Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Mini-Review Article

Analysis of Nonsteroidal Anti-inflammatory Drugs by using Microfluidic Techniques: A Review

Author(s): Chiara Fanali, Giovanni D’Orazio, Alessandra Gentili and Salvatore Fanali*

Volume 17, Issue 3, 2021

Published on: 01 April, 2020

Page: [303 - 315] Pages: 13

DOI: 10.2174/1573412916666200401124059

Price: $65

Abstract

In this review paper, miniaturized techniques, including both electromigration and liquid chromatographic techniques, have been discussed considering their main features in the analytical field for the separation and analysis of Nonsteroidal Anti-inflammatory Drugs (NSAIDs). In Capillary Electrophoresis (CE) and nano-liquid chromatography (nano-LC), separation is performed in capillaries with Internal Diameter (I.D.) lower than 100 μm and therefore flow rates in the range 100-1000 nL/min are applied. Therefore, due to the low flow rate, high mass sensitivity can be obtained. Usually, conventional UV detectors are used on-line; however, these techniques can be coupled with Mass Spectrometry (MS). CE and nano-LC have also been applied to the separation of NSAIDs using silica stationary phases (SP) modified with C18 promoting interaction with analytes mainly based on hydrophobic interaction. Besides, the use of chiral SP was found to be effective for the chiral resolution of these compounds. In addition to silica phases, monolithic (both organic and inorganic) material has also been used. Although most of the presented studies aimed to demonstrate the usefulness of the considered microfluidic techniques, some applications to real samples have also been reported.

Keywords: Nonsteroidal anti-inflammatory drugs, capillary zone electrophoresis, capillary liquid chromatography, nano-liquid chromatography, mass spectrometry, Liquid chromatography.

