Recent Studies on HDAC Inhibitors Acting against Prostate Cancer

Author(s): Basheerulla Shaik*, Tabassum Zafar, Satya P. Gupta.

Journal Name: Current Enzyme Inhibition

Volume 16 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Prostate cancer is one of the prominent death cause in males with alarming rates of inclusion of new cases each year. There are many new classes of anti-tumor agents already investigated that modulate the epigenetic or non-epigenetic mechanisms such as cell cycle arrest, apoptosis, cell death within cancer cells. Histone deacetylase (HDAC) inhibitors are one of them. In recent times, the use of HADC inhibitors are approved as a clinical molecule to treat a group of malignancies. Vorinostat and depsipeptide are two new HDAC inhibitors that are approved by the Food and Drug Administration. The present review is an effort to summarize the recent findings related to HDAC inhibitors against prostate cancer along with their molecular mechanism and biological mode of actions behind the anticancer efficacy.

Keywords: Classification, histone deacetylase, prostate cancer, recent advances, mammalian cells, DNA.

[1]
Ramakrishnan, A.V. Histone Structure and the organization of the nucleosome. J. Biophys. Biomol. Struct., 1997, 26, 83-112.
[http://dx.doi.org/10.1146/annurev.biophys.26.1.83] [PMID: 9241414]
[2]
Sengupta, N.; Seto, E. Regulation of histone deacetylase activities. J. Cell. Biochem., 2004, 93(1), 57-67.
[http://dx.doi.org/10.1002/jcb.20179] [PMID: 15352162]
[3]
Chung, P.J.; Kim, Y.S.; Park, S.H.; Nahm, B.H.; Kim, J.K. Subcellular localization of rice histone deacetylases in organelles. FEBS Letts., 2009, 583(83), 2249-2254.
[http://dx.doi.org/10.1016/j.febslet.2009.06.003] [PMID: 19505461]
[4]
Robyr, D.; Suka, Y.; Xenarios, I.; Kurdistani, S.K.; Wang, A.; Suka, N.; Grunstein, M. Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell, 2002, 109(4), 437-446.
[http://dx.doi.org/10.1016/S0092-8674(02)00746-8] [PMID: 12086601]
[5]
Somoza, J.R.; Skene, R.J.; Katz, B.A.; Mol, C.; Ho, J.D.; Jennings, A.J.; Luong, C.; Arvai, A.; Buggy, J.J.; Chi, E.; Tang, J.; Sang, B.C.; Verner, E.; Wynands, R.; Leahy, E.M.; Dougan, D.R.; Snell, G.; Navre, M.; Knuth, M.W.; Swanson, R.V.; McRee, D.E.; Tari, L.W. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases., 2004, 7, 1325-1334.
[http://dx.doi.org/10.1016/j.str.2004.04.012]
[6]
Hideshima, T.; Richardson, P.G.; Anderson, K. C. Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma, 2011, 10, 2034-2404.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0433]
[7]
Lu, H.; Chen, Y.D.; Yang, B.; You, Q.D. Design, synthesis and biological evaluation of novel histone deacetylase inhibitors based on virtual screening. Acta Pharm. Sin. B, 2011, 4, 240-247.
[http://dx.doi.org/10.1016/j.apsb.2011.10.002]
[8]
Fritah, S.; Col, E.; Boyault, C.; Govin, J.; Sadoul, K.; Chiocca, S.; Christians, E.; Khochbin, S.; Jolly, C.; Vourc’h, C. Heat-shock factor 1 controls genome-wide acetylation in heat-shocked cells. Mol. Biol. Cell, 2009, 20(23), 4976-4984.
[http://dx.doi.org/10.1091/mbc.e09-04-0295] [PMID: 19793920]
[9]
Bolden, J.E.; Peart, M.J.; Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov., 2006, 5(9), 769-784.
[http://dx.doi.org/10.1038/nrd2133] [PMID: 16955068]
[10]
Peng, L.; Seto, E. Deacetylation of nonhistone proteins by HDACs and the implications in cancer. Handb. Exp. Pharmacol., 2011, 206, 39-56.
[http://dx.doi.org/10.1007/978-3-642-21631-2_3] [PMID: 21879445]
[11]
Singh, B.N.; Zhang, G.; Hwa, Y.L.; Li, J.; Dowdy, S.C.; Jiang, S.W. Nonhistone protein acetylation as cancer therapy targets. Expert Rev. Anticancer Ther., 2010, 10(6), 935-954.
[http://dx.doi.org/10.1586/era.10.62] [PMID: 20553216]
[12]
Kim, H.J.; Bae, S.C. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am. J. Transl. Res., 2011, 3(2), 166-179.
[PMID: 21416059]
[13]
Mottamal, M.; Zheng, S.; Huang, T.L.; Wang, G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 2015, 20(3), 3898-3941.
[http://dx.doi.org/10.3390/molecules20033898] [PMID: 25738536]
[14]
Mann, B.S.; Johnson, J.R.; Cohen, M.H.; Justice, R.; Pazdur, R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist, 2007, 12(10), 1247-1252.
[http://dx.doi.org/10.1634/theoncologist.12-10-1247] [PMID: 17962618]
[15]
Piekarz, R.L.; Frye, R.; Turner, M.; Wright, J.J.; Allen, S.L.; Kirschbaum, M.H.; Zain, J.; Prince, H.M.; Leonard, J.P.; Geskin, L.J.; Reeder, C.; Joske, D.; Figg, W.D.; Gardner, E.R.; Steinberg, S.M.; Jaffe, E.S.; Stetler-Stevenson, M.; Lade, S.; Fojo, A.T.; Bates, S.E. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J. Clin. Oncol., 2009, 27(32), 5410-5417.
[http://dx.doi.org/10.1200/JCO.2008.21.6150] [PMID: 19826128]
[16]
Whittaker, S.J.; Demierre, M.F.; Kim, E.J.; Rook, A.H.; Lerner, A.; Duvic, M.; Scarisbrick, J.; Reddy, S.; Robak, T.; Becker, J.C.; Samtsov, A.; McCulloch, W.; Kim, Y.H. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J. Clin. Oncol., 2010, 28(29), 4485-4491.
