, 148(5), 1140-1147.
[http://dx.doi.org/10.1378/chest.15-0634] [PMID: 26020135]
[90]
Gozal, D.; Farré, R.; Nieto, F.J. Obstructive sleep apnea and cancer: Epidemiologic links and theoretical biological constructs. Sleep Med. Rev., 2016, 27, 43-55.
[http://dx.doi.org/10.1016/j.smrv.2015.05.006] [PMID: 26447849]
[91]
Almendros, I.; Gozal, D. Intermittent hypoxia and cancer: Undesirable bed partners? Respir. Physiol. Neurobiol., 2018, 256, 79-86.
[http://dx.doi.org/10.1016/j.resp.2017.08.008] [PMID: 28818483]
[92]
Martinez-Garcia, M.A.; Campos-Rodriguez, F.; Almendros, I.; Garcia-Rio, F.; Sanchez-De-La-Torre, M.; Farre, R.; Gozal, D. Cancer and sleep apnea: Cutaneous melanoma as a case study. Am. J. Respir. Crit. Care Med., 2019, 200(11), 1345-1353.
[http://dx.doi.org/10.1164/rccm.201903-0577PP]]
[93]
Toffoli, S.; Michiels, C. Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J., 2008, 275(12), 2991-3002.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06454.x] [PMID: 18445039]
[94]
Almendros, I.; Montserrat, J.M.; Torres, M.; Bonsignore, M.R.; Chimenti, L.; Navajas, D.; Farré, R. Obesity and intermittent hypoxia increase tumor growth in a mouse model of sleep apnea. Sleep Med., 2012, 13(10), 1254-1260.
[http://dx.doi.org/10.1016/j.sleep.2012.08.012] [PMID: 23149216]
[95]
Almendros, I.; Wang, Y.; Becker, L.; Lennon, F.E.; Zheng, J.; Coats, B.R.; Schoenfelt, K.S.; Carreras, A.; Hakim, F.; Zhang, S.X.; Farré, R.; Gozal, D. Intermittent hypoxia-induced changes in tumor-associated macrophages and tumor malignancy in a mouse model of sleep apnea. Am. J. Respir. Crit. Care Med., 2014, 189(5), 593-601.
[http://dx.doi.org/10.1164/rccm.201310-1830OC] [PMID: 24471484]
[96]
Akbarpour, M.; Khalyfa, A.; Qiao, Z.; Gileles-Hillel, A.; Almendros, I.; Farré, R.; Gozal, D. Altered CD8 T-cell lymphocyte function and TC1 cell stemness contribute to enhanced malignant tumor properties in murine models of sleep apnea. Sleep (Basel), 2017, 40(2), zsw040.
[http://dx.doi.org/10.1093/sleep/zsw040] [PMID: 28364502]
[97]
Almendros, I.; Montserrat, J.M.; Torres, M.; Dalmases, M.; Cabañas, M.L.; Campos-Rodríguez, F.; Navajas, D.; Farré, R. Intermittent hypoxia increases melanoma metastasis to the lung in a mouse model of sleep apnea. Respir. Physiol. Neurobiol., 2013, 186(3), 303-307.
[http://dx.doi.org/10.1016/j.resp.2013.03.001] [PMID: 23499797]
[98]
Yoon, D.W.; So, D.; Min, S.; Kim, J.; Lee, M.; Khalmuratova, R.; Cho, C.H.; Park, J.W.; Shin, H.W. Accelerated tumor growth under intermittent hypoxia is associated with hypoxia-inducible factor-1-dependent adaptive responses to hypoxia. Oncotarget, 2017, 8(37), 61592-61603.