Graphical Abstract
[1]
Claman, H.N. How corticosteroids work. J. Allergy Clin. Immunol., 1975, 55(3), 145-151.
[http://dx.doi.org/10.1016/0091-6749(75)90010-X] [PMID: 803519]
[2]
Bashyal, S. Ibuprofen and its different analytical and manufacturing methods: A review. Asian J. Pharm. Clin. Res., 2018, 11, 25-29.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i7.24484]
[3]
Tomai, P.; Martinelli, A.; Morosetti, S.; Curini, R.; Fanali, S.; Gentili, A. Oxidized Buckypaper for Stir-Disc Solid Phase Extraction: Evaluation of Several Classes of Environmental Pollutants Recovered from Surface Water Samples. Anal. Chem., 2018, 90(11), 6827-6834.
[http://dx.doi.org/10.1021/acs.analchem.8b00927] [PMID: 29706074]
[4]
Shishov, A.; Nechaeva, D.; Bulatov, A. HPLC-MS/MS determination of non-steroidal anti-inflammatory drugs in bovine milk based on simultaneous deep eutectic solvents formation and its solidification. Microchem. J., 2019.150104080
[http://dx.doi.org/10.1016/j.microc.2019.104080]
[5]
Bharwad, K.D.; Shah, P.A.; Shrivastav, P.S.; Sharma, V.S.; Singhal, P. Quantification of fenoprofen in human plasma using UHPLC-tandem mass spectrometry for pharmacokinetic study in healthy subjects. Biomed. Chromatogr., 2020, 34(1)e4708
[http://dx.doi.org/10.1002/bmc.4708] [PMID: 31630419]
[6]
Singh, M.; Sethi, S.; Bhushan, R. Liquid chromatographic methods for separation, determination, and bioassay of enantiomers of etodolac: A review. J. Sep. Sci., 2020, 43(1), 18-30.
[http://dx.doi.org/10.1002/jssc.201900649] [PMID: 31389172]
[7]
Fanali, S. An overview to nano-scale analytical techniques: Nano-liquid chromatography and capillary electrochromatography. Electrophoresis, 2017, 38(15), 1822-1829.
[http://dx.doi.org/10.1002/elps.201600573] [PMID: 28256745]
[8]
D’Orazio, G.; Fanali, C.; Asensio-Ramos, M.; Fanali, S. Chiral separations in food analysis. TrAC -. Trends Analyt. Chem., 2017, 96, 151-171.
[http://dx.doi.org/10.1016/j.trac.2017.05.013]
[9]
Štěpánová, S.; Procházková, E.; Čechová, L.; Žurek, J.; Janeba, Z.; Dračínský, M.; Kašička, V. Separation of rotamers of 5-nitrosopyrimidines and estimation of binding constants of their complexes with β-cyclodextrin by capillary electrophoresis. J. Chromatogr. A, 2018, 1570, 164-171.
[http://dx.doi.org/10.1016/j.chroma.2018.07.083] [PMID: 30082126]
[10]
Krenková, J.; Klepárník, K.; Foret, F. Capillary electrophoresis mass spectrometry coupling with immobilized enzyme electrospray capillaries. J. Chromatogr. A, 2007, 1159(1-2), 110-118.
[http://dx.doi.org/10.1016/j.chroma.2007.02.095] [PMID: 17376460]
[11]
Tycova, A.; Vido, M.; Kovarikova, P.; Foret, F. Interface-free capillary electrophoresis-mass spectrometry system with nanospray ionization-Analysis of dexrazoxane in blood plasma. J. Chromatogr. A, 2016, 1466, 173-179.
[http://dx.doi.org/10.1016/j.chroma.2016.08.042] [PMID: 27613146]
[12]
D’Orazio, G.; Rocchi, S.; Fanali, S. Nano-liquid chromatography coupled with mass spectrometry: separation of sulfonamides employing non-porous core-shell particles. J. Chromatogr. A, 2012, 1255, 277-285.
[http://dx.doi.org/10.1016/j.chroma.2012.03.032] [PMID: 22481108]
[13]
D’Orazio, G.; Fanali, S. Coupling capillary electrochromatography with mass spectrometry by using a liquid-junction nano-spray interface. J. Chromatogr. A, 2010, 1217(25), 4079-4086.
[http://dx.doi.org/10.1016/j.chroma.2009.11.004] [PMID: 19945112]
[14]
Fanali, C. Enantiomers separation by capillary electrochromatography. TrAC- Trends Analyt. Chem., 2019.120115640
[http://dx.doi.org/10.1016/j.trac.2019.115640]
[15]
Landoni, M.F.; Soraci, A. Pharmacology of chiral compounds: 2-arylpropionic acid derivatives. Curr. Drug Metab., 2001, 2(1), 37-51.
[http://dx.doi.org/10.2174/1389200013338810] [PMID: 11465150]
[16]
Vane, J.R.; Botting, R.M. Anti-inflammatory drugs and their mechanism of action. Inflamm. Res., 1998, 47(Suppl. 2), S78-S87.