[http://dx.doi.org/10.1200/JCO.2010.28.9066] [PMID: 20697094]
[17]
Pohlman, B.; Advani, R.; Duvic, M.; Hymes, K.B.; Intragumtornchai, T.; Lekhakula, A.; Shpilberg, O.; Lerner, A.; Ben-Yehuda, D.; Hillen, U. Final results of a phase II trial of belinostat (PXD101) in patients with recurrent or refractory peripheral or cutaneous t-cell lymphoma. Proceedings of the 51st ASH Ann. Meet. and Expo., , pp. 5-8.2009
[http://dx.doi.org/10.1182/blood.V114.22.920.920]
[18]
Ueda, H.; Nakajima, H.; Hori, Y.; Fujita, T.; Nishimura, M.; Goto, T.; Okuhara, M. FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. I. Taxonomy, fermentation, isolation, physico-chemical and biological properties, and antitumor activity. J. Antibiot. (Tokyo), 1994, 47(3), 301-310.
[http://dx.doi.org/10.7164/antibiotics.47.301] [PMID: 7513682]
[19]
FDA approves Beleodaq to treat rare, aggressive form of non- Hodgkin lympoma. Available at:. http://www.fda.gov/ [Accessed on: 10 September 2014];
[20]
Dokmanovic, M.; Marks, P.A. Prospects: histone deacetylase inhibitors. J. Cell. Biochem., 2005, 96(2), 293-304.
[http://dx.doi.org/10.1002/jcb.20532] [PMID: 16088937]
[21]
Kelly, W.K.; O’Connor, O.A.; Krug, L.M.; Chiao, J.H.; Heaney, M.; Curley, T.; MacGregore-Cortelli, B.; Tong, W.; Secrist, J.P.; Schwartz, L.; Richardson, S.; Chu, E.; Olgac, S.; Marks, P.A.; Scher, H.; Richon, V.M. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J. Clin. Oncol., 2005, 23(17), 3923-3931.
[http://dx.doi.org/10.1200/JCO.2005.14.167] [PMID: 15897550]
[22]
O’Connor, O.A.; Heaney, M.L.; Schwartz, L.; Richardson, S.; Willim, R.; MacGregor-Cortelli, B.; Curly, T.; Moskowitz, C.; Portlock, C.; Horwitz, S.; Zelenetz, A.D.; Frankel, S.; Richon, V.; Marks, P.; Kelly, W.K. Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J. Clin. Oncol., 2006, 24(1), 166-173.
[http://dx.doi.org/10.1200/JCO.2005.01.9679] [PMID: 16330674]
[23]
Kelly, W.K.; Richon, V.M.; O’Connor, O.; Curley, T.; MacGregor-Curtelli, B.; Tong, W.; Klang, M.; Schwartz, L.; Richardson, S.; Rosa, E.; Drobnjak, M.; Cordon-Cordo, C.; Chiao, J.H.; Rifkind, R.; Marks, P.A.; Scher, H. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin. Cancer Res., 2003, 9(10 Pt 1), 3578-3588.
[PMID: 14506144]
[24]
Duvic, M.; Talpur, R.; Ni, X.; Zhang, C.; Hazarika, P.; Kelly, C.; Chiao, J.H.; Reilly, J.F.; Ricker, J.L.; Richon, V.M.; Frankel, S.R. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood, 2007, 109(1), 31-39.
[http://dx.doi.org/10.1182/blood-2006-06-025999] [PMID: 16960145]
[25]
Rajak, H.; Singh, A.; Raghuwanshi, K.; Kumar, R.; Dewangan, P.K.; Veerasamy, R.; Sharma, P.C.; Dixit, A.; Mishra, P. A structural insight into hydroxamic acid based histone deacetylase inhibitors for the presence of anticancer activity. Curr. Med. Chem., 2014, 21(23), 2642-2664.
[http://dx.doi.org/10.2174/09298673113209990191] [PMID: 23895688]
[26]
Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(1), 9-29.
[http://dx.doi.org/10.3322/caac.21208] [PMID: 24399786]
[27]
Sato, S.; Katsushima, K.; Shinjo, K.; Hatanaka, A.; Ohka, F.; Suzuki, S.; Naiki-Ito, A.; Soga, N.; Takahashi, S.; Kondo, Y. Katsushima1, K.; Shinjo, K.; Hatanaka, A.; Ohka, F.; Suzuki, S.; Naiki-Ito, A.; Soga, N.; Takahashi, S.; Kondo, Y. Histone deacetylase inhibition in prostate cancer triggers miR-320-mediated suppression of the androgen receptor. Cancer Res., 2016, 76(14), 4192-4204.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3339] [PMID: 27216188]
[28]
Shindoh, N.; Mori, M.; Terada, Y.; Oda, K.; Amino, N.; Kita, A.; Taniguchi, M.; Sohda, K.Y.; Nagai, K.; Sowa, Y.; Masuoka, Y.; Orita, M.; Sasamata, M.; Matsushime, H.; Furuichi, K.; Sakai, T. YM753, a novel histone deacetylase inhibitor, exhibits antitumor activity with selective, sustained accumulation of acetylated histones in tumors in the WiDr xenograft model. Int. J. Oncol., 2008, 32(3), 545-555.
[http://dx.doi.org/10.3892/ijo.32.3.545] [PMID: 18292931]
[29]
Hu, W.Y.; Xu, L.; Chen, B.; Ou, S.; Muzzarelli, K.M.; Hu, D.P.; Li, Y.; Yang, Z.; Vander Griend, D.J.; Prins, G.S.; Qin, Z. Targeting prostate cancer cells with enzalutamide-HDAC inhibitor hybrid drug 2-75. Prostate, 2019, 79(10), 1166-1179.
[http://dx.doi.org/10.1002/pros.23832] [PMID: 31135075]
[30]
Ganai, S.A. Histone deacetylase inhibitor sulforaphane: The phytochemical with vibrant activity against prostate cancer. Biomed. Pharmacother., 2016, 81, 250-257.
[http://dx.doi.org/10.1016/j.biopha.2016.04.022] [PMID: 27261601]
[31]
ClinicalTrials.gov. https://clinicaltrials.Gov [1 September 2014]; Available online:
[32]
Oki, Y.; Younes, A.; Copeland, A.; Hagemeister, F.; Fayad, L.E.; McLaughlin, P.; Shah, J.; Fowler, N.; Romaguera, J.; Kwak, L.W.; Pro, B. Phase I study of vorinostat in combination with standard CHOP in patients with newly diagnosed peripheral T-cell lymphoma. Br. J. Haematol., 2013, 162(1), 138-141.
[http://dx.doi.org/10.1111/bjh.12326] [PMID: 23590726]
[33]
Doi, T.; Hamaguchi, T.; Shirao, K.; Chin, K.; Hatake, K.; Noguchi, K.; Otsuki, T.; Mehta, A.; Ohtsu, A. Evaluation of safety, pharmacokinetics, and efficacy of vorinostat, a histone deacetylase inhibitor, in the treatment of gastrointestinal (GI) cancer in a phase I clinical trial. Int. J. Clin. Oncol., 2013, 18(1), 87-95.