[http://dx.doi.org/10.18632/oncotarget.18644] [PMID: 28977888]
[99]
Martinez-Garcia, M.A.; Campos-Rodriguez, F.; Nagore, E.; Martorell, A.; Rodriguez-Peralto, J.L.; Riveiro-Falkenbach, E.; Hernandez, L.; Bañuls, J.; Arias, E.; Ortiz, P.; Cabriada, V.; Gardeazabal, J.; Montserrat, J.M.; Carrera, C.; Corral, J.; Masa, J.F.; de Terreros, J.G.; Abad, J.; Boada, A.; Mediano, O.; de Eusebio, E.; Chiner, E.; Landete, P.; Mayos, M.; Fortuño, A.; Barbé, F.; Sánchez de la Torre, M.; Sanchez de la Torre, A.; Cano, I.; Gonzalez, C.; Pérez-Gil, A.; Gómez-García, T.; Cullen, D.; Somoza, M.; Formigón, M.; Aizpuru, F.; Navarro, C.; Selma-Ferrer, M.J.; Garcia-Ortega, A.; de Unamuno, B.; Almendros, I.; Farré, R.; Gozal, D. Spanish Sleep Network. Sleep-disordered breathing is independently associated with increased aggressiveness of cutaneous melanoma: a multicenter observational study in 443 patients. Chest, 2018, 154(6), 1348-1358.
[http://dx.doi.org/10.1016/j.chest.2018.07.015] [PMID: 30059679]
[100]
Huang, M.H.; Zhang, X.B.; Wang, H.L.; Li, L.X.; Zeng, Y.M.; Wang, M.; Zeng, H.Q. Intermittent hypoxia enhances the tumor programmed death ligand 1 expression in a mouse model of sleep apnea. Ann. Transl. Med., 2019, 7(5), 97.
[http://dx.doi.org/10.21037/atm.2019.01.44] [PMID: 31019947]
[101]
Cubillos-Zapata, C.; Balbás-García, C.; Avendaño-Ortiz, J.; Toledano, V.; Torres, M.; Almendros, I.; Casitas, R.; Zamarrón, E.; García-Sánchez, A.; Feliu, J.; Aguirre, L.A.; Farre, R.; López-Collazo, E.; García-Rio, F. Age-dependent hypoxia-induced PD-L1 upregulation in patients with obstructive sleep apnoea. Respirology, 2019, 24(7), 684-692.
[http://dx.doi.org/10.1111/resp.13470] [PMID: 30656807]
[102]
Cubillos-Zapata, C.; Avendaño-Ortiz, J.; Hernandez-Jimenez, E.; Toledano, V.; Casas-Martin, J.; Varela-Serrano, A.; Torres, M.; Almendros, I.; Casitas, R.; Fernández-Navarro, I.; Garcia-Sanchez, A.; Aguirre, L.A.; Farre, R.; López-Collazo, E.; García-Rio, F. Hypoxia-induced PD-L1/PD-1 crosstalk impairs T-cell function in sleep apnoea. Eur. Respir. J., 2017, 50(4), 1700833.
[http://dx.doi.org/10.1183/13993003.00833-2017] [PMID: 29051270]
[103]
Fu, C.; Jiang, L.; Zhu, F.; Liu, Z.; Li, W.; Jiang, H.; Ye, H.; Kushida, C.A.; Li, S. Chronic intermittent hypoxia leads to insulin resistance and impaired glucose tolerance through dysregulation of adipokines in non-obese rats. Sleep Breath., 2015, 19(4), 1467-1473.
[http://dx.doi.org/10.1007/s11325-015-1144-8] [PMID: 25724554]
[104]
He, Q.; Yang, Q.C.; Zhou, Q.; Zhu, H.; Niu, W.Y.; Feng, J.; Wang, Y.; Cao, J.; Chen, B.Y. Effects of varying degrees of intermittent hypoxia on proinflammatory cytokines and adipokines in rats and 3T3-L1 adipocytes. PLoS One, 2014, 9(1), e86326.
[http://dx.doi.org/10.1371/journal.pone.0086326] [PMID: 24466027]
[105]
Amin, M.N.; Hussain, M.S.; Sarwar, M.S.; Rahman Moghal, M.M.; Das, A.; Hossain, M.Z.; Chowdhury, J.A.; Millat, M.S.; Islam, M.S. How the association between obesity and inflammation may lead to insulin resistance and cancer. Diabetes Metab. Syndr., 2019, 13(2), 1213-1224.