[http://dx.doi.org/10.1007/s000110050284] [PMID: 9831328]
[17]
Davies, N.M. Methods of analysis of chiral non-steroidal anti-inflammatory drugs. J. Chromatogr. B Biomed. Sci. Appl., 1997, 691(2), 229-261.
[http://dx.doi.org/10.1016/S0378-4347(96)00442-2] [PMID: 9174260]
[18]
Suri, A.; Grundy, B.L.; Derendorf, H. Pharmacokinetics and pharmacodynamics of enantiomers of ibuprofen and flurbiprofen after oral administration. Int. J. Clin. Pharmacol. Ther., 1997, 35(1), 1-8.
[PMID: 9021434]
[19]
Davies, N.M. Clinical pharmacokinetics of flurbiprofen and its enantiomers. Clin. Pharmacokinet., 1995, 28(2), 100-114.
[http://dx.doi.org/10.2165/00003088-199528020-00002] [PMID: 7736686]
[20]
Hutt, A.J.; Caldwell, J. The metabolic chiral inversion of 2-arylpropionic acids--a novel route with pharmacological consequences. J. Pharm. Pharmacol., 1983, 35(11), 693-704.
[http://dx.doi.org/10.1111/j.2042-7158.1983.tb02874.x] [PMID: 6139449]
[21]
Główka, F.K. Stereoselective pharmacokinetics of indobufen from tablets and intramuscular injections in man. Chirality, 2000, 12(1), 38-42.
[http://dx.doi.org/10.1002/(SICI)1520-636X(2000)12:1<38:AID-CHIR7>3.0.CO;2-O] [PMID: 10602265]
[22]
Guo, C.C.; Tang, Y.H.; Hu, H.H.; Yu, L.S.; Jiang, H.D.; Zeng, S. Analysis of chiral non-steroidal anti-inflammatory drugs flurbiprofen, ketoprofen and etodolac binding with HSA. J. Pharm. Anal., 2011, 1(3), 184-190.
[http://dx.doi.org/10.1016/j.jpha.2011.06.005] [PMID: 29403697]
[23]
Hutt, A.J.; Caldwell, J. The importance of stereochemistry in the clinical pharmacokinetics of the 2-arylpropionic acid non-steroidal anti-inflammatory drugs. Clin. Pharmacokinet., 1984, 9(4), 371-373.
[http://dx.doi.org/10.2165/00003088-198409040-00007] [PMID: 6467769]
[24]
Evans, A.M. Enantioselective pharmacodynamics and pharmacokinetics of chiral non-steroidal anti-inflammatory drugs. Eur. J. Clin. Pharmacol., 1992, 42(3), 237-256.
[http://dx.doi.org/10.1007/BF00266343] [PMID: 1577041]
[25]
Cooper, S.A.; Reynolds, D.C.; Reynolds, B.; Hersh, E.V. Analgesic efficacy and safety of (R)- ketoprofen in postoperative dental pain. J. Clin. Pharmacol., 1998, 38(2S), 11S-18S.
[http://dx.doi.org/10.1002/j.1552-4604.1998.tb04412.x] [PMID: 9549654]
[26]
Wechter, W.J.; Leipold, D.D.; Murray, E.D.J., Jr; Quiggle, D.; McCracken, J.D.; Barrios, R.S.; Greenberg, N.M. E-7869 (R-flurbiprofen) inhibits progression of prostate cancer in the TRAMP mouse. Cancer Res., 2000, 60(8), 2203-2208.
[PMID: 10786685]
[27]
Hjertén, S. Free zone electrophoresis. Chromatogr. Rev., 1967, 9(2), 122-219.
[http://dx.doi.org/10.1016/0009-5907(67)80003-6] [PMID: 4883163]
[28]
Jorgenson, J.W.; Lukacs, K.D. Zone Electrophoresis in Open-Tubular Glass Capillaries. Anal. Chem., 1981, 53, 1298-1302.
[http://dx.doi.org/10.1021/ac00231a037]
[29]
Jorgenson, W.; Lukacs, K.D. High-resolution separations based on electrophoresis and electroosmosis. J. Chromatogr. A, 1981, 218, 209-216.
[http://dx.doi.org/10.1016/S0021-9673(00)82057-9]
[30]
Terabe, S.; Otsuka, K.; Ichikawa, K.; Tsuchiya, A.; Ando, T. Electrokinetic separations with micellar solution and open-tubular capillaries. Anal. Chem., 1984, 56, 111-113.
[http://dx.doi.org/10.1021/ac00265a031]
[31]
Desiderio, C.; Fanali, S.; Küpfer, A.; Thormann, W. Analysis of mephenytoin, 4-hydroxymephenytoin and 4-hydroxyphenytoin enantiomers in human urine by cyclodextrin micellar electrokinetic capillary chromatography: simple determination of a hydroxylation polymorphism in man. Electrophoresis, 1994, 15(1), 87-93.
[http://dx.doi.org/10.1002/elps.1150150113] [PMID: 8143685]
[32]
Preinerstorfer, B.; Lämmerhofer, M.; Lindner, W. Advances in enantioselective separations using electromigration capillary techniques. Electrophoresis, 2009, 30(1), 100-132.
[http://dx.doi.org/10.1002/elps.200800607] [PMID: 19107703]
[33]