[http://dx.doi.org/10.1007/s10147-011-0348-6] [PMID: 22234637]
[34]
Shi, W.; Lawrence, Y.R.; Choy, H.; Werner-Wasik, M.; Andrews, D.W.; Evans, J.J.; Judy, K.D.; Farrell, C.J.; Moshel, Y.; Berger, A.C.; Bar-Ad, V.; Dicker, A.P. Vorinostat as a radiosensitizer for brain metastasis: a phase I clinical trial. J. Neurooncol., 2014, 118(2), 313-319.
[http://dx.doi.org/10.1007/s11060-014-1433-2] [PMID: 24728831]
[35]
Fakih, M.G.; Groman, A.; McMahon, J.; Wilding, G.; Muindi, J.R. A randomized phase II study of two doses of vorinostat in combination with 5-FU/LV in patients with refractory colorectal cancer. Cancer Chemother. Pharmacol., 2012, 69(3), 743-751.
[http://dx.doi.org/10.1007/s00280-011-1762-1] [PMID: 22020318]
[36]
Fakih, M.G.; Fetterly, G.; Egorin, M.J.; Muindi, J.R.; Espinoza-Delgado, I.; Zwiebel, J.A.; Litwin, A.; Holleran, J.L.; Wang, K.; Diasio, R.B. A phase I, pharmacokinetic, and pharmacodynamic study of two schedules of vorinostat in combination with 5-fluorouracil and leucovorin in patients with refractory solid tumors. Clin. Cancer Res., 2010, 16(14), 3786-3794.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0547] [PMID: 20463088]
[37]
Mahalingam, D.; Mita, M.; Sarantopoulos, J.; Wood, L.; Amaravadi, R.K.; Davis, L.E.; Mita, A.C.; Curiel, T.J.; Espitia, C.M.; Nawrocki, S.T.; Giles, F.J.; Carew, J.S. Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy, 2014, 10(8), 1403-1414.
[http://dx.doi.org/10.4161/auto.29231] [PMID: 24991835]
[38]
Millward, M.; Price, T.; Townsend, A.; Sweeney, C.; Spencer, A.; Sukumaran, S.; Longenecker, A.; Lee, L.; Lay, A.; Sharma, G.; Gemmill, R.M.; Drabkin, H.A.; Lloyd, G.K.; Neuteboom, S.T.; McConkey, D.J.; Palladino, M.A.; Spear, M.A. Phase 1 clinical trial of the novel proteasome inhibitor marizomib with the histone deacetylase inhibitor vorinostat in patients with melanoma, pancreatic and lung cancer based on in vitro assessments of the combination. Invest. New Drugs, 2012, 30(6), 2303-2317.
[http://dx.doi.org/10.1007/s10637-011-9766-6] [PMID: 22080430]
[39]
Mazumder, A.; Vesole, D.H.; Jagannath, S. Vorinostat plus bortezomib for the treatment of relapsed/refractory multiple myeloma: a case series illustrating utility in clinical practice. Clin. Lymphoma Myeloma Leuk., 2010, 10(2), 149-151.
[http://dx.doi.org/10.3816/CLML.2010.n.022] [PMID: 20371450]
[40]
Wilson, P.M.; El-Khoueiry, A.; Iqbal, S.; Fazzone, W.; LaBonte, M.J.; Groshen, S.; Yang, D.; Danenberg, K.D.; Cole, S.; Kornacki, M.; Ladner, R.D.; Lenz, H.J. A phase I/II trial of vorinostat in combination with 5-fluorouracil in patients with metastatic colorectal cancer who previously failed 5-FU-based chemotherapy. Cancer Chemother. Pharmacol., 2010, 65(5), 979-988.
[http://dx.doi.org/10.1007/s00280-009-1236-x] [PMID: 20062993]
[41]
Ramalingam, S.S.; Belani, C.P.; Ruel, C.; Frankel, P.; Gitlitz, B.; Koczywas, M.; Espinoza-Delgado, I.; Gandara, D. Phase II study of belinostat (PXD101), a histone deacetylase inhibitor, for second line therapy of advanced malignant pleural mesothelioma. J. Thorac. Oncol., 2009, 4(1), 97-101.
[http://dx.doi.org/10.1097/JTO.0b013e318191520c] [PMID: 19096314]
[42]
Mackay, H.J.; Hirte, H.; Colgan, T.; Covens, A.; MacAlpine, K.; Grenci, P.; Wang, L.; Mason, J.; Pham, P.A.; Tsao, M.S.; Pan, J.; Zwiebel, J.; Oza, A.M. Phase II trial of the histone deacetylase inhibitor belinostat in women with platinum resistant epithelial ovarian cancer and micropapillary (LMP) ovarian tumours. Eur. J. Cancer, 2010, 46(9), 1573-1579.
[http://dx.doi.org/10.1016/j.ejca.2010.02.047] [PMID: 20304628]
[43]
Giaccone, G.; Rajan, A.; Berman, A.; Kelly, R.J.; Szabo, E.; Lopez-Chavez, A.; Trepel, J.; Lee, M.J.; Cao, L.; Espinoza-Delgado, I.; Spittler, J.; Loehrer, P.J., Sr Phase II study of belinostat in patients with recurrent or refractory advanced thymic epithelial tumors. J. Clin. Oncol., 2011, 29(15), 2052-2059.
[http://dx.doi.org/10.1200/JCO.2010.32.4467] [PMID: 21502553]
[44]
Cashen, A.; Juckett, M.; Jumonville, A.; Litzow, M.; Flynn, P.J.; Eckardt, J.; LaPlant, B.; Laumann, K.; Erlichman, C.; DiPersio, J. Phase II study of the histone deacetylase inhibitor belinostat (PXD101) for the treatment of myelodysplastic syndrome (MDS). Ann. Hematol., 2012, 91(1), 33-38.
[http://dx.doi.org/10.1007/s00277-011-1240-1] [PMID: 21538061]
[45]
Dizon, D.S.; Blessing, J.A.; Penson, R.T.; Drake, R.D.; Walker, J.L.; Johnston, C.M.; Disilvestro, P.A.; Fader, A.N. A phase II evaluation of belinostat and carboplatin in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube, or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecol. Oncol., 2012, 125(2), 367-371.