[http://dx.doi.org/10.1016/j.dsx.2019.01.041] [PMID: 31336467]
[106]
Tumminia, A.; Vinciguerra, F.; Parisi, M.; Graziano, M.; Sciacca, L.; Baratta, R.; Frittitta, L. Adipose tissue, obesity and adiponectin: role in endocrine cancer risk. Int. J. Mol. Sci., 2019, 20(12), E2863.
[http://dx.doi.org/10.3390/ijms20122863] [PMID: 31212761]
[107]
Hargens, T.A.; Guill, S.G.; Kaleth, A.S.; Nickols-Richardson, S.M.; Miller, L.E.; Zedalis, D.; Gregg, J.M.; Gwazdauskas, F.; Herbert, W.G. Insulin resistance and adipose-derived hormones in young men with untreated obstructive sleep apnea. Sleep Breath., 2013, 17(1), 403-409.
[http://dx.doi.org/10.1007/s11325-012-0708-0] [PMID: 22528956]
[108]
Al Mutairi, S.; Mojiminiyi, O.A.; Al Alawi, A.; Al Rammah, T.; Abdella, N. Study of leptin and adiponectin as disease markers in subjects with obstructive sleep apnea. Dis. Markers, 2014, 2014, 706314.
[http://dx.doi.org/10.1155/2014/706314] [PMID: 24982545]
[109]
Wolk, R.; Svatikova, A.; Nelson, C.A.; Gami, A.S.; Govender, K.; Winnicki, M.; Somers, V.K. Plasma levels of adiponectin, a novel adipocyte-derived hormone, in sleep apnea. Obes. Res., 2005, 13(1), 186-190.
[http://dx.doi.org/10.1038/oby.2005.24] [PMID: 15761179]
[110]
Almendros, I.; Khalyfa, A.; Trzepizur, W.; Gileles-Hillel, A.; Huang, L.; Akbarpour, M.; Andrade, J.; Farré, R.; Gozal, D. Tumor cell malignant properties are enhanced by circulating exosomes in sleep apnea. Chest, 2016, 150(5), 1030-1041.
[http://dx.doi.org/10.1016/j.chest.2016.08.1438] [PMID: 27568581]
[111]
Khalyfa, A.; Almendros, I.; Gileles-Hillel, A.; Akbarpour, M.; Trzepizur, W.; Mokhlesi, B.; Huang, L.; Andrade, J.; Farré, R.; Gozal, D. Circulating exosomes potentiate tumor malignant properties in a mouse model of chronic sleep fragmentation. Oncotarget, 2016, 7(34), 54676-54690.
[http://dx.doi.org/10.18632/oncotarget.10578] [PMID: 27419627]
[112]
Bikov, A.; Kunos, L.; Pállinger, É.; Lázár, Z.; Kis, A.; Horváth, G.; Losonczy, G.; Komlósi, Z.I. Diurnal variation of circulating microvesicles is associated with the severity of obstructive sleep apnoea. Sleep Breath., 2017, 21(3), 595-600.
[http://dx.doi.org/10.1007/s11325-017-1464-y] [PMID: 28130736]
[113]
Khalyfa, A.; Gozal, D.; Masa, J.F.; Marin, J.M.; Qiao, Z.; Corral, J.; González, M.; Marti, S.; Kheirandish-Gozal, L.; Egea, C.; Sánchez-Quiroga, M.Á.; de Terreros, F.J.G.; Barca, F.J. Sleep-disordered breathing, circulating exosomes, and insulin sensitivity in adipocytes. Int. J. Obes., 2018, 42(6), 1127-1139.
