Recent Advances in Microwave Promoted C-P Cross-coupling Reactions

Author(s): Sujit Ghosh, Kinkar Biswas, Basudeb Basu*

Journal Name: Current Microwave Chemistry

Volume 7 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Organophosphorous compounds are of potential importance in diverse fields. They are often used as intermediates for making functionalized phosphine ligands as well as find vast applications in the areas of industrial, agricultural and biological chemistry. The microwave-assisted synthesis of C-P bonds has become increasingly popular because of its various advantages over conventional heating in the perspectives of green chemistry.

This review article has primarily focused on the synthesis of various organophosphorous molecules via microwave promoted C-P cross-coupling reactions under metal-catalyzed or metal–free conditions over the last two decades. The synthesis of phosphine ligands on 4,4′-bisquinolone structural framework, disubstituted phosphinic acid esters, vinyl phosphines, aryl- and vinylphosphonates, sugar and nucleoside phosphonates, aminobisphosphonates, triphenyl phosphines, water-soluble tertiary phosphine oxides and many other potentially useful organophosphorous compounds have been illustrated critically. The Hirao reaction, Michaelis-Arbuzov reaction and Sandmeyer type of reactions are generally involved in creating C-P bonds. The role of various metal catalysts, solvents, bases, additives and temperature in different literatures are carefully discussed.

Keywords: Organophosphorous, C-P bonds, cross-coupling, hirao reaction, michaelis-Arbuzov, microwave.