[http://dx.doi.org/10.1016/j.ygyno.2012.02.019] [PMID: 22366594]
[46]
Dizon, D.S.; Damstrup, L.; Finkler, N.J.; Lassen, U.; Celano, P.; Glasspool, R.; Crowley, E.; Lichenstein, H.S.; Knoblach, P.; Penson, R.T. Phase II activity of belinostat (PXD-101), carboplatin, and paclitaxel in women with previously treated ovarian cancer. Int. J. Gynecol. Cancer, 2012, 22(6), 979-986.
[http://dx.doi.org/10.1097/IGC.0b013e31825736fd] [PMID: 22694911]
[47]
Kirschbaum, M.H.; Foon, K.A.; Frankel, P.; Ruel, C.; Pulone, B.; Tuscano, J.M.; Newman, E.M. A phase 2 study of belinostat (PXD101) in patients with relapsed or refractory acute myeloid leukemia or patients over the age of 60 with newly diagnosed acute myeloid leukemia: a California Cancer Consortium Study. Leuk. Lymphoma, 2014, 55(10), 2301-2304.
[http://dx.doi.org/10.3109/10428194.2013.877134] [PMID: 24369094]
[48]
Thomas, A.; Rajan, A.; Szabo, E.; Tomita, Y.; Carter, C.A.; Scepura, B.; Lopez-Chavez, A.; Lee, M.J.; Redon, C.E.; Frosch, A.; Peer, C.J.; Chen, Y.; Piekarz, R.; Steinberg, S.M.; Trepel, J.B.; Figg, W.D.; Schrump, D.S.; Giaccone, G. A phase I/II trial of belinostat in combination with cisplatin, doxorubicin, and cyclophosphamide in thymic epithelial tumors: a clinical and translational study. Clin. Cancer Res., 2014, 20(21), 5392-5402.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0968] [PMID: 25189481]
[49]
Fouliard, S.; Robert, R.; Jacquet-Bescond, A.; du Rieu, Q.C.; Balasubramanian, S.; Loury, D.; Loriot, Y.; Hollebecque, A.; Kloos, I.; Soria, J.C.; Chenel, M.; Depil, S. Pharmacokinetic/pharmacodynamic modelling-based optimisation of administration schedule for the histone deacetylase inhibitor abexinostat (S78454/PCI-24781) in phase I. Eur. J. Cancer, 2013, 49(13), 2791-2797.
[http://dx.doi.org/10.1016/j.ejca.2013.05.009] [PMID: 23790467]
[50]
Gressette, M.; Vérillaud, B.; Jimenez-Pailhès, A-S.; Lelièvre, H.; Lo, K-W.; Ferrand, F-R.; Gattolliat, C-H.; Jacquet-Bescond, A.; Kraus-Berthier, L.; Depil, S.; Busson, P. Treatment of nasopharyngeal carcinoma cells with the histone-deacetylase inhibitor abexinostat: cooperative effects with cis-platin and radiotherapy on patient-derived xenografts. PLoS One, 2014, 9(3), e91325
[http://dx.doi.org/10.1371/journal.pone.0091325] [PMID: 24618637]
[51]
Quintás-Cardama, A.; Kantarjian, H.; Estrov, Z.; Borthakur, G.; Cortes, J.; Verstovsek, S. Therapy with the histone deacetylase inhibitor pracinostat for patients with myelofibrosis. Leuk. Res., 2012, 36(9), 1124-1127.
[http://dx.doi.org/10.1016/j.leukres.2012.03.003] [PMID: 22475363]
[52]
Razak, A.R.; Hotte, S.J.; Siu, L.L.; Chen, E.X.; Hirte, H.W.; Powers, J.; Walsh, W.; Stayner, L.A.; Laughlin, A.; Novotny-Diermayr, V.; Zhu, J.; Eisenhauer, E.A. Phase I clinical, pharmacokinetic and pharmacodynamic study of SB939, an oral histone deacetylase (HDAC) inhibitor, in patients with advanced solid tumours. Br. J. Cancer, 2011, 104(5), 756-762.
[http://dx.doi.org/10.1038/bjc.2011.13] [PMID: 21285985]
[53]
Zorzi, A.P.; Bernstein, M.; Samson, Y.; Wall, D.A.; Desai, S.; Nicksy, D.; Wainman, N.; Eisenhauer, E.; Baruchel, S. A phase I study of histone deacetylase inhibitor, pracinostat (SB939), in pediatric patients with refractory solid tumors: IND203 a trial of the NCIC IND program/C17 pediatric phase I consortium. Pediatr. Blood Cancer, 2013, 60(11), 1868-1874.
[http://dx.doi.org/10.1002/pbc.24694] [PMID: 23893953]
[54]
Brunetto, A.T.; Ang, J.E.; Lal, R.; Olmos, D.; Molife, L.R.; Kristeleit, R.; Parker, A.; Casamayor, I.; Olaleye, M.; Mais, A.; Hauns, B.; Strobel, V.; Hentsch, B.; de Bono, J.S. First-in-human, pharmacokinetic and pharmacodynamic phase I study of Resminostat, an oral histone deacetylase inhibitor, in patients with advanced solid tumors. Clin. Cancer Res., 2013, 19(19), 5494-5504.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0735] [PMID: 24065624]
[55]
Walewski, J.; Paszkiewicz-Kozik, E.; Borsaru, G.; Moicean, A.; Warszewska, A.; Strobel, K.; Biggi, A.; Hauns, B.; Mais, A.; Henning, S.W. Resminostat in relapsed or refractory hodgkin lymphoma: initial results of the saphire phase II Trial with a novel oral histone deacetylase (HDAC) inhibitor. Proceedings of the 52nd ASH Ann. Meet. and Expo., Orlando, FL, USA4-7 December2010..
[http://dx.doi.org/10.1182/blood.V116.21.2811.2811]
[56]
Walewski, J.; Paszkiewicz-Kozik, E.; Warszewska, A.; Borsaru, G.; Moicean, A.; Hellmann, A.; Mayer, J.; Hauns, B.; Mais, A.; Henning, S.W. Final results of the phase II saphire trial of resminostat (4SC-201) in patients with relapsed/refractory hodgkin lymphoma. Proceedings of the 53rd ASH Ann. Meet. and Expo., San Diego, CA, USA10-13 December2011.