[http://dx.doi.org/10.1038/s41366-018-0099-9] [PMID: 29892042]
[114]
Tarasov, V.V.; Svistunov, A.A.; Chubarev, V.N.; Dostdar, S.A.; Sokolov, A.V.; Brzecka, A.; Sukocheva, O.; Neganova, M.E.; Klochkov, S.G.; Somasundaram, S.G.; Kirkland, C.E.; Aliev, G. Extracellular vesicles in cancer nanomedicine. Semin. Cancer Biol., 2019. S1044-579X(19), 30179-8.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.017]
[115]
Vagner, T.; Chin, A.; Mariscal, J.; Bannykh, S.; Engman, D.M.; Di Vizio, D. Protein composition reflects extracellular vesicle heterogeneity. Proteomics, 2019, 19(8), e1800167.
[http://dx.doi.org/10.1002/pmic.201800167] [PMID: 30793499]
[116]
Abramowicz, A.; Widłak, P.; Pietrowska, M. Different types of cellular stress affect the proteome composition of small extracellular vesicles: a mini review. Proteomes, 2019, 7(2), E23.
[http://dx.doi.org/10.3390/proteomes7020023] [PMID: 31126168]
[117]
Zhang, H.; Yang, F.; Guo, Y.; Wang, L.; Fang, F.; Wu, H.; Nie, S.; Wang, Y.; Fung, M.L.; Huang, Y.; Deng, H.; Qin, Y.; Ma, X.; Wei, Y. The contribution of chronic intermittent hypoxia to OSAHS: From the perspective of serum extracellular microvesicle proteins. Metabolism, 2018, 85, 97-108.
[http://dx.doi.org/10.1016/j.metabol.2018.02.012] [PMID: 29522771]
[118]
Nieto, F.J.; Peppard, P.E.; Young, T.; Finn, L.; Hla, K.M.; Farré, R. Sleep-disordered breathing and cancer mortality: results from the Wisconsin Sleep Cohort Study. Am. J. Respir. Crit. Care Med., 2012, 186(2), 190-194.
[http://dx.doi.org/10.1164/rccm.201201-0130OC] [PMID: 22610391]
[119]
Marshall, N.S.; Wong, K.K.; Cullen, S.R.; Knuiman, M.W.; Grunstein, R.R. Sleep apnea and 20-year follow-up for all-cause mortality, stroke, and cancer incidence and mortality in the Busselton Health Study cohort. J. Clin. Sleep Med., 2014, 10(4), 355-362.
[http://dx.doi.org/10.5664/jcsm.3600] [PMID: 24733978]
[120]
Martínez-García, M.A.; Campos-Rodriguez, F.; Durán-Cantolla, J.; de la Peña, M.; Masdeu, M.J.; González, M.; Del Campo, F.; Serra, P.C.; Valero-Sánchez, I.; Ferrer, M.J.; Marín, J.M.; Barbé, F.; Martínez, M.; Farré, R.; Montserrat, J.M. Spanish Sleep Network. Obstructive sleep apnea is associated with cancer mortality in younger patients. Sleep Med., 2014, 15(7), 742-748.
[http://dx.doi.org/10.1016/j.sleep.2014.01.020] [PMID: 24907033]
[121]
Gozal, D.; Ham, S.A.; Mokhlesi, B. Sleep apnea and cancer: Analysis of a nationwide population sample. Sleep (Basel), 2016, 39(8), 1493-1500.
[http://dx.doi.org/10.5665/sleep.6004] [PMID: 27166241]
[122]
Campos-Rodriguez, F.; Martinez-Garcia, M.A.; Martinez, M.; Duran-Cantolla, J. Peña, Mde.L.; Masdeu, M.J.; Gonzalez, M.; Campo, Fd.; Gallego, I.; Marin, J.M.; Barbe, F.; Montserrat, J.M.; Farre, R. Spanish Sleep Network. Association between obstructive sleep apnea and cancer incidence in a large multicenter Spanish cohort. Am. J. Respir. Crit. Care Med., 2013, 187(1), 99-105.
[http://dx.doi.org/10.1164/rccm.201209-1671OC] [PMID: 23155146]
[123]
Chen, J.C.; Hwang, J.H. Sleep apnea increased incidence of primary central nervous system cancers: a nationwide cohort study. Sleep Med., 2014, 15(7), 749-754.
