Identification of Differentially Expressed Genes Associated with Papillary Thyroid Carcinoma

Author(s): Hongyuan Cui, Mingwei Zhu, Junhua Zhang, Wenqin Li, Lihui Zou*, Yan Wang*

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 23 , Issue 6 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Objective: Next-generation sequencing (NGS) was performed to identify genes that were differentially expressed between normal thyroid tissue and papillary thyroid carcinoma (PTC).

Materials and Methods: Six candidate genes were selected and further confirmed with quantitative real-time polymerase chain reaction (qRT-PCR), and immunohistochemistry in samples from 24 fresh thyroid tumors and adjacent normal tissues. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used to investigate signal transduction pathways of the differentially expressed genes.

Results: In total, 1690 genes were differentially expressed between samples from patients with PTC and the adjacent normal tissue. Among these, SFRP4, ZNF90, and DCN were the top three upregulated genes, whereas KIRREL3, TRIM36, and GABBR2 were downregulated with the smallest p values. Several pathways were associated with the differentially expressed genes and involved in cellular proliferation, cell migration, and endocrine system tumor progression, which may contribute to the pathogenesis of PTC. Upregulation of SFRP4, ZNF90, and DCN at the mRNA level was further validated with RT-PCR, and DCN expression was further confirmed with immunostaining of PTC samples.

Conclusion: These results provide new insights into the molecular mechanisms of PTC. Identification of differentially expressed genes should not only improve the tumor signature for thyroid tumors as a diagnostic biomarker but also reveal potential targets for thyroid tumor treatment.

Keywords: Gene, next-generation sequencing, DCN, papillary thyroid carcinoma, qRT-PCR, SFRP4.