[57]
Bitzer, M.; Ganten, T.M.; Woerns, M.A.; Siveke, J.T.; Dollinger, M.M.; Scheulen, M.E.; Wege, H.; Giannini, E.G.; Cillo, U.; Trevisani, F. Resminostat in advanced hepatocellular carcinoma (HCC): Overall survival subgroup analysis of prognostic factors in the shelter trial. J. Clin. Oncol., 2013, 31, e15088
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.e15088]
[58]
Rambaldi, A.; Dellacasa, C.M.; Finazzi, G.; Carobbio, A.; Ferrari, M.L.; Guglielmelli, P.; Gattoni, E.; Salmoiraghi, S.; Finazzi, M.C.; Di Tollo, S.; D’Urzo, C.; Vannucchi, A.M.; Barosi, G.; Barbui, T. A pilot study of the Histone-Deacetylase inhibitor Givinostat in patients with JAK2V617F positive chronic myeloproliferative neoplasms. Br. J. Haematol., 2010, 150(4), 446-455.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08266.x] [PMID: 20560970]
[59]
Finazzi, G.; Vannucchi, A.M.; Martinelli, V.; Ruggeri, M.; Nobile, F.; Specchia, G.; Pogliani, E.M.; Olimpieri, O.M.; Fioritoni, G.; Musolino, C.; Cilloni, D.; Sivera, P.; Barosi, G.; Finazzi, M.C.; Di Tollo, S.; Demuth, T.; Barbui, T.; Rambaldi, A. A phase II study of Givinostat in combination with hydroxycarbamide in patients with polycythaemia vera unresponsive to hydroxycarbamide monotherapy. Br. J. Haematol., 2013, 161(5), 688-694.
[http://dx.doi.org/10.1111/bjh.12332] [PMID: 23573950]
[60]
de Marinis, F.; Atmaca, A.; Tiseo, M.; Giuffreda, L.; Rossi, A.; Gebbia, V.; D’Antonio, C.; Dal Zotto, L.; Al-Batran, S.E.; Marsoni, S.; Wolf, M. A phase II study of the histone deacetylase inhibitor panobinostat (LBH589) in pretreated patients with small-cell lung cancer. J. Thorac. Oncol., 2013, 8(8), 1091-1094.
[http://dx.doi.org/10.1097/JTO.0b013e318293d88c] [PMID: 23857399]
[61]
Mascarenhas, J.; Lu, M.; Li, T.; Petersen, B.; Hochman, T.; Najfeld, V.; Goldberg, J.D.; Hoffman, R. A phase I study of panobinostat (LBH589) in patients with primary myelofibrosis (PMF) and post-polycythaemia vera/essential thrombocythaemia myelofibrosis (post-PV/ET MF). Br. J. Haematol., 2013, 161(1), 68-75.
[http://dx.doi.org/10.1111/bjh.12220] [PMID: 23330839]
[62]
Morita, S.; Oizumi, S.; Minami, H.; Kitagawa, K.; Komatsu, Y.; Fujiwara, Y.; Inada, M.; Yuki, S.; Kiyota, N.; Mitsuma, A.; Sawaki, M.; Tanii, H.; Kimura, J.; Ando, Y. Phase I dose-escalating study of panobinostat (LBH589) administered intravenously to Japanese patients with advanced solid tumors. Invest. New Drugs, 2012, 30(5), 1950-1957.
[http://dx.doi.org/10.1007/s10637-011-9751-0] [PMID: 21964801]
[63]
Fukutomi, A.; Hatake, K.; Matsui, K.; Sakajiri, S.; Hirashima, T.; Tanii, H.; Kobayashi, K.; Yamamoto, N. A phase I study of oral panobinostat (LBH589) in Japanese patients with advanced solid tumors. Invest. New Drugs, 2012, 30(3), 1096-1106.
[http://dx.doi.org/10.1007/s10637-011-9666-9] [PMID: 21484248]
[64]
Younes, A.; Sureda, A.; Ben-Yehuda, D.; Zinzani, P.L.; Ong, T.C.; Prince, H.M.; Harrison, S.J.; Kirschbaum, M.; Johnston, P.; Gallagher, J.; Le Corre, C.; Shen, A.; Engert, A. Panobinostat in patients with relapsed/refractory Hodgkin’s lymphoma after autologous stem-cell transplantation: results of a phase II study. J. Clin. Oncol., 2012, 30(18), 2197-2203.
[http://dx.doi.org/10.1200/JCO.2011.38.1350] [PMID: 22547596]
[65]
Platzbecker, U.; Al-Ali, H.K.; Gattermann, N.; Haase, D.; Janzen, V.; Krauter, J.; Götze, K.; Schlenk, R.; Nolte, F.; Letsch, A.; Ottmann, O.G.; Kündgen, A.; Lübbert, M.; Germing, U.; Wermke, M.; Reinhard, H.; Weiss, C.; Lieder, K.; Ehninger, G.; Leismann, O.; Giagounidis, A. Phase 2 study of oral panobinostat (LBH589) with or without erythropoietin in heavily transfusion-dependent IPSS low or int-1 MDS patients. Leukemia, 2014, 28(3), 696-698.
[http://dx.doi.org/10.1038/leu.2013.325] [PMID: 24186004]
[66]
Shimizu, T.; LoRusso, P.M.; Papadopoulos, K.P.; Patnaik, A.; Beeram, M.; Smith, L.S.; Rasco, D.W.; Mays, T.A.; Chambers, G.; Ma, A.; Wang, J.; Laliberte, R.; Voi, M.; Tolcher, A.W. Phase I first-in-human study of CUDC-101, a multitargeted inhibitor of HDACs, EGFR, and HER2 in patients with advanced solid tumors. Clin. Cancer Res., 2014, 20(19), 5032-5040.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0570] [PMID: 25107918]
[67]
Fu, S.; Nemunaitis, J.J.; Bessudo, A.; Bauman, J.E.; Hamid, O.; Witta, S.E.; Dy, G.K.; Lai, C.; Laliberte, R.; Voi, M. A phase Ib study of CUDC-101, A Multitargeted Inhibitor of EGFR, HER2, and HDAC, in Patients with Advanced Head and Neck, Gastric, Breast, Liver, and Non-Small Cell Lung Cancer. In Proceedings of 2012 ASCO Ann. Meet., , (Chicago, IL, USA, 1-5 June). 2012.
[68]
Voi, M.; Fu, S.; Nemunaitis, J.; Bauman, J.; Bessudo, A.; Hamid, O.; Witta, S.; Dy, G.; Lai, C.; Laliberte, R. 590 Final results of a phase Ib study of CUDC-101, a multitargeted inhibitor of EGFR, HER2, and HDAC, in patients with advanced head and neck, gastric, breast, liver, and non-small cell lung cancer. Eur. J. Cancer, 2012, 48, 181.