[http://dx.doi.org/10.1016/j.sleep.2013.11.782] [PMID: 24891080]
[124]
Chang, W.P.; Liu, M.E.; Chang, W.C.; Yang, A.C.; Ku, Y.C.; Pai, J.T.; Lin, Y.W.; Tsai, S.J. Sleep apnea and the subsequent risk of breast cancer in women: a nationwide population-based cohort study. Sleep Med., 2014, 15(9), 1016-1020.
[http://dx.doi.org/10.1016/j.sleep.2014.05.026] [PMID: 25085620]
[125]
Christensen, A.S.; Clark, A.; Salo, P.; Nymann, P.; Lange, P.; Prescott, E.; Rod, N.H. Symptoms of sleep disordered breathing and risk of cancer: a prospective cohort study. Sleep (Basel), 2013, 36(10), 1429-1435.
[http://dx.doi.org/10.5665/sleep.3030] [PMID: 24082302]
[126]
Dreher, M.; Krüger, S.; Schulze-Olden, S.; Keszei, A.; Storre, J.H.; Woehrle, H.; Arzt, M.; Müller, T. Sleep-disordered breathing in patients with newly diagnosed lung cancer. BMC Pulm. Med., 2018, 18(1), 72.
[http://dx.doi.org/10.1186/s12890-018-0645-1] [PMID: 29769049]
[127]
Pérez-Warnisher, M.T.; Cabezas, E.; Troncoso, M.F.; Gómez, T.; Melchor, R.; Pinillos, E.J.; El Hachem, A.; Gotera, C.; Rodriguez, P.; Mahíllo, I.; González-Mangado, N.; Peces-Barba, G.; Seijo, L.M. Sleep disordered breathing and nocturnal hypoxemia are very prevalent in a lung cancer screening population and may condition lung cancer screening findings: results of the prospective Sleep Apnea In Lung Cancer Screening (SAILS) study. Sleep Med., 2019, 54, 181-186.
[http://dx.doi.org/10.1016/j.sleep.2018.10.020] [PMID: 30580192]
[128]
Cabezas, E.; Pérez-Warnisher, M.T.; Troncoso, M.F.; Gómez, T.; Melchor, R.; Pinillos, E.J.; El Hachem, A.; Gotera, C.; Rodríguez, P.; Mahillo Fernández, I.; Martínez-García, M.Á.; Peces-Barba, G.; Seijo, L.M.; Seijo, L.M. González-Mangado. Sleep disordered breathing is highly prevalent in patients with lung cancer: results of the sleep apnea in lung cancer study. Respiration, 2019, 97(2), 119-124.
[http://dx.doi.org/10.1159/000492273] [PMID: 30261487]
[129]
Lee, S.; Kim, B.G.; Kim, J.W.; Lee, K.L.; Koo, D.L.; Nam, H.; Im, J.P.; Kim, J.S.; Koh, S.J. Obstructive sleep apnea is associated with an increased risk of colorectal neoplasia. Gastrointest. Endosc., 2017, 85(3), 568-573.e1.
[http://dx.doi.org/10.1016/j.gie.2016.07.061] [PMID: 27506392]
[130]
Palamaner Subash Shantha, G.; Kumar, A.A.; Cheskin, L.J.; Pancholy, S.B. Association between sleep-disordered breathing, obstructive sleep apnea, and cancer incidence: a systematic review and meta-analysis. Sleep Med., 2015, 16(10), 1289-1294.
[http://dx.doi.org/10.1016/j.sleep.2015.04.014] [PMID: 26212231]
[131]
Kendzerska, T.; Leung, R.S.; Hawker, G.; Tomlinson, G.; Gershon, A.S. Obstructive sleep apnea and the prevalence and incidence of cancer. CMAJ, 2014, 186(13), 985-992.
[http://dx.doi.org/10.1503/cmaj.140238] [PMID: 25096668]
[132]
Sillah, A.; Watson, N.F.; Gozal, D.; Phipps, A.I. Obstructive sleep apnea severity and subsequent risk for cancer incidence. Prev. Med. Rep., 2019, 15, 100886.