Ibrahim, W.A.W.; Hermawan, D.; Sanagi, M.M. Cyclodextrin-modified micellar electrokinetic chromatography for enantioseparations. Methods Mol. Biol., 2013, 970, 349-361.
[http://dx.doi.org/10.1007/978-1-62703-263-6_22] [PMID: 23283789]
[34]
Elbashir, A.A.; Aboul-Enein, H.Y. Separation and analysis of triazine herbcide residues by capillary electrophoresis. Biomed. Chromatogr., 2015, 29(6), 835-842.
[http://dx.doi.org/10.1002/bmc.3381] [PMID: 25515940]
[35]
Ramautar, R.; Somsen, G.W.; de Jong, G.J. CE-MS for metabolomics: developments and applications in the period 2012-2014. Electrophoresis, 2015, 36(1), 212-224.
[http://dx.doi.org/10.1002/elps.201400388] [PMID: 25287884]
[36]
Jáč, P.; Scriba, G.K.E. Recent advances in electrodriven enantioseparations. J. Sep. Sci., 2013, 36(1), 52-74.
[http://dx.doi.org/10.1002/jssc.201200836] [PMID: 23255223]
[37]
Hu, W.; Hong, T.; Gao, X.; Ji, Y. Applications of nanoparticle-modified stationary phases in capillary electrochromatography. TrAC- Trends Analyt. Chem., 2014, 61, 29-39.
[http://dx.doi.org/10.1016/j.trac.2014.05.011]
[38]
Declerck, S.; Vander Heyden, Y.; Mangelings, D. Enantioseparations of pharmaceuticals with capillary electrochromatography: A review. J. Pharm. Biomed. Anal., 2016, 130, 81-99.
[http://dx.doi.org/10.1016/j.jpba.2016.04.024] [PMID: 27156645]
[39]
Fanali, C.; D’Orazio, G.; Fanali, S.; Gentili, A. Advanced analytical techniques for fat-soluble vitamin analysis. TrAC- Trends Analyt. Chem., 2017, 87, 82-97.
[http://dx.doi.org/10.1016/j.trac.2016.12.001]
[40]
Rathnasekara, R.; Khadka, S.; Jonnada, M.; El Rassi, Z. Polar and nonpolar organic polymer-based monolithic columns for capillary electrochromatography and high-performance liquid chromatography. Electrophoresis, 2017, 38(1), 60-79.
[http://dx.doi.org/10.1002/elps.201600356] [PMID: 27731511]
[41]
González-Ruiz, V.; Codesido, S.; Rudaz, S.; Schappler, J. Evolution in the design of a low sheath-flow interface for CE-MS and application to biological samples. Electrophoresis, 2018, 39(5-6), 853-861.
[http://dx.doi.org/10.1002/elps.201700328] [PMID: 29124762]
[42]
Fanali, C.; Fanali, S. Chiral Separations using Miniaturized Techniques: State of the Art and Perspectives. Isr. J. Chem., 2016, 56, 958-967.
[http://dx.doi.org/10.1002/ijch.201600061]
[43]
D’Orazio, G.; Fanali, C.; Fanali, S.; Gentili, A.; Chankvetadze, B. Comparative study on enantiomer resolving ability of amylose tris(3-chloro-5-methylphenylcarbamate) covalently immobilized onto silica in nano-liquid chromatography and capillary electrochromatography. J. Chromatogr. A, 2019.1606460425
[http://dx.doi.org/10.1016/j.chroma.2019.460425] [PMID: 31471135]
[44]
Tanak, N.; Kobayashi, H.; Ishizuka, N.; Minakuchi, H.; Nakanishi, K.; Hosoya, K.; Ikegami, T. Monolithic silica columns for high-efficiency chromatographic separations. J. Chromatogr. A, 2002, 965(1-2), 35-49.
[http://dx.doi.org/10.1016/S0021-9673(01)01582-5] [PMID: 12236535]
[45]
Nyholm, L.M.; Markides, K.E. Column preparation for reversed-phase high-temperature open tubular column liquid chromatography. J. Chromatogr. A, 1998, 813, 11-20.
[http://dx.doi.org/10.1016/S0021-9673(98)00330-6]
[46]
Schurig, V.; Jung, M.; Mayer, S.; Fluck, M.; Negura, S.; Jakubetz, H. Unified enantioselective capillary chromatography on a Chirasil-DEX stationary phase. Advantages of column miniaturization. J. Chromatogr. A, 1995, 694(1), 119-128.
[http://dx.doi.org/10.1016/0021-9673(94)01075-P] [PMID: 7719463]
[47]
Ràfols, C.; Zarza, S.; Bosch, E. Molecular interactions between some non-steroidal anti-inflammatory drugs (NSAID’s) and bovine (BSA) or human (HSA) serum albumin estimated by means of isothermal titration calorimetry (ITC) and frontal analysis capillary electrophoresis (FA/CE). Talanta, 2014, 130, 241-250.
[http://dx.doi.org/10.1016/j.talanta.2014.06.060] [PMID: 25159405]