Engel, R. Handbook of Organophosphorus Chemistry, M; Dekker: New York, 1992.
Cynthia, K. McClure. The Chemistry of Organophosphorus Compounds. Ter- and Quinquevalent Phosphorus Acids and their Derivatives. The Chemistry of Functional Group Series; Frank R, Hartley, Ed.; Wiley: New York, 1996, Vol. 4, pp. xiv-+ 995.
Corbridge, D.E.C. Phosphorus: An Outline of Its Chemistry, Biochemistry and Uses, 5th ed; Elsevier: Amsterdam, 1995.
J.C., Tebby Aminophosphonic and aminophosphinic acids: chemistry and biological activity. In: Applied Organic Chemistry Valery P. Kukhar and Harry R. Hudson, Ed.. John Wiley & Sons Ltd Chichester, 2000, Vol. 14, pp. 514-514.
Flett, D.S. solvent extraction in hydrometallurgy: the role of organophosphorus extractants. J. Organomet. Chem., 2005, 690, 2426-2438.
Gagnon, K.J.; Perry, H.P.; Clearfield, A. Conventional and unconventional metal-organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem. Rev., 2012, 112(2), 1034-1054.
[] [PMID: 22126609]
Demmer, C.S.; Krogsgaard-Larsen, N.; Bunch, L. Review on modern advances of chemical methods for the introduction of a phosphonic acid group. Chem. Rev., 2011, 111(12), 7981-8006.
[] [PMID: 22010799]
Queffelec, Petit; C. M., Janvier; Knight, P.; D. A., Bujoli B. Surface modification using phosphonic acids and esters. Chem. Rev., 2012, 112, 3777-3807.
Engel, R. Phosphonates as analogues of natural phosphates. Chem. Rev., 1977, 77, 349-367.
Minami, T.; Motoyoshiya, J. Vinylphosphonates in organic synthesis. Synthesis, 1992, 333-349.
Holstein, S.A.; Cermak, D.M.; Wiemer, D.F.; Lewis, K.; Hohl, R.J. Phosphonate and bisphosphonate analogues of farnesyl pyrophosphate as potential inhibitors of farnesyl protein transferase. Bioorg. Med. Chem., 1998, 6(6), 687-694.
[] [PMID: 9681134]
Arbusow, B.A. Michaelis–Arbusow- und Perkow-Reaktionen. Pure Appl. Chem., 1964, 9, 307-353.
Babu, H.B.; Syam Prasad, G.; Naga Raju, C.; Venkata Basaveswara Rao, M. Synthesis of Phosphonates via Michaelis-Arbuzov Reaction. Curr. Org. Chem., 2017, 14, 883-903.
Bhattacharya, A.K.; Thyagarajan, G. Michaelis-Arbuzov Rearrangement. Chem. Rev., 1981, 81, 415-430.
Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Stereoselective synthesis of vinylphosphonate. Tetrahedron Lett., 1980, 21, 3595-3598.
Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. A novel synthesis of dialkyl arenephosphonates. Synthesis, 1981, 56-57.
Hirao, T.; Masunaga, T.; Yamada, N.; Agawa, T. Palladium-catalyzed new carbon-phosphorus bond formation. Bull. Chem. Soc. Jpn., 1982, 55, 909-913.
Buffler, C.R. Microwave Cooking and Processing; Van Nostrand Reinhold: New York, 1993, pp. 1-68.
Varma, R.S. Solvent-free organic syntheses on mineral supports using microwave irradiation. Clean Prod. Process., 1999, 1, 132-147.
Abramovich, R.A. Applications of Microwave Energy in Organic Chemistry. A Review. Org. Prep. Proced. Int., 1991, 23, 683-711.
Langa, F.; de la Cruz, P.; de la Hoz, A.; Diaz-Ortiz, A.; Diez-Barra, E. Microwave Irradiation: More than just a method for accelerating reactions. Contemp. Org. Synth., 1997, 4, 373-386.
Kuhnert, N. Microwave-assisted reactions in organic synthesis--are there any nonthermal microwave effects? Angew. Chem. Int. Ed. Engl., 2002, 41(11), 1863-1866.
[<1863:AID-ANIE1863>3.0.CO;2-L] [PMID: 19750616]
Garbacia, S.; Desai, B.; Lavastre, O.; Kappe, C.O. Microwave-assisted ring-closing metathesis revisited. On the question of the nonthermal microwave effect. J. Org. Chem., 2003, 68(23), 9136-9139.
[] [PMID: 14604397]
Baqi, Y.; Müller, C.E. Rapid and efficient microwave-assisted copper(0)-catalyzed ullmann coupling reaction: general access to anilinoanthraquinone derivatives. Org. Lett., 2007, 9(7), 1271-1274.
[] [PMID: 17348665]
Hoogenboom, R.; Schubert, U.S. Microwave–Assisted polymer synthesis: Recent developments in a rapidly expanding field of research. Macromol. Rapid Commun., 2007, 28, 368-386.
Pang, M.; Li, C.; Ding, L.; Zhang, J.; Su, D.; Li, W.; Liang, C. Microwave–Assisted preparation of Mo2C/CNTs nanocomposites as efficient electrocatalyst supports for oxygen reduction reaction. Ind. Eng. Chem. Res., 2010, 49, 4169-4174.
Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res., 2014, 47(4), 1338-1348.
[] [PMID: 24666323]
Leadbeater, N.E.; Marco, M. Rapid and amenable suzuki coupling reaction in water using microwave and conventional heating. J. Org. Chem., 2003, 68(3), 888-892.
[] [PMID: 12558412]
Tharun, J.; Kim, D.W.; Roshan, R.; Hwang, Y.; Park, D-W. Microwave–assisted preparation of quaternized chitosan catalyst for the cycloaddition of CO2 and epoxides. Catal. Commun., 2013, 31, 62-65.
Xuan, T-T.; Liu, J-Qi.; Xie, R-J.; Li, H-L.; Sun, Z. Microwave-Assisted synthesis of CdS/ZnS:Cu quantum dots for white light-emitting diodes with high color rendition. Chem. Mater., 2015, 27, 1187-1193.
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. Engl., 2004, 43(46), 6250-6284.
[] [PMID: 15558676]
Tappe, F.M.J.; Trepohl, V.T.; Oestreich, M. Transition-Metal-Catalyzed C–P Cross-Coupling Reactions. Synthesis, 2010, 3037-3062.
Brahmachari, G. Microwave–assisted Hirao Reaction: Recent developments. ChemTexts, 2015, 1(15), 1-11.
Schwan, A.L. Palladium catalyzed cross-coupling reactions for phosphorus-carbon bond formation. Chem. Soc. Rev., 2004, 33(4), 218-224.
[] [PMID: 15103403]
Arshad, N.; Hashim, J.; Kappe, C.O. Synthesis of bisquinolone-based mono- and diphosphine ligands of the Aza-BINAP type. J. Org. Chem., 2008, 73(12), 4755-4758.
[] [PMID: 18507470]
Stadler, A.; Kappe, C.O. Rapid formation of triarylphosphines by microwave-assisted transition metal-catalyzed C-p cross-coupling reactions. Org. Lett., 2002, 4(20), 3541-3543.
[] [PMID: 12323064]
Morimoto, H.; Yoshino, T.; Yukawa, T.; Lu, G.; Matsunaga, S.; Shibasaki, M. Lewis base assisted Brønsted base catalysis: bidentate phosphine oxides as activators and modulators of Brønsted basic lanthanum-aryloxides. Angew. Chem. Int. Ed. Engl., 2008, 47(47), 9125-9129.
[] [PMID: 18925596]
Lu, X.; Zhang, C.; Xu, Z. Reactions of electron-deficient alkynes and allenes under phosphine catalysis. Acc. Chem. Res., 2001, 34(7), 535-544.
[] [PMID: 11456471]
Fronczek, F.R.; Luck, R.L.; Wang, G. Synthesis, characterization and reactivity of MoCl2(O)(O2)(OPR3)2, OPR3=OPMePh2, OPPh3; An isomerization catalyst for some allylic alcohols. Inorg. Chem. Commun., 2002, 5, 384-387.
Zhu, D.; Xu, L.; Wu, F.; Wan, B. A mild and efficient copper-catalyzed coupling of aryl iodides and thiols using an oxime–phosphine oxide ligand. Tetrahedron Lett., 2006, 47, 5781-5784.
Rummelt, S.M.; Ranocchiari, M.; van Bokhoven, J.A. Synthesis of water-soluble phosphine oxides by Pd/C-catalyzed P-C coupling in water. Org. Lett., 2012, 14(8), 2188-2190.
[] [PMID: 22463685]
Petit, C.; Fecourt, F.; Montchamp, J-L. Synthesis of disubstituted phosphinates via palladium–catalyzed hydrophosphinylation of H-Phosphinic acids. Adv. Synth. Catal., 2011, 353, 1883-1888.
Deal, E.L.; Petit, C.; Montchamp, J-L. Palladium-catalyzed cross-coupling of H-phosphinate esters with chloroarenes. Org. Lett., 2011, 13(12), 3270-3273.
[] [PMID: 21612265]
Kalek, M.; Stawinski, J. Efficient synthesis of mono- and diarylphosphinic acids: A Microwave-Assisted Palladium–Catalyzed Cross–Coupling of Aryl Halides with Phosphinate. Tetrahedron, 2009, 65, 10406-10412.
Gelezowska, J.; Gumienna–Kontecka, E. Phosphonates, their complexes and bio-applications: A spectrum of surprising diversity. Coord. Chem. Rev., 2012, 256, 105-124.
Xie, D.; Zhang, A.; Liu, D.; Yin, L.; Wan, J.; Zeng, S.; Hu, D. Synthesis and antiviral activity of novel A-Aminophosphonates containing 6-Fluorobenzothiazole moiety. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192, 1061-1067.
Jansa, P.; Holy, A.; Dracinsky, M.; Baszczynski, O.; Cesnek, M.; Janeba, Z. Efficient and ‘Green’ Microwave–Assisted synthesis of Haloalkylphosphonates via the Michaelis–Arbuzov reaction. Green Chem., 2011, 13, 882-888.
Sevrain, C.M.; Berchel, M.; Couthon, H.; Jaffrès, P-A. Phosphonic acid: preparation and applications. Beilstein J. Org. Chem., 2017, 13, 2186-2213.
[] [PMID: 29114326]
Keglevich, G.; Grun, A.; Bolcskei, A.; Drahos, L.; Kraszni, M.; Balogh, G.T. Synthesis and proton dissociation properties of arylphosphonates: A microwave-assisted catalytic Arbuzov Reaction with Aryl Bromides. Heteroatom Chem., 2012, 23, 574-582.
Jansa, P.; Hradil, O.; Baszczynski, O.; Dracínsky, M.; Klepetarova, B.; Holy, A.; Balzarini, J.; Janeba, Z. An Efficient microwave-assisted synthesis and biological properties of Polysubstituted Pyrimidinyl- and 1,3,5-Triazinylphosphonic acids. Tetrahedron, 2012, 68, 865-871.
Ravikumara, D.; Subramanyama, C.; Mohan, S.; Chandra Sekhar, D.; Rao, K.P. Nano BF3.SiO2 catalyzed, microwave assisted Michaelis–Arbuzov reaction to synthesize biologically active phosphonates under solvent–free condition. Materials Today: Proceedings, 2018, 5, 25832-25842.
Peyrottes, S.; Gallier, F.; Bejaud, J.; Perigaud, C. Use of microwave irradiation for sugar and nucleoside phosphonates synthesis. Tetrahedron Lett., 2006, 47, 7719-7721.
Gallier, F.; Peyrottes, S.; Perigaud, C. Ex-Chiral-Pool synthesis of β-Hydroxyphosphonate nucleoside analogues. Eur. J. Org. Chem., 2007, 925-933.
Hirao, T.; Masunaga, T.; Ohshiro, Y. Agawa, Toshio. A novel synthesis of Dialkyl Arenephosphonates. Synthesis, 1981, 56-57.
Belabassi, Y.; Alzghari, S.; Montchamp, J.L. Revisiting the Hirao cross-coupling: improved synthesis of aryl and heteroaryl phosphonates. J. Organomet. Chem., 2008, 693(19), 3171-3178.
[] [PMID: 19156189]
Henyecz, R.; Oroszy, R.; Keglevich, G. Microwave-Assisted Hirao reaction of heteroaryl bromides and >P(O)H reagents using Pd(OAc)2 as the catalyst precursor in the absence of added P-Ligands. Curr. Org. Chem., 2019, 23, 1151-1157.
Henyecz, R.; Mucsi, Z.; Keglevich, G. Palladium-Catalyzed Microwave-Assisted Hirao Reaction utilizing the excess of the diarylphosphine oxide reagent as the P-Ligand; A study on the activity and formation of the “PdP2”. Catalyst. Pure Appl. Chem., 2019, 91, 121-134.
Kalek, M.; Ziadi, A.; Stawinski, J. Microwave-assisted palladium-catalyzed cross-coupling of aryl and vinyl halides with H-phosphonate diesters. Org. Lett., 2008, 10(20), 4637-4640.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [112 - 122]
Pages: 11
DOI: 10.2174/2213335607666200401144724
Price: $25

Article Metrics

PDF: 12