[http://dx.doi.org/10.1016/j.pmedr.2019.100886] [PMID: 31193286]
[133]
Brzecka, A.; Leszek, J.; Ashraf, G.M.; Ejma, M.; Ávila-Rodriguez, M.F.; Yarla, N.S.; Tarasov, V.V.; Chubarev, V.N.; Samsonova, A.N.; Barreto, G.E.; Aliev, G. Sleep disorders associated with alzheimer’s disease: a perspective. Front. Neurosci., 2018, 12, 330.
[http://dx.doi.org/10.3389/fnins.2018.00330 ] [PMID: 29904334]
[134]
Okereke, O.I.; Meadows, M.E. More evidence of an inverse association between cancer and alzheimer disease. JAMA Netw. Open, 2019, 2(6), e196167.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.6167] [PMID: 31225887]
[135]
Ställberg, B.; Janson, C.; Johansson, G.; Larsson, K.; Stratelis, G.; Telg, G.; Lisspers, K.H. Management, morbidity and mortality of COPD during an 11-year period: an observational retrospective epidemiological register study in Sweden (PATHOS). Prim. Care Respir. J., 2014, 23(1), 38-45.
[http://dx.doi.org/10.4104/pcrj.2013.00106] [PMID: 24346825]
[136]
Eapen, M.S.; Hansbro, P.M.; Larsson-Callerfelt, A.K.; Jolly, M.K.; Myers, S.; Sharma, P.; Jones, B.; Rahman, M.A.; Markos, J.; Chia, C.; Larby, J.; Haug, G.; Hardikar, A.; Weber, H.C.; Mabeza, G.; Cavalheri, V.; Khor, Y.H.; McDonald, C.F.; Sohal, S.S. Chronic obstructive pulmonary disease and lung cancer: underlying pathophysiology and new therapeutic modalities. Drugs, 2018, 78(16), 1717-1740.
[http://dx.doi.org/10.1007/s40265-018-1001-8] [PMID: 30392114]
[137]
Greulich, T.; Weist, B.J.D.; Koczulla, A.R.; Janciauskiene, S.; Klemmer, A.; Lux, W.; Alter, P.; Vogelmeier, C.F. Prevalence of comorbidities in COPD patients by disease severity in a German population. Respir. Med., 2017, 132, 132-138.
[http://dx.doi.org/10.1016/j.rmed.2017.10.007] [PMID: 29229085]
[138]
Husebø, G.R.; Nielsen, R.; Hardie, J.; Bakke, P.S.; Lerner, L.; D’Alessandro-Gabazza, C.; Gyuris, J.; Gabazza, E.; Aukrust, P.; Eagan, T. Risk factors for lung cancer in COPD - results from the Bergen COPD cohort study. Respir. Med., 2019, 152, 81-88.
[http://dx.doi.org/10.1016/j.rmed.2019.04.019] [PMID: 31128615]
[139]
Raveendran, R.; Wong, J.; Singh, M.; Wong, D.T.; Chung, F. Obesity hypoventilation syndrome, sleep apnea, overlap syndrome: perioperative management to prevent complications. Curr. Opin. Anaesthesiol., 2017, 30(1), 146-155.
[PMID: 27792079]
[140]
Pissulin, F.D.M.; Pacagnelli, F.L.; Aldá, M.A.; Beneti, R.; Barros, J.L.; Minamoto, S.T.; Weber, S.A.T. The triad of obstructive sleep apnea syndrome, COPD, and obesity: sensitivity of sleep scales and respiratory questionnaires. J. Bras. Pneumol., 2018, 44(3), 202-206.
[http://dx.doi.org/10.1590/s1806-37562016000000308] [PMID: 30043886]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 6
Year: 2020
Published on: 15 September, 2020
Page: [444 - 453]
Pages: 10
DOI: 10.2174/1389202921999200403151720
Price: $65

Article Metrics

PDF: 14
HTML: 1