[1]
Das, S.; Chaudhary, N.; Ang, L.C.; Megyesi, J.S. Papillary thyroid carcinoma metastasizing to anaplastic meningioma: an unusual case of tumor-to-tumor metastasis. Brain Tumor Pathol., 2017, 34(3), 130-134.
[http://dx.doi.org/10.1007/s10014-017-0289-5] [PMID: 28600666]
[2]
Melo, M.; da Rocha, A.G.; Vinagre, J.; Sobrinho-Simões, M.; Soares, P. Coexistence of TERT promoter and BRAF mutations in papillary thyroid carcinoma: added value in patient prognosis? J. Clin. Oncol., 2015, 33(6), 667-668.
[http://dx.doi.org/10.1200/JCO.2014.59.4614] [PMID: 25605839]
[3]
Kwak, H.Y.; Chae, B.J.; Eom, Y.H.; Hong, Y.R.; Seo, J.B.; Lee, S.H.; Song, B.J.; Jung, S.S.; Bae, J.S. Does papillary thyroid carcinoma have a better prognosis with or without Hashimoto thyroiditis? Int. J. Clin. Oncol., 2015, 20(3), 463-473.
[http://dx.doi.org/10.1007/s10147-014-0754-7] [PMID: 25312294]
[4]
Fagin, J.A.; Matsuo, K.; Karmakar, A.; Chen, D.L.; Tang, S.H.; Koeffler, H.P. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J. Clin. Invest., 1993, 91(1), 179-184.
[http://dx.doi.org/10.1172/JCI116168] [PMID: 8423216]
[5]
Cerutti, J. Block of c-myc expression by antisense oligonucleotides inhibits proliferation of human thyroid carcinoma cell lines. Clin. Cancer Res., 1996, 2, 119-126.
[6]
Orlandi, F.; Saggiorato, E.; Pivano, G.; Puligheddu, B.; Termine, A.; Cappia, S.; De Giuli, P.; Angeli, A. Galectin-3 is a presurgical marker of human thyroid carcinoma. Cancer Res., 1998, 58(14), 3015-3020.
[PMID: 9679965]
[7]
Kroll, T.G.; Sarraf, P.; Pecciarini, L.; Chen, C.J.; Mueller, E.; Spiegelman, B.M.; Fletcher, J.A. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma. Science, 2000, 289(5483), 1357-1360.
[http://dx.doi.org/10.1126/science.289.5483.1357] [PMID: 10958784]
[8]
Nikiforova, M.N.; Lynch, R.A.; Biddinger, P.W.; Alexander, E.K.; Dorn, G.W., II; Tallini, G.; Kroll, T.G.; Nikiforov, Y.E. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab., 2003, 88(5), 2318-2326.
[http://dx.doi.org/10.1210/jc.2002-021907] [PMID: 12727991]
[9]
Barden, C.B. Classification of follicular thyroid tumors by molecular signature: results of gene profiling. Clin. Cancer Res., 2003, 9, 1792-1800.
[10]
Martins, L.; Matsuo, S.E.; Ebina, K.N.; Kulcsar, M.A.; Friguglietti, C.U.; Kimura, E.T. Galectin-3 messenger ribonucleic acid and protein are expressed in benign thyroid tumors. J. Clin. Endocrinol. Metab., 2002, 87(10), 4806-4810.
[http://dx.doi.org/10.1210/jc.2002-020094] [PMID: 12364477]
[11]
Aldred, M.A.; Ginn-Pease, M.E.; Morrison, C.D.; Popkie, A.P.; Gimm, O.; Hoang-Vu, C.; Krause, U.; Dralle, H.; Jhiang, S.M.; Plass, C.; Eng, C. Caveolin-1 and caveolin-2,together with three bone morphogenetic protein-related genes, may encode novel tumor suppressors down-regulated in sporadic follicular thyroid carcinogenesis. Cancer Res., 2003, 63(11), 2864-2871.
[PMID: 12782592]
[12]
Di Renzo, M.F.; Olivero, M.; Serini, G.; Orlandi, F.; Pilotti, S.; Belfiore, A.; Costantino, A.; Vigneri, R.; Angeli, A.; Pierotti, M.A. Overexpression of the c-MET/HGF receptor in human thyroid carcinomas derived from the follicular epithelium. J. Endocrinol. Invest., 1995, 18(2), 134-139.
[http://dx.doi.org/10.1007/BF03349722] [PMID: 7629381]
[13]
Xu, J.; Moatamed, F.; Caldwell, J.S.; Walker, J.R.; Kraiem, Z.; Taki, K.; Brent, G.A.; Hershman, J.M. Enhanced expression of nicotinamide N-methyltransferase in human papillary thyroid carcinoma cells. J. Clin. Endocrinol. Metab., 2003, 88(10), 4990-4996.
[http://dx.doi.org/10.1210/jc.2002-021843] [PMID: 14557485]
[14]
Nikiforova, M.N.; Kimura, E.T.; Gandhi, M.; Biddinger, P.W.; Knauf, J.A.; Basolo, F.; Zhu, Z.; Giannini, R.; Salvatore, G.; Fusco, A.; Santoro, M.; Fagin, J.A.; Nikiforov, Y.E. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab., 2003, 88(11), 5399-5404.
[http://dx.doi.org/10.1210/jc.2003-030838] [PMID: 14602780]
[15]
Arnaldi, L.A.; Borra, R.C.; Maciel, R.M.; Cerutti, J.M. Gene expression profiles reveal that DCN, DIO1, and DIO2 are underexpressed in benign and malignant thyroid tumors. Thyroid, 2005, 15, 210-221.
[16]
Tang, W.; Wan, S.; Yang, Z.; Teschendorff, A.E.; Zou, Q. Tumor origin detection with tissue-specific miRNA and DNA methylation markers. Bioinformatics, 2018, 34(3), 398-406.
[http://dx.doi.org/10.1093/bioinformatics/btx622] [PMID: 29028927]
[17]
Guan, Y.F.; Li, G.R.; Wang, R.J.; Yi, Y.T.; Yang, L.; Jiang, D.; Zhang, X.P.; Peng, Y. Application of next-generation sequencing in clinical oncology to advance personalized treatment of cancer. Chin. J. Cancer, 2012, 31(10), 463-470.
[http://dx.doi.org/10.5732/cjc.012.10216] [PMID: 22980418]
[18]
Zeng, X.; Lin, W.; Guo, M.; Zou, Q. A comprehensive overview and evaluation of circular RNA detection tools. PLOS Comput. Biol., 2017, 13(6)e1005420