[http://dx.doi.org/10.1016/S0959-8049(12)72387-0]
[69]
Garcia-Manero, G.; Assouline, S.; Cortes, J.; Estrov, Z.; Kantarjian, H.; Yang, H.; Newsome, W.M.; Miller, W.H., Jr; Rousseau, C.; Kalita, A.; Bonfils, C.; Dubay, M.; Patterson, T.A.; Li, Z.; Besterman, J.M.; Reid, G.; Laille, E.; Martell, R.E.; Minden, M. Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood, 2008, 112(4), 981-989.
[http://dx.doi.org/10.1182/blood-2007-10-115873] [PMID: 18495956]
[70]
Blum, K.A.; Advani, A.; Fernandez, L.; Van Der Jagt, R.; Brandwein, J.; Kambhampati, S.; Kassis, J.; Davis, M.; Bonfils, C.; Dubay, M.; Dumouchel, J.; Drouin, M.; Lucas, D.M.; Martell, R.E.; Byrd, J.C. Phase II study of the histone deacetylase inhibitor MGCD0103 in patients with previously treated chronic lymphocytic leukaemia. Br. J. Haematol., 2009, 147(4), 507-514.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07881.x] [PMID: 19747365]
[71]
Siu, L.L.; Pili, R.; Duran, I.; Messersmith, W.A.; Chen, E.X.; Sullivan, R.; MacLean, M.; King, S.; Brown, S.; Reid, G.K.; Li, Z.; Kalita, A.M.; Laille, E.J.; Besterman, J.M.; Martell, R.E.; Carducci, M.A. Phase I study of MGCD0103 given as a three-times-per-week oral dose in patients with advanced solid tumors. J. Clin. Oncol., 2008, 26(12), 1940-1947.
[http://dx.doi.org/10.1200/JCO.2007.14.5730] [PMID: 18421048]
[72]
Younes, A.; Oki, Y.; Bociek, R.G.; Kuruvilla, J.; Fanale, M.; Neelapu, S.; Copeland, A.; Buglio, D.; Galal, A.; Besterman, J.; Li, Z.; Drouin, M.; Patterson, T.; Ward, M.R.; Paulus, J.K.; Ji, Y.; Medeiros, L.J.; Martell, R.E. Mocetinostat for relapsed classical Hodgkin’s lymphoma: an open-label, single-arm, phase 2 trial. Lancet Oncol., 2011, 12(13), 1222-1228.
[http://dx.doi.org/10.1016/S1470-2045(11)70265-0] [PMID: 22033282]
[73]
Pili, R.; Salumbides, B.; Zhao, M.; Altiok, S.; Qian, D.; Zwiebel, J.; Carducci, M.A.; Rudek, M.A. Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. Br. J. Cancer, 2012, 106(1), 77-84.
[http://dx.doi.org/10.1038/bjc.2011.527] [PMID: 22134508]
[74]
Witta, S.E.; Jotte, R.M.; Konduri, K.; Neubauer, M.A.; Spira, A.I.; Ruxer, R.L.; Varella-Garcia, M.; Bunn, P.A., Jr; Hirsch, F.R. Randomized phase II trial of erlotinib with and without entinostat in patients with advanced non-small-cell lung cancer who progressed on prior chemotherapy. J. Clin. Oncol., 2012, 30(18), 2248-2255.
[http://dx.doi.org/10.1200/JCO.2011.38.9411] [PMID: 22508830]
[75]
Yardley, D.A.; Ismail-Khan, R.R.; Melichar, B.; Lichinitser, M.; Munster, P.N.; Klein, P.M.; Cruickshank, S.; Miller, K.D.; Lee, M.J.; Trepel, J.B. Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J. Clin. Oncol., 2013, 31(17), 2128-2135.
[http://dx.doi.org/10.1200/JCO.2012.43.7251] [PMID: 23650416]
[76]
Gore, L.; Rothenberg, M.L.; O’Bryant, C.L.; Schultz, M.K.; Sandler, A.B.; Coffin, D.; McCoy, C.; Schott, A.; Scholz, C.; Eckhardt, S.G. A phase I and pharmacokinetic study of the oral histone deacetylase inhibitor, MS-275, in patients with refractory solid tumors and lymphomas. Clin. Cancer Res., 2008, 14(14), 4517-4525.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1461] [PMID: 18579665]
[77]
Prakash, S.; Foster, B.J.; Meyer, M.; Wozniak, A.; Heilbrun, L.K.; Flaherty, L.; Zalupski, M.; Radulovic, L.; Valdivieso, M.; LoRusso, P.M. Chronic oral administration of CI-994: a phase 1 study. Invest. New Drugs, 2001, 19(1), 1-11.
[http://dx.doi.org/10.1023/A:1006489328324] [PMID: 11291827]
[78]
Su, J.M.; Li, X.N.; Thompson, P.; Ou, C.N.; Ingle, A.M.; Russell, H.; Lau, C.C.; Adamson, P.C.; Blaney, S.M. Phase 1 study of valproic acid in pediatric patients with refractory solid or CNS tumors: a children’s oncology group report. Clin. Cancer Res., 2011, 17(3), 589-597.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0738] [PMID: 21115653]
[79]
Mohammed, T.A.; Holen, K.D.; Jaskula-Sztul, R.; Mulkerin, D.; Lubner, S.J.; Schelman, W.R.; Eickhoff, J.; Chen, H.; Loconte, N.K. A pilot phase II study of valproic acid for treatment of low-grade neuroendocrine carcinoma. Oncologist, 2011, 16(6), 835-843.
[http://dx.doi.org/10.1634/theoncologist.2011-0031] [PMID: 21632454]
[80]
Wheler, J.J.; Janku, F.; Falchook, G.S.; Jackson, T.L.; Fu, S.; Naing, A.; Tsimberidou, A.M.; Moulder, S.L.; Hong, D.S.; Yang, H.; Piha-Paul, S.A.; Atkins, J.T.; Garcia-Manero, G.; Kurzrock, R. Phase I study of anti-VEGF monoclonal antibody bevacizumab and histone deacetylase inhibitor valproic acid in patients with advanced cancers. Cancer Chemother. Pharmacol., 2014, 73(3), 495-501.
[http://dx.doi.org/10.1007/s00280-014-2384-1] [PMID: 24435060]
[81]
Chu, B.F.; Karpenko, M.J.; Liu, Z.; Aimiuwu, J.; Villalona-Calero, M.A.; Chan, K.K.; Grever, M.R.; Otterson, G.A. Phase I study of 5-aza-2′-deoxycytidine in combination with valproic acid in non-small-cell lung cancer. Cancer Chemother. Pharmacol., 2013, 71(1), 115-121.
[http://dx.doi.org/10.1007/s00280-012-1986-8] [PMID: 23053268]
[82]
Iwahashi, S.; Utsunomiya, T.; Imura, S.; Morine, Y.; Ikemoto, T.; Arakawa, Y.; Saito, Y.; Ishikawa, D.; Shimada, M. Effects of valproic acid in combination with S-1 on advanced pancreatobiliary tract cancers: clinical study phases I/II. Anticancer Res., 2014, 34(9), 5187-5191.
[PMID: 25202113]
[83]
Bauman, J.; Shaheen, M.; Verschraegen, C.F.; Belinsky, S.A.; Houman Fekrazad, M.; Lee, F.C.; Rabinowitz, I.; Ravindranathan, M.; Jones, D.V., Jr A phase I protocol of hydralazine and valproic acid in advanced, previously treated solid cancers. Transl. Oncol., 2014, 7, 349-354.
[http://dx.doi.org/10.1016/j.tranon.2014.03.001] [PMID: 24746712]
[84]
Coiffier, B.; Pro, B.; Prince, H.M.; Foss, F.; Sokol, L.; Greenwood, M.; Caballero, D.; Borchmann, P.; Morschhauser, F.; Wilhelm, M.; Pinter-Brown, L.; Padmanabhan, S.; Shustov, A.; Nichols, J.; Carroll, S.; Balser, J.; Balser, B.; Horwitz, S. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J. Clin. Oncol., 2012, 30(6), 631-636.
[http://dx.doi.org/10.1200/JCO.2011.37.4223] [PMID: 22271479]
[85]
Piekarz, R.L.; Frye, R.; Prince, H.M.; Kirschbaum, M.H.; Zain, J.; Allen, S.L.; Jaffe, E.S.; Ling, A.; Turner, M.; Peer, C.J.; Figg, W.D.; Steinberg, S.M.; Smith, S.; Joske, D.; Lewis, I.; Hutchins, L.; Craig, M.; Fojo, A.T.; Wright, J.J.; Bates, S.E. Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood, 2011, 117(22), 5827-5834.
[http://dx.doi.org/10.1182/blood-2010-10-312603] [PMID: 21355097]
[86]
Karthik, S.; Sankar, R.; Varunkumar, K.; Ravikumar, V. Romidepsin induces cell cycle arrest, apoptosis, histone hyperacetylation and reduces matrix metalloproteinases 2 and 9 expression in bortezomib sensitized non-small cell lung cancer cells. Biomed. Pharmacother., 2014, 68(3), 327-334.
[http://dx.doi.org/10.1016/j.biopha.2014.01.002] [PMID: 24485799]
[87]
Jones, S.F.; Infante, J.R.; Spigel, D.R.; Peacock, N.W.; Thompson, D.S.; Greco, F.A.; McCulloch, W.; Burris, H.A., III Phase 1 results from a study of romidepsin in combination with gemcitabine in patients with advanced solid tumors. Cancer Invest., 2012, 30(6), 481-486.
[http://dx.doi.org/10.3109/07357907.2012.675382] [PMID: 22536933]
[88]
Amiri-Kordestani, L.; Luchenko, V.; Peer, C.J.; Ghafourian, K.; Reynolds, J.; Draper, D.; Frye, R.; Woo, S.; Venzon, D.; Wright, J.; Skarulis, M.; Figg, W.D.; Fojo, T.; Bates, S.E.; Piekarz, R.L. Phase I trial of a new schedule of romidepsin in patients with advanced cancers. Clin. Cancer Res., 2013, 19(16), 4499-4507.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0095] [PMID: 23757352]
[89]
Qian, D.Z.; Kato, Y.; Shabbeer, S.; Wei, Y.; Verheul, H.M.; Salumbides, B.; Sanni, T.; Atadja, P.; Pili, R. Targeting tumor angiogenesis with histone deacetylase inhibitors: the hydroxamic acid derivative LBH589. Clin. Cancer Res., 2006, 12(2), 634-642.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1132] [PMID: 16428510]
[90]
Arts, J.; Angibaud, P.; Mariën, A.; Floren, W.; Janssens, B.; King, P.; van Dun, J.; Janssen, L.; Geerts, T.; Tuman, R.W.; Johnson, D.L.; Andries, L.; Jung, M.; Janicot, M.; van Emelen, K. R306465 is a novel potent inhibitor of class I histone deacetylases with broad-spectrum antitumoral activity against solid and haematological malignancies. Br. J. Cancer, 2007, 97(10), 1344-1353.
[http://dx.doi.org/10.1038/sj.bjc.6604025] [PMID: 18000499]
[91]
Kuefer, R.; Hofer, M.D.; Altug, V.; Zorn, C.; Genze, F.; Kunzi-Rapp, K.; Hautmann, R.E.; Gschwend, J.E. Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer. Br. J. Cancer, 2004, 90(2), 535-541.
[http://dx.doi.org/10.1038/sj.bjc.6601510] [PMID: 14735205]
[92]
VanOosten, R.L.; Earel, J.K., Jr; Griffith, T.S. Histone deacetylase inhibitors enhance Ad5-TRAIL killing of TRAIL-resistant prostate tumor cells through increased caspase-2 activity. Apoptosis, 2007, 12(3), 561-571.
[http://dx.doi.org/10.1007/s10495-006-0009-9] [PMID: 17195089]
[93]
Armstrong, K.; Robson, C.N.; Leung, H.Y. NF-kappaB activation upregulates fibroblast growth factor 8 expression in prostate cancer cells. Prostate, 2006, 66(11), 1223-1234.
[http://dx.doi.org/10.1002/pros.20376] [PMID: 16683270]
[94]
Hernandez, M.; Shao, Q.; Yang, X.J.; Luh, S.P.; Kandouz, M.; Batist, G.; Laird, D.W.; Alaoui-Jamali, M.A. A histone deacetylation-dependent mechanism for transcriptional repression of the gap junction gene cx43 in prostate cancer cells. Prostate, 2006, 66(11), 1151-1161.
[http://dx.doi.org/10.1002/pros.20451] [PMID: 16652385]
[95]
Chen, L.; Meng, S.; Wang, H.; Bali, P.; Bai, W.; Li, B.; Atadja, P.; Bhalla, K.N.; Wu, J. Chemical ablation of androgen receptor in prostate cancer cells by the histone deacetylase inhibitor LAQ824. Mol. Cancer Ther., 2005, 4(9), 1311-1319.