[48]
Li, Z.M.; Wei, C.W.; Zhang, Y.; Wang, D.S.; Liu, Y.N. Investigation of competitive binding of ibuprofen and salicylic acid with serum albumin by affinity capillary electrophoresis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(21), 1934-1938.
[http://dx.doi.org/10.1016/j.jchromb.2011.05.020] [PMID: 21676661]
[49]
Rousseau, A.; Pedrini, M.; Chiap, P.; Ivanyi, R.; Crommen, J.; Fillet, M.; Servais, A.C. Determination of flurbiprofen enantiomers in plasma using a single-isomer amino cyclodextrin derivative in nonaqueous capillary electrophoresis. Electrophoresis, 2008, 29(17), 3641-3648.
[http://dx.doi.org/10.1002/elps.200700919] [PMID: 18803178]
[50]
Botello, I.; Borrull, F.; Calull, M.; Aguilar, C. Simultaneous determination of weakly ionizable analytes in urine and plasma samples by transient pseudo-isotachophoresis in capillary zone electrophoresis. Anal. Bioanal. Chem., 2011, 400(2), 527-534.
[http://dx.doi.org/10.1007/s00216-011-4758-0] [PMID: 21344166]
[51]
Suárez, B.; Simonet, B.M.; Cárdenas, S.; Valcárcel, M. Determination of non-steroidal anti-inflammatory drugs in urine by combining an immobilized carboxylated carbon nanotubes minicolumn for solid-phase extraction with capillary electrophoresis-mass spectrometry. J. Chromatogr. A, 2007, 1159(1-2), 203-207.
[http://dx.doi.org/10.1016/j.chroma.2007.01.092] [PMID: 17300791]
[52]
Ahmad, S.M.; Almeida, C.; Neng, N.R.; Nogueira, J.M.F. Bar adsorptive microextraction (BAμE) coated with mixed sorbent phases-Enhanced selectivity for the determination of non-steroidal anti-inflammatory drugs in real matrices in combination with capillary electrophoresis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1008, 115-124.
[http://dx.doi.org/10.1016/j.jchromb.2015.11.018] [PMID: 26638036]
[53]
Bonvin, G.; Schappler, J.; Rudaz, S. Non-aqueous capillary electrophoresis for the analysis of acidic compounds using negative electrospray ionization mass spectrometry. J. Chromatogr. A, 2014, 1323, 163-173.
[http://dx.doi.org/10.1016/j.chroma.2013.11.011] [PMID: 24315358]
[54]
Meighan, M.M.; Dawod, M.; Guijt, R.M.; Hayes, M.A.; Breadmore, M.C. Pressure-assisted electrokinetic supercharging for the enhancement of non-steroidal anti-inflammatory drugs. J. Chromatogr. A, 2011, 1218(38), 6750-6755.
[http://dx.doi.org/10.1016/j.chroma.2011.07.044] [PMID: 21855878]
[55]
Quirino, J.P.; Guidote, A.M., Jr Two-step stacking in capillary zone electrophoresis featuring sweeping and micelle to solvent stacking: II. Organic anions. J. Chromatogr. A, 2011, 1218(7), 1004-1010.
[http://dx.doi.org/10.1016/j.chroma.2010.12.095] [PMID: 21241991]
[56]
Cucinotta, V.; Messina, M.; Contino, A.; Maccarrone, G.; Orlandini, S.; Giuffrida, A. Chiral separation of terbutaline and non-steroidal anti-inflammatory drugs by using a new lysine-bridged hemispherodextrin in capillary electrophoresis. J. Pharm. Biomed. Anal., 2017, 145, 734-741.
[http://dx.doi.org/10.1016/j.jpba.2017.07.041] [PMID: 28806570]
[57]
Zhang, J.; Du, Y.; Zhang, Q.; Lei, Y. Evaluation of vancomycin-based synergistic system with amino acid ester chiral ionic liquids as additives for enantioseparation of non-steroidal anti-inflammatory drugs by capillary electrophoresis. Talanta, 2014, 119, 193-201.
[http://dx.doi.org/10.1016/j.talanta.2013.10.042] [PMID: 24401404]
[58]
Orlandini, S.; Furlanetto, S.; Pinzauti, S.; D’Orazio, G.; Fanali, S. Analysis of ketorolac and its related impurities by capillary electrochromatography. J. Chromatogr. A, 2004, 1044(1-2), 295-303.
[http://dx.doi.org/10.1016/j.chroma.2004.03.079] [PMID: 15354451]
[59]
Navarro-Pascual-Ahuir, M.; Lucena, R.; Cárdenas, S.; Ramis-Ramos, G.; Valcárcel, M.; Herrero-Martínez, J.M. UV-polymerized butyl methacrylate monoliths with embedded carboxylic single-walled carbon nanotubes for CEC applications. Anal. Bioanal. Chem., 2014, 406(25), 6329-6336.