[http://dx.doi.org/10.1371/journal.pcbi.1005420] [PMID: 28594838]
[19]
Zou, Q.; Xing, P.; Wei, L.; Liu, B. Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA. RNA, 2019, 25(2), 205-218.
[http://dx.doi.org/10.1261/rna.069112.118] [PMID: 30425123]
[20]
Meyerson, M.; Gabriel, S.; Getz, G. Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet., 2010, 11(10), 685-696.
[http://dx.doi.org/10.1038/nrg2841] [PMID: 20847746]
[21]
Wei, L.; Luan, S.; Nagai, L.A.E.; Su, R.; Zou, Q. Exploring sequence-based features for the improved prediction of DNA N4-methylcytosine sites in multiple species. Bioinformatics, 2019, 35(8), 1326-1333.
[http://dx.doi.org/10.1093/bioinformatics/bty824] [PMID: 30239627]
[22]
Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 2009, 10(1), 57-63.
[http://dx.doi.org/10.1038/nrg2484] [PMID: 19015660]
[23]
Martínez-Aguilar, J.; Clifton-Bligh, R.; Molloy, M.P. Proteomics of thyroid tumours provides new insights into their molecular composition and changes associated with malignancy. Sci. Rep., 2016, 6, 23660.
[http://dx.doi.org/10.1038/srep23660] [PMID: 27025787]
[24]
Krusius, T.; Ruoslahti, E. Primary structure of an extracellular matrix proteoglycan core protein deduced from cloned cDNA. Proc. Natl. Acad. Sci. USA, 1986, 83(20), 7683-7687.
[http://dx.doi.org/10.1073/pnas.83.20.7683] [PMID: 3484330]
[25]
Santra, M.; Skorski, T.; Calabretta, B.; Lattime, E.C.; Iozzo, R.V. De novo decorin gene expression suppresses the malignant phenotype in human colon cancer cells. Proc. Natl. Acad. Sci. USA, 1995, 92(15), 7016-7020.
[http://dx.doi.org/10.1073/pnas.92.15.7016] [PMID: 7624361]
[26]
Koninger, J. Overexpressed decorin in pancreatic cancer: potential tumor growth inhibition and attenuation of chemotherapeutic action. Clin. Cancer Res., 2004, 10, 4776-4783.
[27]
Chung, E.J.; Sung, Y.K.; Farooq, M.; Kim, Y.; Im, S.; Tak, W.Y.; Hwang, Y.J.; Kim, Y.I.; Han, H.S.; Kim, J.C.; Kim, M.K. Gene expression profile analysis in human hepatocellular carcinoma by cDNA microarray. Mol. Cells, 2002, 14(3), 382-387.
[PMID: 12521301]
[28]
McDoniels-Silvers, A.L.; Nimri, C.F.; Stoner, G.D.; Lubet, R.A.; You, M. Differential gene expression in human lung adenocarcinomas and squamous cell carcinomas. Clin. Cancer Res., 2002, 8, 1127-1138.
[29]
Sofeu Feugaing, D.D.; Götte, M.; Viola, M. More than matrix: the multifaceted role of decorin in cancer. Eur. J. Cell Biol., 2013, 92(1), 1-11.
[http://dx.doi.org/10.1016/j.ejcb.2012.08.004] [PMID: 23058688]
[30]
Neill, T.; Schaefer, L.; Iozzo, R.V. Decorin: a guardian from the matrix. Am. J. Pathol., 2012, 181(2), 380-387.
[http://dx.doi.org/10.1016/j.ajpath.2012.04.029] [PMID: 22735579]
[31]
Buraschi, S.; Neill, T.; Goyal, A.; Poluzzi, C.; Smythies, J.; Owens, R.T.; Schaefer, L.; Torres, A.; Iozzo, R.V. Decorin causes autophagy in endothelial cells via Peg3. Proc. Natl. Acad. Sci. USA, 2013, 110(28), E2582-E2591.
[http://dx.doi.org/10.1073/pnas.1305732110] [PMID: 23798385]
[32]
Reed, C.C.; Gauldie, J.; Iozzo, R.V. Suppression of tumorigenicity by adenovirus-mediated gene transfer of decorin. Oncogene, 2002, 21(23), 3688-3695.
[http://dx.doi.org/10.1038/sj.onc.1205470] [PMID: 12032837]
[33]
Tralhão, J.G.; Schaefer, L.; Micegova, M.; Evaristo, C.; Schönherr, E.; Kayal, S.; Veiga-Fernandes, H.; Danel, C.; Iozzo, R.V.; Kresse, H.; Lemarchand, P. In vivo selective and distant killing of cancer cells using adenovirus-mediated decorin gene transfer. FASEB J., 2003, 17(3), 464-466.
[PMID: 12631584]
[34]
Hu, Y.; Sun, H.; Owens, R.T.; Wu, J.; Chen, Y.Q.; Berquin, I.M.; Perry, D.; O’Flaherty, J.T.; Edwards, I.J. Decorin suppresses prostate tumor growth through inhibition of epidermal growth factor and androgen receptor pathways. Neoplasia, 2009, 11(10), 1042-1053.
[http://dx.doi.org/10.1593/neo.09760] [PMID: 19794963]
[35]
Goldoni, S.; Seidler, D.G.; Heath, J.; Fassan, M.; Baffa, R.; Thakur, M.L.; Owens, R.T.; McQuillan, D.J.; Iozzo, R.V. An antimetastatic role for decorin in breast cancer. Am. J. Pathol., 2008, 173(3), 844-855.
[http://dx.doi.org/10.2353/ajpath.2008.080275] [PMID: 18688028]
[36]
Cirillo, L.A.; Lin, F.R.; Cuesta, I.; Friedman, D.; Jarnik, M.; Zaret, K.S. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell, 2002, 9(2), 279-289.
[http://dx.doi.org/10.1016/S1097-2765(02)00459-8] [PMID: 11864602]
[37]
Malcangio, M. GABAB receptors and pain. Neuropharmacology, 2018, 136(Pt A), 102-105.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 6
Year: 2020
Published on: 04 October, 2020
Page: [546 - 553]
Pages: 8
DOI: 10.2174/1386207323666200402085832
Price: $65

Article Metrics

PDF: 19
HTML: 2
EPUB: 1
PRC: 1