[http://dx.doi.org/10.1158/1535-7163.MCT-04-0287] [PMID: 16170022]
[96]
Suenaga, M.; Soda, H.; Oka, M.; Yamaguchi, A.; Nakatomi, K.; Shiozawa, K.; Kawabata, S.; Kasai, T.; Yamada, Y.; Kamihira, S.; Tei, C.; Kohno, S. Histone deacetylase inhibitors suppress telomerase reverse transcriptase mRNA expression in prostate cancer cells. Int. J. Cancer, 2002, 97(5), 621-625.
[http://dx.doi.org/10.1002/ijc.10082] [PMID: 11807787]
[97]
Sasakawa, Y.; Naoe, Y.; Inoue, T.; Sasakawa, T.; Matsuo, M.; Manda, T.; Mutoh, S. Effects of FK228, a novel histone deacetylase inhibitor, on tumor growth and expression of p21 and c-myc genes in vivo. Cancer Lett., 2003, 195(2), 161-168.
[http://dx.doi.org/10.1016/S0304-3835(03)00184-8] [PMID: 12767524]
[98]
Sasakawa, Y.; Naoe, Y.; Noto, T.; Inoue, T.; Sasakawa, T.; Matsuo, M.; Manda, T.; Mutoh, S. Antitumor efficacy of FK228, a novel histone deacetylase inhibitor, depends on the effect on expression of angiogenesis factors. Biochem. Pharmacol., 2003, 66(6), 897-906.
[http://dx.doi.org/10.1016/S0006-2952(03)00411-8] [PMID: 12963476]
[99]
Iacopino, F.; Urbano, R.; Graziani, G.; Muzi, A.; Navarra, P.; Sica, G. Valproic acid activity in androgen-sensitive and -insensitive human prostate cancer cells. Int. J. Oncol., 2008, 32(6), 1293-1303.
[http://dx.doi.org/10.3892/ijo.32.6.1293] [PMID: 18497991]
[100]
Wedel, S.A.; Sparatore, A.; Soldato, P.D.; Al-Batran, S.E.; Atmaca, A.; Juengel, E.; Hudak, L.; Jonas, D.; Blaheta, R.A. New histone deacetylase inhibitors as potential therapeutic tools for advanced prostate carcinoma. J. Cell. Mol. Med., 2008, 12(6A), 2457-2466.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00271.x] [PMID: 18266964]
[101]
Valentini, A.; Biancolella, M.; Amati, F.; Gravina, P.; Miano, R.; Chillemi, G.; Farcomeni, A.; Bueno, S.; Vespasiani, G.; Desideri, A.; Federici, G.; Novelli, G.; Bernardini, S. Valproic acid induces neuroendocrine differentiation and UGT2B7 up-regulation in human prostate carcinoma cell line. Drug Metab. Dispos., 2007, 35(6), 968-972.
[http://dx.doi.org/10.1124/dmd.107.014662] [PMID: 17371798]
[102]
Qian, D.Z.; Wei, Y.F.; Wang, X.; Kato, Y.; Cheng, L.; Pili, R. Antitumor activity of the histone deacetylase inhibitor MS-275 in prostate cancer models. Prostate, 2007, 67(11), 1182-1193.
[http://dx.doi.org/10.1002/pros.20611] [PMID: 17520666]
[103]
Camphausen, K.; Scott, T.; Sproull, M.; Tofilon, P.J. Enhancement of xenograft tumor radiosensitivity by the histone deacetylase inhibitor MS-275 and correlation with histone hyperacetylation. Clin. Cancer Res., 2004, 10(18 Pt 1), 6066-6071.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0537] [PMID: 15447991]
[104]
Noor, Z.; Afzal, N.; Rashid, S. Exploration of novel inhibitors for class I histone deacetylase isoforms by QSAR modeling and molecular dynamics simulation assays. PLoS One, 2015, 10(10), e0139588
[http://dx.doi.org/10.1371/journal.pone.0139588] [PMID: 26431201]
[105]
Juvale, D.C.; Kulkarni, V.V.; Deokar, H.S.; Wagh, N.K.; Padhye, S.B.; Kulkarni, V.M. 3D-QSAR of histone deacetylase inhibitors: hydroxamate analogues. Org. Biomol. Chem., 2006, 4(15), 2858-2868.
[http://dx.doi.org/10.1039/b606365a] [PMID: 16855733]
[106]
Yang, J.S.; Chun, T.G.; Nam, K.Y.; Kim, H.M.; Han, G. Structure-activity relationship of novel lactam based histone deacetylase inhibitors as potential anticancer drugs. Bull. Korean Chem. Soc., 2012, 33(6), 2063-2066.
[http://dx.doi.org/10.5012/bkcs.2012.33.6.2063]
[107]
Guo, Y.; Xiao, J.; Guo, Z.; Chu, F.; Cheng, Y.; Wu, S. Exploration of a binding mode of indole amide analogues as potent histone deacetylase inhibitors and 3D-QSAR analyses. Bioorg. Med. Chem., 2005, 13(18), 5424-5434.
[http://dx.doi.org/10.1016/j.bmc.2005.05.016] [PMID: 15963726]
[108]
Kumar, N.; Tomar, R.; Pandey, A.; Tomar, V.; Singh, V.K.; Chandra, R. Preclinical evaluation and molecular docking of 1,3-benzodioxole propargyl ether derivatives as novel inhibitor for combating the histone deacetylase enzyme in cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(6), 1288-1299.
[http://dx.doi.org/10.1080/21691401.2017.1369423] [PMID: 28847179]
[109]
Bajpai, A.; Agarwal, N.; Agrawal, V.K.; Shaik, B.; Gupta, S.P. Quantitative structure-activity relationship and molecular modeling studies on a series of hydroxamate analogues acting as HDAC inhibitors. J. Modern Med. Chem., 2014, 2, 43-59.
[http://dx.doi.org/10.12970/2308-8044.2014.02.02.1]
[110]
Wu, T.Y.H.; Hassig, C.; Wu, Y.; Ding, S.; Schultz, P.G. Design, synthesis, and activity of HDAC inhibitors with a N-formyl hydroxylamine head group. Bioorg. Med. Chem. Lett., 2004, 14(2), 449-453.
[http://dx.doi.org/10.1016/j.bmcl.2003.10.055] [PMID: 14698179]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 1
Year: 2020
Page: [74 - 89]
Pages: 16
DOI: 10.2174/1573408016666200402092557
Price: $65

Article Metrics

PDF: 15
HTML: 1