[http://dx.doi.org/10.1007/s00216-014-8050-y] [PMID: 25074549]
[60]
Carrasco-Correa, E.J.; Martínez-Vilata, A.; Herrero-Martínez, J.M.; Parra, J.B.; Maya, F.; Cerdà, V.; Cabello, C.P.; Palomino, G.T.; Svec, F. Incorporation of zeolitic imidazolate framework (ZIF-8)-derived nanoporous carbons in methacrylate polymeric monoliths for capillary electrochromatography. Talanta, 2017, 164, 348-354.
[http://dx.doi.org/10.1016/j.talanta.2016.11.027] [PMID: 28107940]
[61]
Yu, L.Q.; Yang, C.X.; Yan, X.P. Room temperature fabrication of post-modified zeolitic imidazolate framework-90 as stationary phase for open-tubular capillary electrochromatography. J. Chromatogr. A, 2014, 1343, 188-194.
[http://dx.doi.org/10.1016/j.chroma.2014.04.003] [PMID: 24767798]
[62]
Pai, Y.F.; Liu, C.Y. Capillary electrochromatographic separation of non-steroidal anti-inflammatory drugs with a histidine bonded phase. J. Chromatogr. A, 2002, 982(2), 293-301.
[http://dx.doi.org/10.1016/S0021-9673(02)01591-1] [PMID: 12489886]
[63]
Kulsing, C.; Knob, R.; Macka, M.; Junor, P.; Boysen, R.I.; Hearn, M.T.W. Molecular imprinted polymeric porous layers in open tubular capillaries for chiral separations. J. Chromatogr. A, 2014, 1354, 85-91.
[http://dx.doi.org/10.1016/j.chroma.2014.05.065] [PMID: 24935267]
[64]
Gotti, R.; Fiori, J.; Calleri, E.; Temporini, C.; Lubda, D.; Massolini, G. Chiral capillary liquid chromatography based on penicillin G acylase immobilized on monolithic epoxy silica column. J. Chromatogr. A, 2012, 1234, 45-49.
[http://dx.doi.org/10.1016/j.chroma.2011.11.048] [PMID: 22178535]
[65]
Rocchi, S.; Rocco, A.; Pesek, J.J.; Matyska, M.T.; Capitani, D.; Fanali, S. Enantiomers separation by nano-liquid chromatography: use of a novel sub-2 μm vancomycin silica hydride stationary phase. J. Chromatogr. A, 2015, 1381, 149-159.
[http://dx.doi.org/10.1016/j.chroma.2015.01.015] [PMID: 25614191]
[66]
Ciogli, A.; Pierri, G.; Kotoni, D.; Cavazzini, A.; Botta, L.; Villani, C.; Kocergin, J.; Gasparrini, F. Toward enantioselective nano ultrahigh-performance liquid chromatography with Whelk-O1 chiral stationary phase. Electrophoresis, 2014, 35(19), 2819-2823.
[http://dx.doi.org/10.1002/elps.201400240] [PMID: 25043154]
[67]
Desiderio, C.; Fanali, S. Capillary electrochromatography and capillary electrochromatography-electrospray mass spectrometry for the separation of non-steroidal anti-inflammatory drugs. J. Chromatogr. A, 2000, 895(1-2), 123-132.
[http://dx.doi.org/10.1016/S0021-9673(00)00658-0] [PMID: 11105854]
[68]
Suenami, K.; Lim, L.W.; Takeuchi, T.; Sasajima, Y.; Sato, K.; Takekoshi, Y.; Kanno, S. On-line sample extraction and enrichment of non-steroidal anti-inflammatory drugs by pre-column in capillary liquid chromatography mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 846(1-2), 176-183.
[http://dx.doi.org/10.1016/j.jchromb.2006.08.041] [PMID: 16971191]
[69]
Rocco, A.; Fanali, S. Enantiomeric separation of acidic compounds by nano-liquid chromatography with methylated-beta-cyclodextrin as a mobile phase additive. J. Sep. Sci., 2009, 32(10), 1696-1703.
[http://dx.doi.org/10.1002/jssc.200800667] [PMID: 19370733]
[70]
Rocco, A.; Maruška, A.; Fanali, S. Cyclodextrins as a chiral mobile phase additive in nano-liquid chromatography: comparison of reversed-phase silica monolithic and particulate capillary columns. Anal. Bioanal. Chem., 2012, 402(9), 2935-2943.
[http://dx.doi.org/10.1007/s00216-012-5764-6] [PMID: 22349325]
[71]
El-Kommos, M.E.; Mohamed, N.A.; Abdel Hakiem, A.F. Selective micellar electrokinetic chromatographic method for simultaneous determination of some pharmaceutical binary mixtures containing non-steroidal anti-inflammatory drugs. J. Pharm. Anal., 2013, 3(1), 53-60.
[http://dx.doi.org/10.1016/j.jpha.2012.07.005] [PMID: 29403796]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy